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Abstract

This paper studies a new framework for learning a predictor in the presence of multiple kernel
functions where the learner selects or extracts several kernel functions from potentially complex
families and finds an accurate predictor defined in terms of these functions. We present an al-
gorithm, Voted Kernel Regularization, that provides the flexibility of using very complex kernel
functions such as predictors based on high-degree polynomial kernels or narrow Gaussian kernels,
while benefitting from strong learning guarantees. We show that our algorithm benefits from strong
learning guarantees suggesting a new regularization penalty depending on the Rademacher com-
plexities of the families of kernel functions used. Our algorithm admits several other favorable
properties: its optimization problem is convex, it allows for learning with non-PDS kernels, and the
solutions are highly sparse, resulting in improved classification speed and memory requirements.
We report the results of some preliminary experiments comparing the performance of our algorithm
to several baselines.

Keywords: feature extraction, kernel methods, learning theory, Rademacher complexity

1. Introduction

Feature extraction is key to the success of machine learning. With a poor choice of features, learn-
ing can become arbitrarily difficult, while, a favorable choice can help even an unsophisticated
algorithm succeed. In recent years, a number of methods have been proposed to reduce the require-
ment from the user to select features by seeking instead to automate the feature extraction process.
These include unsupervised dimensionality reduction techniques (Roweis and Saul, 2000; Tenen-
baum et al., 2000; Belkin and Niyogi, 2003), supervised embedding techniques (Hyvirinen and Oja,
2000; Mika et al., 1999; Mohri et al., 2015), and metric learning methods (Weinberger et al., 2006;
Bar-Hillel et al., 2003; Goldberger et al., 2004).
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KERNEL EXTRACTION VIA VOTED RISK MINIMIZATION

For kernel-based algorithms, the problem of feature selection is substituted with that of selecting
appropriate kernels. In the multiple kernel learning (MKL) framework, the learning algorithm is
presented with a labeled sample and a family of kernel functions, typically a convex combination
of base kernels, and the problem consists of using the sample to both extract the relevant kernel
weights and learn a predictor based on that kernel (Lanckriet et al., 2004; Argyriou et al., 2005,
2006; Srebro and Ben-David, 2006; Lewis et al., 2006; Zien and Ong, 2007; Micchelli and Pontil,
2005; Jebara, 2004; Bach, 2008; Ong et al., 2005; Cortes et al., 2010, 2013).

This paper studies an alternative framework for learning a predictor in the presence of mul-
tiple kernel functions where the learner selects or extracts several kernel functions and finds an
accurate predictor defined in terms of these functions. There are some key differences between
the set-up we consider and that of MKL. For the particular case of a family of convex combina-
tions >_p_; kK based on p base kernels K1, ..., Kp, s > 0, in MKL, the general form of the
predictor solution f based a training sample (x1, ..., 2y ) is f = > i ai(Op_q meKi(s,-)) =
S S aipp Ky (24, ), with o € R. In contrast, the predictors we consider have the more
general form f = Y7 Y°P_ o pKi(x;, ), with oy, € R. Furthermore, we allow kernels to be
selected from possibly very complex families, thanks to the use of capacity-conscient regularization.
An approach similar to ours is that of Cortes et al. (2011), where for each base kernel a different
predictor is used and where the predictors are then combined to define a single predictor, these two
tasks being performed in a single stage or in two subsequent stages. The algorithm where the task
is performed in a single stage bears the most resemblance with ours. However the regularization is
different and, most importantly, not capacity-dependent. We will further emphasize these key points
in Section 3 where our Voted Kernel Regularization algorithm is further discussed.

The hypothesis returned by learning algorithms such as SVMs (Cortes and Vapnik, 1995) and
other algorithms for which the representer theorem holds is a linear combination of kernel feature
functions K (z, -), where K is the kernel function used and x is a training sample. The generaliza-
tion guarantees for SVMs depend on the sample size and the margin, but also on the complexity
of the kernel function K used, measured by its trace (Koltchinskii and Panchenko, 2002). These
guarantees suggest that, for a moderate margin, learning with very complex kernels, such as sums
of polynomial kernels of degree up to some large d may lead to overfitting, which frequently is
observed empirically. Thus, in practice, simpler kernels are typically used, that is small ds for sums
of polynomial kernels. On the other hand, to achieve a sufficiently high performance in challenging
learning tasks, it may be necessary to augment a linear combination of such functions K (z, -) with
a function K’(x,-), where K' is possibly a substantially more complex kernel, such as a polyno-
mial kernel of degree d’ > d. This flexibility is not available when using SVMs or other learning
algorithms such as kernel Perceptron (Aizerman et al., 1964; Rosenblatt, 1958) with the same so-
lution form: either a complex kernel function K’ is used and then there is a risk of overfitting, or a
potentially too simple kernel K is used, thereby limiting the performance achievable in some tasks.

This paper presents an algorithm, Voted Kernel Regularization (VKR), that precisely provides
the flexibility of using potentially very complex kernel functions such as predictors based on much
higher-degree polynomial kernels, while benefitting from strong learning guarantees. VKR simul-
taneously selects (multiple) base kernel functions and learns a discriminative model based on these
functions. We show that our algorithm benefits from strong data-dependent learning bounds that
are expressed in terms of the Rademacher complexities of the reproducing kernel Hilbert spaces
(RHKS) of the kernel functions used. These results are based on the framework of Voted Risk
Minimization originally introduced by Cortes et al. (2014) for ensemble methods. We further ex-
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tend their results, using a local Rademacher complexity analysis, to show that faster convergence
rates are possible when the spectrum of the kernel matrix is controlled. The regularization terms of
our algorithm is directly based on the Rademacher complexities of the families already mentioned
and therefore benefits from the data-dependent properties of these quantities. We give an extensive
analysis of these complexity penalties in the case of kernel families commonly used.

Besides the theoretical guarantees, VKR admits a number of additional favorable properties.
Our formulation leads to a convex optimization problem that can be solved either via Linear Pro-
gramming or Coordinate Descent. VKR does not require the kernel functions to be positive-definite
or even symmetric. This enables the use of much richer families of kernel functions. In particular,
some standard distances known not to be PSD such as the edit-distance can be used with VKR.

Yet another advantage of our algorithm is that it learns highly sparse feature representations pro-
viding greater efficiency and less memory needs. In that respect, VKR is similar to so-called norm-1
SVM (Vapnik, 1998; Zhu et al., 2003) and Any-Norm-SVM (Dekel and Singer, 2007) which all use a
norm-penalty to reduce the number of support vectors. However, to the best of our knowledge these
regularization terms on their own has not led to performance improvement over regular SVMs (Zhu
et al., 2003; Dekel and Singer, 2007). In contrast, our preliminary experimental results show that
VKR can outperform both regular SVM and norm-1 SVM, and at the same time significantly reduce
the number of support vectors. In some other work, hybrid regularization schemes are combined
to obtain a performance improvement (Zou, 2007). Possibly this technique could be applied to our
VKR algorithm as well resulting in additional performance improvements.

The rest of the paper is organized as follows. Some preliminary definitions and notation are
introduced in Section 2. The VKR algorithm is presented in Section 3. In Section 4, we show that
it benefits from strong data-dependent learning guarantees, including when using highly complex
kernel families. In Section 4, we also prove local complexity bounds that detail how faster con-
vergence rates are possible provided that the spectrum of the kernel matrix is controlled. Section 5
discusses the implementation of the VKR algorithm, including optimization procedures and a novel
theoretical analysis of the Rademacher complexities of relevant kernel families. We conclude with
some early experimental results in Section 7 and Appendix D, which we hope to complete in the
future with a more extensive analysis, including large-scale experiments.

2. Preliminaries

Let X denote the input space. We consider the familiar supervised learning scenario. We assume
that training and test points are drawn i.i.d. according to some distribution D over X x {—1,+1}
and denote by S = ((1,91), ..., (Tm, Ym)) a training sample of size m drawn according to D".

Let p > 0. For a function f taking values in R, we denote by R(f) its binary classification
error, by Rg( f) its empirical error, and by Rg ,( f) its empirical margin error for the sample .S:

R - b Lyfa ) ﬁ = B Il ) andﬁ = E (1, )
(f) (%y)ND[ yf(@)<ol s(f) (x,y)NS[ yf () <0] o (f) (m’y)ws[ yi(2)<p]

where the notation (z,y) ~ S indicates that (z,y) is drawn according to the empirical distribution
defined by S. We will denote by PRg(H ) the empirical Rademacher complexity of a hypothesis
set H on the set S of functions mapping X to R, and by R,,(H) the Rademacher complexity
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(Koltchinskii and Panchenko, 2002; Bartlett and Mendelson, 2002):

Ro(H) = —E I:SEBZUZ (2 } Am(H) = B {ﬂ?is(H)},

where the random variables o; are independent and uniformly distributed over {—1, +1}.

3. Voted Kernel Regularization Algorithm

In this section, we present the VKR algorithm. Let K1, ..., K, be p positive semi-definite (PSD)
kernel functions with i = sup,cxy /Ki(z,z) for all k£ € [1,p]. We consider p corresponding
families of functions mapping from X to R, Hy, ..., Hp, defined by Hy, = {z — £Kj(z,2'): 2’ €
X'}, where the sign accounts for two possible ways of classifying a point 2’ € X. The general form
of a hypothesis f returned by the algorithm is the following:

m p
F=Y onKi(,z)),
j=1 k=1

where o, ; € R forall j and k. Thus, f is a linear combination of hypotheses in Hjs. This form with
many as per point is distinct from that of MKL solutions which admit only one « per point. Since
the families H} are symmetric, this linear combination can be made a non-negative combination.
Our algorithm consists of minimizing the Hinge loss on the training sample, as with SVMs, but with
a different regularization term that tends to penalize hypotheses drawn from more complex Hys
more than those selected from simpler ones and to minimize the norm-1 of the coefficients oy, ;. Let
ri denote the empirical Rademacher complexity of Hy: r, = SA%S(H 1)- Then, the following is the
objective function of VKR:

m p
Zmax <0 1— yzZZakaij Ti, Tj >+ZZ Ary + B)|ag 51,

j=1k=1 j=1k=1

ey

where A > 0 and 5 > 0 are parameters of the algorithm. We will adopt the notation Ay = Ary + 3
to simplify the presentation in what follows.

Note that the objective function F' is convex: the Hinge loss is convex, thus, its composition
with an affine function is also convex, which shows that the first term is convex; the second term is
convex as the absolute value terms with non-negative coefficients; and F' is convex as the sum of
these two convex terms. Thus, the optimization problem admits a global minimum. VKR returns
the function f defined by (3) with coefficients o = (g ;),; minimizing F'.

This formulation admits several benefits. First, it enables us to learn with very complex hy-
pothesis sets and yet, as we will see later, benefit from strong learning guarantees, thanks to the
Rademacher complexity-based penalties assigned to coefficients associated to different Hys. No-
tice further that the penalties assigned are data-dependent, which is a key feature of the algorithm.
Second, observe that the objective function (7) does not require the kernels K}, to be positive-definite
or even symmetric. Function F' is convex regardless of the kernel properties. This is a significant
benefit of the algorithm which enables us to extend its use beyond what algorithms such as SVMs
require. In particular, some standard distances known not to be PSD such as the edit-distance and
many others could be used with this algorithm. Another advantage of this algorithm compared to
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standard SVM and other />-regularized methods is that /1-norm regularization used for VKR leads
to sparse solutions. The solution « is typically sparse, which significantly reduces prediction time
and the memory needs.

Note that hypotheses h € Hy, are defined by h(z) = Ky (x,2") where 2’ is an arbitrary element
of the input space X'. However, our objective only includes those x; that belong to the observed
sample. For PDS kernels, this does not cause any loss of generality. Indeed, observe that for ' € X
we can write @ (z') = w+w-L, where @, is a feature map associated with the kernel K and where
w lies in the span of ®(x1), ..., ®Px(x,,) and w is in orthogonal compliment of this subspace.
Therefore, for any sample point x;

Kk(xi’x,) = <q>k($i)a q)k(x,)>Hk = <q)k($l)aw>7'lk + <(I)k(xi)aWL>7‘lk

= B k@), ®r(w;))w, = Y B K(wi, x5),

j=1 j=1

which leads to objective (1). Note that selecting — K, (-, z;) with weight «y, ; is equivalent to se-
lecting K (-, z;) with (—ay, ;), which accounts for the absolute value on the a, ;s.

The VKR algorithm has some connections with other algorithms previously described in the lit-
erature. In the absence of any regularization, thatis A = 0 and 8 = 0, it reduces to the minimization
of the Hinge loss and is therefore close to the SVM algorithm (Cortes and Vapnik, 1995). For A = 0,
that is when discarding our regularization based on the different complexity of the hypothesis sets,
the algorithm coincides with an algorithm originally described by Vapnik (1998)[pp. 426-427], later
by several other authors starting with (Zhu et al., 2003), and often referred to as the norm-1 SVM.

4. Learning Guarantees

In this section, we provide strong data-dependent learning guarantees for the VKR algorithm.

Let F denote conv(|J}_; Hg), that is the family of functions f of the form f = Zthl athy,
where &« = (aq,...,ar) is in the simplex A and where, for each ¢ € [1,T], Hy, denotes the
hypothesis set containing h;, for some k; € [1, p|. Then, the following learning guarantee holds.

Theorem 1 ((Cortes et al., 2014)) Assume p > 1. Fix p > 0. Then, for any § > 0, with probability
at least 1 — § over the choice of a sample S of size m drawn i.i.d. according to D™, the following

inequality holds for all f = Zthl athy € F:

S ptzlat T oV 2 Cllogpl | m T 2m

Theorem 1 can be used to derive the VKR objective. We provide the full details of that derivation
in Appendix B. Theorem 1 can be further improved using a local Rademacher complexity analysis
showing that faster rates of convergence are possible.

Theorem 2 Assume p > 1. Fix p > 0. Then, for any § > 0, with probability at least 1 — § over the
choice of a sample S of size m drawn i.i.d. according to D™, the following inequality holds for all
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= Ethl athy € F and for any K > 1:

K 1
R(f) — ﬁRSW(f) < 6K; ;atmm(ka)
Klogp log 2 8 P2(1+ ZE)m | logp

+ 5K | — log

40— K .
+ O m 5 m 40K log p m

The proof of this result is given in Appendix A. Note that O(logm/y/m) in Theorem 1 is re-
placed with O(logm/m) in Theorem 2. For full hypothesis classes Hys, R, (H)) may be in
O(1/4/m) and thus dominate the convergence of the bound. However, if we use localized classes
Hy(r) = {h € Hy: E[h?] < r}, then, for certain values of 7*, the local Rademacher complexi-
ties R, (Hy(r*)) are in O(1/m) which yields even stronger learning guarantees. Furthermore, this
result leads to an extension of VKR objective:

m P m p
Zmax( 013" s il xz,xj)QjZ (AR (Hi(5)) + Ao . @

7j=1k=1 Jj=1k=1

which is optimized over o with the parameter s selected via cross-validation. In Section 6, we
provide an explicit expression for the local Rademacher complexities of PDS kernel functions.

5. Optimization Solutions

We have derived and implemented two different algorithmic solutions for solving the optimization
problem (1): a linear programming (LP) that we will briefly describe here and a coordinate descent
(CD) approach described in Appendix C which enables us to learn with a very large number of base
hypotheses.

Observe that by introducing slack variables &; the optimization problem (1) can be equivalently
written as follows:

m p
mln Zfz =+ Z ZAk’ak]’ S.t. fl >1-— Z Zak,jyiyj[(k(xi, acj),Vi € [l,m].

j=1k=1 j=1 k=1

Next, we introduce new variables a; j > 0 and o, j > 0 such that oy, ; = a; = O Then, for

any k and j, |y, j| can be rewritten as oz,': ;T The optimization problem is equivalent to the
following:

a+>{]nén>0§ mz& ZZAk g + o)

m P
SZ > 1- ZZ akj akj yly]Kk(xlax]) Vi € [1 m]
7=1 k=1
since, conversely, a solution with ay, j = a;f ; — oy, verifies the condition o ; = 0 or a;_; = 0 for

any k and j, thus o ; = a;j when o ; > 0 and a ; = a,;j when ay ; < 0. This is because if
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d = min(a:’j, oy ;) > 0, then replacing a;,j with a;j — ¢ and o ; with o ; — 0 would not affect
a;j — oy but would reduce O‘Z;r,j +ay ;.

Note that the resulting optimization problem is an LP problem since the objective function is
linear in both &;s and ™, a~, and since the constraints are affine. There is a battery of well-
established methods to solve this LP problem including interior-point methods and the simplex
algorithm. An additional advantage of this formulation of the VKR algorithm is that there is a
large number of generic software packages for solving LPs making the VKR algorithm easier to
implement.

6. Complexity penalties

An additional benefit of the learning bounds presented in Section 4 is that they are data-dependent.
They are based on the Rademacher complexities ;s of the base hypothesis sets H}, which can be
accurately estimated from the training sample. Our formulation directly inherits this advantage.
However, in some cases, computing these estimates may be very costly. In this section, we derive
instead several upper bounds on these complexities that be can readily used in an efficient imple-
mentation of the VKR algorithm.

Note that the hypothesis set Hy, = {z — +Ki(z,2'): 2’ € X} is of course distinct from
the RKHS J{j, of the kernel K. Thus, we cannot use known upper bounds on S?ig(f}{k) to bound
%S(Hk) Observe that E)A%S(J-Ck) can be expressed as follows:

-~ 1
Rs(Hp) = —E sup oisKg(z,x')| = [ sup ‘ 0 Ky (zi,x ” 3)
Mo | prex se{— 1+1}; ’ ’ moao | pex Z ' ‘

The following lemma gives an upper bound depending on the trace of the kernel matrix K.

Lemma 3 (Trace bound) Let K, be the kernel matrix of the PDS kernel function Ky, for the sample
S and let ki, = Sup,cx \/m Then, the following inequality holds: %S(Hk) < SRV I ”E[Kk]

Proof By (3) and the Cauchy-Schwarz inequality, we can write
S 1 1 <
Re(Hy) = —E ‘ K,‘:—E B (z;) - B "
i) = 8 [ |3 it - [;&a MRS
zp@k }
He

m
Kk
]| S
By Jensen’s inequality, the following inequality holds:

E [H iai@k(wi)
=1

1
gE%wu% Y,
m o x/

U{J < [Z i P (i) - @k(%)] =/ Tr[Ky],

3,7=1

which concludes the proof. |

The expression given by the lemma can be precomputed and used as the parameter r; of the op-
timization procedure. However, the upper bound just derived is not fine enough to distinguish
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between different normalized kernels since for any normalized kernel Ky, k = 1 and Tr[Kj] = m.
In that case, finer bounds in terms of localized complexities can be used. In particular, the local
Rademacher complexity of a set of functions H is defined as R (H,r) = R,,,({h € H: E[h?] <
r}). If ()52, is a sequence of eigenvalues associated with the kernel Kj; then one can show
(Mendelson, 2003; Bartlett et al., 2005) that for every » > 0, the following inequality holds:

Rloc(H,r) < \/7721 ming>o («97“ + D550 )\j> = \/% >_;2min(r, ;). Furthermore, there is an
absolute constant ¢ such that if A\; > % then for every r > %, \/—% Z;’il min(r, ;) < m%C(H, r).

Note that the choice r = oo recovers the earlier bound R,,, (Hy) < /Tr[Ky]/m. On the other hand,
one can show that for instance in the case of Gaussian kernels R1%¢(H,r) = O(y/Z log(1/r)) and

using the fixed point of this function leads to RI%°(H, r) = O(b%). These results can be used in
conjunction with the local Rademacher complexity extension of VKR discussed in Section 4.

If all of the kernels belong to the same family such as, for example, polynomial or Gaussian
kernels it may be desirable to use measures of complexity that account for specific properties of the
given family of kernels such a the polynomial degree or the bandwidth of a Gaussian kernel. Below
we present alternative upper bounds that precisely address these questions.

For instance, if K} is a polynomial kernel of degree k, then we can use an upper bound on
the Rademacher complexity of Hy, in terms of the square-root of its pseudo-dimension Pdim (Hy,),
which coincides with the dimension dj, of the feature space corresponding to a polynomial kernel
of degree k, which is given by

= (V) < O ()

Lemma 4 (Polynomial kernels) Ler K. be a polynomial kernel of degree k. Then, the empirical

Rademacher complexity of Hy, can be upper bounded as %S(H k) < 12/<;,2§\ / Li’“.

Proof By the proof of Lemma 3, we can write

~

Rs(Hy) < S E [H zmj 0@y (1)
=1

:| = 25% SS\%S(I{Ii%
o J{k

where H} is the family of linear functions H} = {w — w - @y (z): [|w]5, < ﬁ . By Dudley’s
formula (Dudley, 1989), we can write

- 1 H}, Lo(D
St <12 | \/og/\/(c‘, 1 La0)
0

where D is the empirical distribution. Since H} can be viewed as a subset of a dj-dimensional
linear space and since |w - @4 (z)| < 4 forallz € X and w € H}, we have log N (¢, H}, Lo(D)) <
log [(2)4*]. Thus, we can write

~ L Jdlogd 1
Re(HL) < 12 deloge 1o, /% loe Lde — 12 %ﬁ7
k g
0 m m Jo € m 2

79



CORTES, GOYAL, KUZNETSOV AND MOHRI

which completes the proof. |

Thus, in view of the lemma, we can use r; = ﬁi\/ﬁ as a complexity penalty in the formulation of
the VKR algorithm with polynomial kernels, with dj, given by (4).

Another family of kernels that is commonly used in applications is Gaussian kernels H, =
{x — Lexp(—v|z — 2||3): ¥’ € X}. Our next result provides a bound on the Rademacher
complexity of this family of kernels in terms of the parameter ~.

Lemma 5 (Gaussian kernels) The empirical Rademacher complexity of H. can be bounded as
follows: Rg(H,) < yRs({z — ||z — 2'|13}).

Proof Observe that the function z — exp(—~z) is y-Lipschitz for z > 0 since the absolute value of
its derivative, | — v exp(—~z)| is bounded by . Thus, by (3) and Talagrand’s contraction principle
(Ledoux and Talagrand, 1991), the following holds:

ﬁS(H'y) —E { sup ‘ ZU e lzi—a'l13

r'eX

]SZL [;gp‘zaz\lfcz 2’2 ”

which concludes the proof. |

Note that while we could in fact bound Rg({z + ||z — 2’||3}), we do not need to find its expres-
sion explicitly since it does not vary with . Thus, in view of the lemma, we can use 7, = 7 as
a complexity penalty in the formulation of the VKR algorithm with Gaussian kernels defined by
parameters 71, ...,7p,. Talagrand’s contraction principle helps us derive similar bounds for other
families of kernels including those that are not PDS. In particular, a similar proof using the Lips-
chitzness of tanh shows the following result for sigmoid kernels.

Lemma 6 (Sigmoid kernels) Let H,j, = {x — *tanh(ax-2'+b): 2’ € X'} witha,b € R. Then,
the following bound holds: Rs(H,p) < 4|la|Rs({z — = - 2'}).

7. Experiments

Here, we report the results of some preliminary experiments with several benchmark datasets from
the UCI repository: breastcancer, climate, diabetes, german (numeric), ionosphere,
musk, ocrd9, phishing, retinopathy, vertebral and waveform01l. The notation ocr49
refers to the subset of the OCR dataset with classes 4 and 9, and similarly waveform01 refers to
the subset of wave form dataset with classes 0 and 1. See Appendix E for details.

Our experiments compared VKR to regular SVM, that we refer to as L2-SVM, and to norm-1
SVM, called L;-SVM. In all of our experiments, we used 1p_solve, an off-the-shelf LP solver, to
solve the VKR and L;-SVM optimization problems. For L2-SVM, we used LibSVM.

In each of the experiments, we used standard 5-fold cross-validation for performance evaluation
and model selection. In particular, each dataset was randomly partitioned into 5 folds, and each
algorithm was run 5 times, with a different assignment of folds to the training set, validation set
and test set for each run. Specifically, for each i € {0,...,4}, fold i was used for testing, fold
i+ 1 (mod 5) was used for validation, and the remaining folds were used for training. For each
setting of the parameters, we computed the average validation error across the 5 folds, and selected
the parameter setting with minimum average validation error. The average test error across the 5
folds was then computed for this particular parameter setting.
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Error (%) Number of support vectors
Dataset L2 SVM L1 SVM VKRT VKRD L2 SVM L1 SVM VKRT VKRD
Mean | (Stdev) | Mean | (Stdev) | Mean | (Stdev) | Mean | (Stdev) || Mean | (Stdev) | Mean | (Stdev) | Mean | (Stdev) | Mean | (Stdev)
ocr49 5.05 | (0.65) | 3.50 | (0.85) | 2.70 | (0.97) | 3.50 | (0.85) || 449.8 | (3.6) |140.0| (3.6) 6.8 (1.3) [164.6| (9.5)
phishing 4.64 | (1.38) | 4.11 | (0.71) | 3.62 | (0.44) | 3.87 | (0.80) || 221.4 | (15.1) | 188.8| (7.5 | 73.0 | (3.2) [251.8| (4.0

waveformO1 || 8.38 | (0.63) | 8.47 | (0.52) | 8.41 | (0.97) | 857 | (0.58) ||415.6| (8.1) | 13.6 | (1.3) | 184 | (1.5) | 14.6 | (2.3)
breastcancer || 11.45 | (0.74) | 12.60 | (2.88) | 11.73 | (2.73) | 11.30 | (1.31) || 83.8 | (10.9) | 46.4 | (24) | 66.6 | (3.9) | 29.4 | (1.9)

german 23.00 | (3.00) | 22.40 | (2.58) | 24.10 | (2.99) | 24.20 | (2.61) || 357.2| (16.7) | 344 | (22) | 250 | (1.4) | 302 | (2.3)
ionosphere 6.54 | 3.07) | 7.12 | 3.18) | 4.27 | (2.00) | 3.99 | (2.12) || 1520 (5.5) | 73.8 | (49) | 43.6 | (29) | 30.6 | (1.8)
pima 31.90 | (1.17) |30.85| (1.54) | 31.77 | (2.68) | 30.73 | (1.46) || 330.0 | (6.6) | 26.4 | (0.6) | 33.8 | (3.6) | 40.6 | (1.1)
musk 1534 | (2.23) | 11.55| (1.49) | 10.71 | (1.13) | 9.03 | (1.39) || 251.8 | (12.4) | 1154 | (4.5) |125.6| (8.0) |108.0| (5.2)
retinopathy || 24.58 | (2.28) | 24.85 | (2.65) | 25.46 | (2.08) | 24.06 | (2.43) || 648.2 | (21.3) | 42.6 | (3.7) | 43.6 | (4.0) | 480 | (3.1)
climate 519 | (241) | 593 | (2.83) | 556 | (2.85) | 6.30 | (2.89) || 66.0 | (4.6) | 19.0 | (0.0) | 51.0 | (6.7) | 18.6 | (0.9)

vertebral 17.74 | (6.35) | 18.06 | (5.51) | 17.10 | (7.27) | 17.10 | (6.99) || 75.4 | (4.0) 4.4 (0.6) 9.6 (1.1) 8.2 (1.3)

Table 1: Experimental results with VKR and polynomial kernels. VKRT and VKRD refer to the algorithms obtained by using for the
complexity terms the trace bound (Lemma 3) or the polynomial degree bound (Lemma 4) respectively. Boldfaced results are statistically
significant at a 5% confidence level, boldfaced and in italics are better at a 10% level, both in comparison to L2-SVM.

In the first set of experiments we used polynomial kernels of the form K} (x,y) = (x”y + 1).
We report the results in Table 1. For VKR, we optimized over A € {107%: i = 0,...,8} and
B € {107%: i =0,...,8}. The family of kernel functions Hj}, for k& € [1,10] was chosen to be the
set of polynomial kernels of degree k. In our experiments we compared the bounds of both Lemma 3
and Lemma 4 used as an estimate of the Rademacher complexity. For L;-SVM, we cross-validated
over degrees in range 1 through 10 and S in the same range as for VKR. Cross-validation for Ls-
SVM was also done over the degree and regularization parameter C' € {10%: i = —4,...,7}.

On 5 out of 11 datasets VKR outperformed Lo-SVM with a considerable improvement on 2
data sets. On the rest of the datasets, there was no statistical difference between these algorithms.
Similar improvements are seen over L1-SVM. Observe that the solutions obtained by VKR are often
up to 10 times sparser than those of L2-SVM. In other words, VKR admits the benefit of sparse
solutions and often an improved performance, which provides empirical evidence in support of our
formulation.  The second set of experiments with Gaussian kernels is presented in Appendix D,
where we report a significant improvement for 3 datasets over a different baseline, L2-SVM with
uniform Gaussian kernel.

8. Conclusion

We presented a new support vector algorithm, Voted Kernel Regularization, that simultaneously
selects (multiple) base kernel functions and learns an accurate hypothesis based on these functions.
Our algorithm benefits from strong data-dependent guarantees for learning with complex kernels.
We further improved these learning guarantees using a local complexity analysis leading to an ex-
tension of VKR algorithm. The key ingredient of our algorithm is a new regularization term that
makes use of the Rademacher complexities of different families of kernel functions used by the
VKR algorithm. We gave a thorough analysis of several alternatives that can be used for this ap-
proximation. We also described two practical implementations of our algorithm based on linear
programming and coordinate descent. Finally, we reported the results of preliminary experiments
showing that our algorithm always finds highly sparse solutions and that it can outperform other
formulations.
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Appendix A. Proof of Theorem 2
Proof Forafixedh = (hi,...,hr), any & € A defines a distribution over {h1, ..., hy}. Sampling

from {hy, ..., hr} according to a and averaging leads to functions g of the form g = % ZiT:1 el
for some n = (nq,...,ny), with Zthl ne =n, and hy € Hy,.
For any N = (Ny, ..., Np) with [N| = n, we consider the family of functions
p N
GrN = {Zzh/’w’v (k,7) € [p] x [Nk},hk,jer},
k=1j=1

and the union of all such families G 7 ,, = U|N\:n GrnN. Fixp > 0. Wedefineaclass o Gr N =
{®,(9): g € Grn}and G, = Go F Ny = {1ly/ max(r,E[{y]): {; € ® o Grn} for r to be
chosen later. Observe that for v, € Go 7N, Varfvg] < r. Indeed, if r > E[{,] then v, = ;.
Otherwise, Var[v,] = r? Var[(y]/(E[(,])? < r(E[K?I])/ Elf,] <r

By Theorem 2.1 in Bartlett et al. (2005), for any 6 > 0 with probability at least 1 — ¢, for any
0<pB<1,

2rlog% n (1 +1>log}s
B

V <201+ B)Rm(Ge.rN) + . 3 m

Y

3
where V' = sup,g, (E[v] — E,[v]) and 3 is a free parameter. Next we observe that R, (Gp 7 N,») <

RAn({aly: g€ PoGrn,a € [0,1]}) =R (PoGr N). Therefore, using Talagrand’s contraction
lemma and convexity we have that R, (G r N ) < % )y %%m(H k). It follows that, for any

0 > 0, with probability at least 1 — §, for all 0 < § < 1, the following holds:

"N 2rlog & 1 1\logi
V<21 +5) 9%( R mé‘*‘(g‘f‘g) mé-
Pi=1

Since there are at most p™ possible p-tuples N with [N| = n, by the union bound, for any § > 0,
with probability at least 1 — 4,

V <2(1+5)

1< N rlog & 1 1ylogZ
S E (H) | T (o)
pin m

Thus, with probability at least 1 — 9, for all functions g = % Zszl n¢he with hy € Hy,, the following
inequality holds

1 & g rlog% 1 1 log%
VS 2ALEB) DR (H) | ()
t=1
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Taking the expectation with respect to a and using Eq[n¢/n] = oy, we obtain that for any § > 0
with probability at least 1 — 4, for all h, we can write

1< rlog% 1 1 log¥
E[V] <2(1 - R (H -+ =
BV) < 204 8)] 5 (i) +\ = +(3+3)

m

We now show that r can be chosen in such a way that E,[V] < r/K. The right hand side of the
above bound is of the form A,/r + B. Note that solution of /K = C + A,/r is bounded by
K?A? + 2K C and hence by Lemma 5 in (Bartlett et al., 2002) the following bound holds

T 1
K~ 1 9 1 1y\logs
_ < - Z 4= .

BlFy2(0) = g Rsplo)] SAK(L+5) 3 onh(Hi) + (257 42K (5 +5)) =
Set 8 = 1/2, then we have that

K = log &
E[Rp/Z(g) - mRS,p(g)] < 6K-— Zatm (Hp,) + 5K—= 2.

m
t 1

Then, for any §,, > 0, with probability at least 1 — &,,,

E[Rp/Q(g) - K

R < 6K ; R, (H, 5K10g%
1 Rsel9)l = p;at m(H,) + ot

Choose 0, = 5=t for some § > 0, then for p > 2, > n>10n

W < 4. Thus, for any § > 0
and any n > 1, Wlth probability at least 1 — 4, the following holds for all h:

K 1 & log 2!

D )
E[Ry/2(9) = 7= Bsp(9)] < 6K; ; R (Hy,) + 5K —=F—. 5)
Zthl athy € F and any g = =577 nyhy, we can upper bound R(f) =
0], the generalization error of f, as follows

Pr [yf(z) —

(z,y)~D

Now, for any f =
Pr(a:y ND[yf( ) <

R(f)

= (z) +yg(z) < 0] < Prlyf(z) — yg(z) < —p/2] + Prlyg(x) < p/2]

= Priyf(z) -

yg(z) < —p/2] + R, 2(9)-
We can also write

~

Rp(g) = Rsplg — f+ f) < Prlyg(x) —
Combining these inequalities yields

yf(x) < —p/2] + Rezppa(f).

K -
(le;rND[yf(x) <0] - HRS,Bp/Q(f) < Prlyf(z) —yg(r) < —p/2]
_l’_

Kli 1f’\r[yg(:r) —yf(x) < —p/2] + R, p2(9) - %ﬁs,p(g)-
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Taking the expectation with respect to o yields

R(f) - §8,3p/2(f) < E [1yf(;t)—yg($)<—p/2}

z~D,x

K K ~
+ ﬁ xw%,a[lyg(x)fyf(x)<fp/2] + E’[Rp/Q(g) - ﬁRS,p(g)]'

Since f = Eqg], by Hoeffding’s inequality, for any z,

np2

E[lyf(r)—yg(m)<—p/2] :lzr[yf(x)*yg(x) < *P/2] <e 38

np2

E[lyg(a:)—yf(a:)<—p/2] zlzr[yg(a:)—yf(x) <_p/2] Se 8.

Thus, for any fixed f € F, we can write

~ K 2 K =
R(f) — Rg3p/2(f) < (1 + ﬁ)e_np /84 E[R,/(9) — ﬁRS,p(g)]-

— lo
Thus, the following inequality holds:

K

sup (R(F) = 17— Rsl)) < (1+ K

K

—np? 5
1)6 P8 Sllllpg[Rpm(g) - ﬁRsm/z(g)]-

Therefore, in view of (5), for any 6 > 0 and any n > 1, with probability at least 1 — §, the following
holds for all f € F:

: 1 log 2220~
1)6*"/3 /84 6K 3" R (Hy,) + 5K ———
t=1

m

K

R(P) = o Rsplh) < (145

To conclude the proof, we optimize over n, f: n +— vie”"“4wvyn, which leads ton = (1/u) log(uve /v1).
Therefore, we set

|8, POt Em
| p? & 40K log p

to obtain the following bound:

T
K = 1
R(f) = gy B S6K D andn(Hi,)
t=1
K logp log 2 8 PP+ E)m]logp
40— 5K bK | —1 .
+ P2 m * m * P> ©8 40K log p m

Thus, taking K = 2, simply yields

T 1
~ 12 log p pm log 5

< —
R(f) < 2Rs,(f) + , ;atmm(ﬂkt) +O<p2m log (logp> +—

and the proof is complete. |
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Appendix B. Optimization Problem

This section provides the derivation for the VKR optimization problem. We will assume that
Hi,..., H, are p families of functions with increasing Rademacher complexities R, (Hy), k €
[1, p], and, for any hypothesis h € Uile k> denote by d(h) the index of the hypothesis set it be-
longs to, that is h € Hy(z,). The bound of Theorem 1 holds uniformly for all p > 0 and functions

: . . /loglog = .
[ € conv({J,_; Hy) at the price of an additional term that is in O( T”) The condition

Zz;l ay = 1 of Theorem 1 can be relaxed to Z?zl oy < 1. To see this, use for example a null
hypothesis (h; = 0 for some t). Since the last term of the bound does not depend on ¢, it suggests
selecting o to minimize

1™
E Z i SO aehe( 96;)<p Zatrt’

where r, = Ry, (H, d(ht))~ Since for any p > 0, f and f/p admit the same generalization error, we
can instead search for o > 0 with 3.1, oy < 1/p which leads to

T
gl;%m E 1yzzt () <1—|—4E oy S.t. E ap < —.
t=1

The first term of the objective is not a convex function of o and its minimization is known to be
computationally hard. Thus, we will consider instead a convex upper bound based on the Hinge
loss: let ®(—u) = max(0,1 —u), then 1_,, < ®(—wu). Using this upper bound yields the following
convex optimization problem:

T
gl;rol % Z (1 — yZZatht T; ) + /\Zatrt s.t. Zat < ;, (6)
t=1

where we introduced a parameter A > 0 controlling the balance between the magnitude of the values
taken by function ® and the second term. Introducing a Lagrange variable 5 > 0 associated to the
constraint in (6), the problem can be equivalently written as

T
ggrol%z (1—ylzatht x@) Z)\Tt+5
t=1

Here, (3 is a parameter that can be freely selected by the algorithm since any choice of its value is
equivalent to a choice of p in (6). Let (4 )k, ; be the set of distinct base functions  +— K (-, x;).
Then, the problem can be rewritten as F' be the objective function based on that collection:

m N N
win LS 01 S ah ) + 3 A "
| j=1 =1

with @ = (av,...,ay) € RY and Aj = Mrj + 3, for all j € [1, N]. This coincides precisely
with the optimization problem ming >0 () defining VKR. Since the problem was derived by
minimizing a Hinge loss upper bound on the generalization bound, this shows that the solution
returned by VKR benefits from the strong data-dependent learning guarantees of Theorem 1.

| =
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Appendix C. Coordinate Descent (CD) Formulation

An alternative approach for solving the VKR optimization problem (1) consists of using a coordinate
descent method. A key advantage of this formulation over the LP formulation is that there is no need
to explicitly store the whole vector of acs but rather only non-zero entries. This enables learning with
a very large number of base hypotheses, including scenarios in which the number of base hypotheses
is infinite.

A coordinate descent method proceeds in rounds. At each round, it maintains a parameter vector
a. Let oy = (ayp, J)’;r j denote the vector obtained after ¢ > 1 iterations and let g = 0. Let ey, ;
denote the unit vector in direction (k, j) in RP*™ . Then, the direction ey, ; and the step 7 selected
at the tth round are those minimizing F'(oy—1 + njey, ;), that is

m p
Fla) = Zmax (0 1 —yifio1 — yiynKy (i, z; )+ZZAk’at—l,j,k|+Ak|77+04t—17k,j|>
i=1 7j=1 k=1

where fi1 = 377 37 i1, ky; K (-, ;). To find the best descent direction, a coordinate
descent method computes the sub-gradient in the direction (k, j) for each (k,j) € [1,p] x [1,m].
The sub-gradient is given by

LS Btk + sgn(ou—1 k) Ak ifoy_14;#0

. 1 m
SF(ar_1,e5) = 4 0 else if| L 31" | < A
1 1 :
LS Gugs — s (5 00 dugki ) Ak otherwise

where ¢y j i = —yiKp(x, x5) if Y0, > i1 -1k, YiY K (zi,25) < 1and O otherwise. Once
the optimal direction ey, ; is determined, the step size 7; can be found using a line search or other
numerical methods.

Appendix D. Additional Experiments

This section presents additional experiments with our VKR algorithm.

In these experiments, we used families of Gaussian kernels based on distinct values of the
parameter . We used the bound of Lemma 5 as an estimate of the Rademacher complexity and
we refer to the resulting algorithm as VKRG. We compare VKRG to a different baseline, Lo-SVM
with the uniform kernel combination, which is referred to as Lo-SVM-uniform. It has been observed
empirically that Lo-SVM-uniform often outperforms most existing MKL algorithms (Cortes et al.,
2012).

In our experiments, both VKRG and Ly-SVM-uniform are given a fixed set of base kernels with
v € {1072: i = —4,...,4}. For Lo-SVM-uniform, the range of the regularization parameter was
C € {10": i = —5,...,7}. We used the same range for the A and 3 parameters for VKRG as in
our experiments with polynomial kernels presented in Section 7.

The results of our experiments are comparable to the results with polynomial kernels and are
summarized in Table 2. Voted Kernel Regularization outperforms Lo-SVM-uniform on 9 out of 13
datasets with considerable improvement on 3 datasets, including two additional large-scale datasets
(ml-prove and white). On the rest of the datasets, there was no statistical difference between
these algorithms. Observe that solutions obtained by VKRG are often up to 10 times sparser than
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Dataset Error(%) Number of support vectors
Lo-SVM-uniform VKRG Lo-SVM-uniform VKRG
Mean (Std) Mean (Std) Mean (Std) Mean (Std)
ocr49 2.85 (1.26) 3.45 (1.05) 710.2 (8.2) 160.4 (8.0)
phishing 3.50 (1.17) 350 | (1.09) 506.0 (10.2) 172.8 | (10.3)
waveform01 8.63 (0.56) 8.90 | (0.87) 662.4 (8.7) 24.2 (1.9)
breastcancer 9.30 (1.04) 844 | (1.30) 217.0 4.9) 124.2 (5.9)
german 242 2.77) 246 | (3.42) 418.2 (12.5) 32.6 (2.3)
ionosphere 427 (1.73) 398 | (231 150.6 3.7 53.2 (2.3)
pima 32.43 (3.00) 31.39 | (2.95) 326.8 (10.7) 34.8 (1.6)
musk 10.72 (2.30) 9.46 | (2.24) 271.0 (2.6) 105.6 4.2)
retinopathy 27.98 (1.16) 25.54 | (2.10) 471.0 (6.6) 29.0 (2.6)
climate 7.04 (2.50) 6.11 (3.44) 158.8 (13.1) 414 9.3)
vertebral 19.03 (4.17) 16.13 | (4.70) 85.0 (2.8) 11.6 (1.5)
white 31.42 (4.21) 29.83 | (5.19) 1284.2 | (106.9) 123.2 (8.0)
ml-prove 25.37 (5.67) 1991 | (2.12) 1001.8 (70.3) 1212.0 | (65.1)

Table 2: Experimental results for VKRG. As in Table 1, boldfaced values represent statistically significant results at 5% level.

those of La-SVM-uniform. In other words, as in the case of polynomial kernels, VKRG has a benefit
of sparse solutions and often an improved performance, which again provides empirical evidence in
the support of our formulation.

Appendix E. Dataset Statistics
The dataset statistics are provided in Table 3.

Table 3: Dataset statistics.

Data set Examples | Features
breastcancer 699 9
climate 540 18
diabetes 768 8
german 1000 24
ionosphere 351 34
ml-prove 6118 51
musk 476 166
ocr49 2000 196
phishing 2456 30
retinopathy 1151 19
vertebral 310 6
waveform0O1 3304 21
white 4894 11
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