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Abstract

Tensor methods have emerged as a powerful paradigm for consistent learning of many latent vari-
able models such as topic models, independent component analysis and dictionary learning. Model
parameters are estimated via CP decomposition of the observed higher order input moments. In
this paper, we extend tensor decomposition framework to models with invariances, such as convo-
lutional dictionary models. Our tensor decomposition algorithm is based on the popular alternating
least squares (ALS) method, but with additional shift invariance constraints on the factors. We
demonstrate that each ALS update can be computed efficiently using simple operations such as
fast Fourier transforms and matrix multiplications. Our algorithm converges to models with better
reconstruction error and is much faster, compared to the popular alternating minimization heuristic,
where the filters and activation maps are alternately updated.

Keywords: Tensor CP decomposition, convolutional dictionary learning, convolutional ICA, blind
deconvolution.

1. Introduction

Feature or representation learning forms a cornerstone of modern machine learning. Represent-
ing the data in the relevant feature space is critical to obtaining good performance in challenging
machine learning tasks in speech, computer vision and natural language processing. A popular rep-
resentation learning framework is based on dictionary learning. Here, the input data is modeled
as a linear combination of dictionary elements. However, this model fails to incorporate natural
domain-specific invariances such as shift invariance and results in highly redundant dictionary ele-
ments, which makes inference in these models expensive.

These shortcomings can be remedied by incorporating invariances into the dictionary model, and
such models are known as convolutional models. Convolutional models are ubiquitous in machine
learning for image, speech and sentence representations (Zeiler et al., [2010; [Kavukcuoglu et al.,
2010; Bristow et al., 2013), and in neuroscience for modeling neural spike trains (Olshausen, |2002;
Ekanadham et al., 2011). Deep convolutional neural networks are a multi-layer extension of these
models with non-linear activations. Such models have revolutionized performance in image, speech
and natural language processing (Zeiler et al., [2010; Kalchbrenner et al.,[2014)). The convolutional
dictionary learning model posits that the input signal x is generated as a linear combination of
convolutions of unknown dictionary elements or filters f{,... f; and unknown activation maps
wy,. .. wi:
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r=Y ff*kuf, (1)
1€[L]
where [L] :=1,..., L. The vector w; denotes the activations at locations, where the corresponding

filter f is active.
In order to learn the model in (), usually a square loss reconstruction criterion is employed:

min o= fokw] @)
fiwit|| fill= iE[L}
The constraints (|| f;|| = 1) are enforced, since otherwise, the scaling can be exchanged between

the filters f; and the activation maps w;. Also, an additional regularization term (for example an ¢;
term on the w/s) is usually added to the above objective to promote sparsity on w;.

A popular heuristic for solving is based on alternating minimization (Bristow and Lucey)
2014), where the filters f; are optimized, while keeping the activations w; fixed, and vice versa.
Each alternating update can be solved efficiently (since it is linear in each of the variables). However,
the method is computationally expensive in the large sample setting since each iteration requires a
pass over all the samples, and in modern machine learning applications, the number of samples
can run into billions. Moreover, alternating minimization has multiple spurious local optima, and
reaching the global optimum of (2)) is NP-hard in general. This problem is severely amplified in
the convolutional setting due to additional symmetries, compared to the usual dictionary learning
setting (without the convolutional operation). Due to shift invariance of the convolutional operator,
shifting a filter f; by some amount, and applying a corresponding negative shift on the activation
w; leaves the objective in (2) unchanged. Can we design alternative methods for convolutional
dictionary learning that are scalable to huge datasets?

1.1 Summary of Results

In this paper, we propose a novel framework for learning convolutional models through tensor de-
composition. We consider inverse method of moments to estimate the model parameters via decom-
position of higher order (third or fourth order) moment tensors. When the inputs = are generated
from a convolutional model in (I), with independent activation maps wy, i.e. a convolutional ICA
model, we show that the cumulant tensors have a CP decomposition, whose components correspond
to filters and their circulant shifts. We propose a novel method for tensor decomposition when such
circulant constraints are imposed on the components of the tensor decomposition.

Our tensor decomposition method is a constrained form of the popular alternating least squares
(ALS) methocﬂ We show that the resulting optimization problem in each tensor ALS iteration
can be solved in closed form, and uses simple operations such as Fast Fourier transforms (FFT)
and matrix multiplications. These operations have a high degree of parallelism: for estimating L
filters, each of length n, we require O(logn + log L) time and O(L?n?) processors. Note that
there is no dependence on the number of data samples NV, since the empirical moment tensor can
be computed in one data pass, and the ALS iterations only updates the filters. This is a huge saving
in running time, compared to the alternate minimization method which requires a pass over data
in each step to decode all the activation maps w;. The running time of alternating minimization

1. The ALS method for tensor decomposition is not to be confused with the alternating minimization method for solving
(). While (2) acts on data samples and alternates between updating filters and activation maps, tensor ALS operates
on averaged moment tensors and alternates between different modes of the tensor decomposition.

117



CONVOLUTIONAL DICTIONARY LEARNING THROUGH TENSOR FACTORIZATION

nNL nNL
log N’ log L

N > Ln?, which is the typical scenario, our method is hugely advantageous. Our method avoids
decoding the activation maps in each iteration since they are averaged out in the input moment
tensor, on which the ALS method operates and we only estimate the filters f; in the learning step. In
other words, the activation maps w;’s After filter estimation, the activation maps are easily estimated
using (2)) in one data pass. Thus, our method is highly parallel and scalable to huge datasets.

is O(max(lognlog L,lognlog N)) per iteration with O (max(

)) processors, and when

We carefully optimize computation and memory costs by exploiting tensor algebra and circulant
structure, due to the shift invariance of the convolutional model. We implicitly carry out many
of the operations and do not form large (circulant) matrices and minimize storage requirements.
Preliminary experiments further demonstrate superiority of our method compared to alternating
minimization. Our algorithm converges accurately and much faster to the true underlying filters
compared to alternating minimization. Moreover, it results in much lower reconstruction error,
while alternating minimization tends to get stuck in spurious local optima. Our algorithm is also
orders of magnitude faster than the alternating minimization.

1.2 Related Works

The special case of (1)) with one filter (L = 1) is a well studied problem, and is referred to as blind
deconvolution (Hyvirinen et al., 2004). In general, this problem is not identifiable, i.e. multiple
equivalent solutions can exist (Choudhary and Mitra, 2014)). It has been documented that in many
cases alternating minimization produces trivial solutions, where the filter f = x is the signal itself
and the activation is the identity function (Levin et al., 2009). Therefore, alternative techniques
have been proposed, such as convex programs, based on nuclear norm minimization (Ahmed et al.,
2014) and imposing hierarchical Bayesian priors for activation maps (Wipf and Zhang|2013)). How-
ever, there is no analysis for settings with more than one filter. Incorporating Bayesian priors has
shown to reduce the number of local optima, but not completely eliminate them (Wipf and Zhang,
2013; Krishnan et al., [2013)). Moreover, Bayesian techniques are in general more expensive than
alternating minimization.

The extension of blind deconvolution to multiple filters is known as convolutive blind source
separation or convolutive independent component analysis (ICA) (Hyvirinen et al., [2004). Previ-
ous methods directly reformulate convolutive ICA as an ICA model, without incorporating the shift
constraints. Moreover, reformulation leads to an increase of number of hidden sources from L to
nL in the new model, where n is the input dimension, which are harder to separate and compu-
tationally more expensive. Other methods are based on performing ICA in the Fourier domain,
but the downside is that the new mixing matrix depends on the angular frequency, and leads to
permutation and sign indeterminacies of the sources across frequencies. Complicated interpolation
methods (Hyvérinen et al.| [2004)) overcome these indeterminacies. In contrast, our method avoids
all these issues. We do not perform Fourier transform on the input, instead, we employ FFTs at
different iterations of our method to estimate the filters efficiently.

The dictionary learning problem without convolution has received much attention. Recent re-
sults show that simple iterative methods can learn the globally optimal solution (Agarwal et al.,
2014; |Arora et al., 2014). In addition, tensor decomposition methods provably learn the model,
when the activations are independently drawn (the ICA model) (Anandkumar et al. 2014) or are
sparse (the sparse coding model) (Anandkumar et al., [2015)). In this work, we extend the tensor
decomposition methods to efficiently incorporate the shift invariance constraints imposed by the
convolution operator.
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Figure 1: Convolutional tensor decomposition for learning convolutional ICA models.(a) The con-
volutional generative model with 2 filters. (b) Reformulated model where F* is column-stacked
circulant matrix. (c) The third order cumulant is decomposed as filters.

2. Model and Formulation

Notation Let [n] := {1,2,...,n}. For a vector v, denote the i" element as v(7). For a matrix M,
denote the i row as M and j" column as M;. For a tensor 7' € R™™*™ its (i1, i, i3)" entry is
denoted by [T]n,iz,ig- A column-stacked matrix M consisting of MZ’ s (with same number of rows)
is M := [My, Ms,...,M;p). Similarly, a row-stacked matrix M from M]s (with same number of
columns) is M := [My; Ma;...; Mz].

Cyclic Convolution The 1-dimensional (1-D) n-cyclic convolution f sk w between vectors f and
w is defined as v = [k, w, v(i) = 3 ;ep, f(H)w((@ — j + 1) mod n). Note that the linear
convolution is the combination without the modulo operation (i.e. cyclic shifts) above. n-Cyclic
convolution is equivalent to linear convolution, when 7 is at least twice the support length of both
f and w (Oppenheim and Willsky| [1997), which will be assumed. We drop the notation 7 in s for
convenience. Cyclic convolution in (2)) is equivalent to f s w = Cir(f) - w, and

Cir(f) ==Y f(P)Gy e RV, (Gp)j:=6{((i—j) modn)=p—1}, Vpe]. @

defines a circulant matrix. A circulant matrix Cir(f) is characterized by the vector f, and each
column corresponds to a cyclic shift of f.

Properties of circulant matrices Let F' be the discrete Fourier transform matrix whose (m, k)-th
entry is F}"" = WD g ke [n] where w, = exp(—2%). If U := /nF~%, U is the set of
eigenvectors for all n x n circulant matrices (Gray, 2005)). Let the Discrete Fourier Transform of a
vector f be FFT(f), we express the circulant matrix Cir(f) as

Cir(f) = Udiag(F - f)U" = Udiag(FFT(f))U". 4)
This is an important property we use in algorithm optimization to improve computational efficiency.

Column stacked circulant matrices We will extensively use column stacked circulant matrices
F :=[Cir(f1),...,Cir(fr)], where Cir(f;) is the circulant matrix corresponding to filter f;.

2.1 Convolutional Dictionary Learning/ICA Model
We assume that the input € R™ is generated as

a:—Zf * wj ZCII’ Jwij = F* - w” 5)

JelL] jelL]
where F* := [Cir(f),Cir(f5),...,Cir(f})] is the concatenation or column stacked version of
circulant matrices and w* is the row-stacked vector w* := [w};w};... wi] € R"E. Recall that
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Cir(f}") is circulant matrix corresponding to filter f;*, as given by (). Note that although F* is a n
by nL matrix, there are only nL free parameters. We never explicitly form the estimates F of F*,
but instead use filter estimates f;’s to characterize F. In addition, we can handle additive Gaussian
noise in (3)), but do not incorporate it for simplicity.

Activation Maps: For each observed sample z, the activation map w; in (§) indicates the loca-
tions where each filter f;" is active and w* is the row-stacked vector w* := [wi;w3;... w}]. We
assume that the coordinates of w* are drawn from some product distribution, i.e. different entries
are independent of one another and we have the independent component analysis (ICA) model in
(®). When the distribution encourages sparsity, e.g. Bernoulli-Gaussian, only a small subset of loca-
tions are active, and we have the sparse coding model in that case. We can also extend to dependent
distributions such as Dirichlet for w*, along the lines of (Blei et al., [2003), but limit ourselves to
ICA model for simplicity.

Learning Problem: Given access to N i.i.d. samples, X := [z, 2%,... 2] € R"*Y, generated
according to the above model, we aim to estimate the true filters f*, for i € [L]. Once the filters
are estimated, we can use standard decoding techniques, such as the square loss criterion in (2)) to
learn the activation maps for the individual maps. We focus on developing a novel method for filter
estimation in this paper.

3. Form of Cumulant Moment Tensors

Tensor Preliminaries We consider 3rd order tensors in this paper but the analysis is easily ex-
tended to higher order tensors. For tensor 7 € R™ "™*" its (i1,192,i3)" entry is denoted by
[T)iy insis, Vi1 € [n],i2 € [n],i3 € [n]. A flattening or unfolding of tensor 7" € R is the column-
stacked matrix of all its slices, given by unfold(7T") := [[T)...1,[T].:2,.-.,[T):.n] € R™*"* | De-
fine the Khatri-Rao product for vectors u € R and v € R® as a row-stacked vector [u ® v] :=
[u(1)v;u(2)v;...;u(a)v] € R%®. Khatri-Rao product is also defined for matrices with same
columns. For M € R**¢and M’ € R, M ® M’ := [M; ® M],...,M.® M!]] € Rxe,
where M; denotes the ™ column of M.

Cumulant The third order cumulant of a multivariate distribution is a third order tensor, which
uses (raw) moments up to third order. Let C3 € R™*"* denote the unfolded version of third order
cumulant tensor, it is given by

C3 :=E[z(z ® 2) "] — unfold(Z) (6)

where [Z]4pc = E[z,)E[zpxe] + Elap|Elxgxc] + Elz ] Elzqzy) — 2E[z,]E[zp)E[z.], Va,b, c € [n].
Under the convolution ICA model in Section [2.1, we show that the third order cumulant has a
nice tensor form, as given below.

Lemma 1 (Form of Cumulants) The unfolded third order cumulant Cs in (0) has the following
decomposition form

Cs= Y XNF(FoF) =FN(FoF)", whereh :=diag(\],5,....\5) (7)
jE[nL]

where F denotes the j " column of the column-stacked circulant matrix F* and A3 is the third order
cumulant corresponding to the (univariate) distribution of w*(j).
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For example, if the I activation is drawn from a Poisson distribution with mean \, we have
that \; = \. Note that if the third order cumulants of the activations, i.e. )\j’s, are zero, we
need to consider higher order cumulants. This holds for zero-mean activations and we need to use
fourth order cumulant instead. Our method extends in a straightforward manner for higher order
cumulants.

blki(®) | -+ | blki(®)
F=|blk(F) ... | blk(F) U=

bk () o+ | blkE(®)

Figure 2: (a) Blocks of the column—stacked circulant matrix . (b) Blocks of the row-and-column-
stacked diagonal matrices W. blk (W) is diagonal.

The decomposition form in (7)) is known as the CANDECOMP/PARAFAC (CP) decomposition
form (Anandkumar et al.| 2014) (the usual form has the decomposition of the tensor and not its
unfolding, as above). We now attempt to recover the unknown filters f;* through decomposition of
the third order cumulants Cs. This is formally stated below.

Objective Function:  Our goal is to obtain filter estimates f;’s which minimize the Frobenius
norm || - || of reconstruction of the cumulant tensor Cs,

min [|C; —FA(F o F)' |7,
s.t. blky(F) = Udiag(FFT(/))U", ||filo=1, VIe[L], A =diag()\). (8)

where blk;(F) denotes the {" circulant matrix in F. The conditions in (§) enforce blk;(F) to be
circulant and for the filters to be normalized. Recall that U denotes the eigenvectors for circulant
matrices. The rest of the paper is devoted to devising efficient methods to solve (8.

Throughout the paper, we will use F; to denote the j* column of F, and blk;(F) to denote the
I circulant matrix block in . Note that F € Rl F; € R™ and blk;(F) € R™*".

4. Alternating Least Squares for Convolutional Tensor Decomposition

To solve the non-convex optimization problem in (8]), we consider the alternating least squares
(ALS) method with column stacked circulant constraint. We first consider the asymmetric relaxation
of (8) and introduce separate variables F, G and H for filter estimates along each of the modes to fit
the third order cumulant tensor C3. We then perform alternating updates by fixing two of the modes
and updating the third one.

min [|Cs ~FAH©G)" |[F st. blky(F) = U - diag(FFT(f)) - U™, |3 = 1.¥L € [L] ()

Similarly, G and H have the same column-stacked circulant matrix constraint and are updated sim-
ilarly in alternating steps. The diagonal matrix A is updated through normalization.

We now introduce the Convolutional Tensor (CT) Decomposition algorithm to efficiently solve (9]
in closed form, using simple operations such as matrix multiplications and fast Fourier Transform
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(FFT). We do not form matrices F, G and H € R™*"L, which are large, but only update them using
filter estimates f1,..., fr,91,...,9L,h1,... k. Denote

M:=C3(Hog)", (10)

where T denotes pseudoinverse. Let blk;(M) and blk;(A) denote the ™ blocks of M and A. We have
a closed form solution for filter update, once we have computed M, and we present the main result
as follows.

Theorem 2 [Closed form updates] The optimal solution flOpt for is given by

> [ bl (M), 7 - blig (M)} - I3,

i,5€[n]
PORY S ’
i,5€[n]

I lopt (p) =

Vp € [n],qg:=(i—j) modn. (11)

Further A = diag(\) is updated as \(i) = ||M;||, for all i € [nL]. Note that I, denotes the
(g, (p — 1))™ element of the identity matrix.

Proof Sketch: Using the property of least squares, the optimization problem in (9) is equivalent
to

min|[Cs((H © G))TAT = F|[§ st blky(F) = U-diag(FFT(£))-U", [|fill3 = 1,1 € [L] (12)

when (H ® G) and A are full column rank. The full rank condition requires nL < n? or L < n,
and it is a reasonable assumption since otherwise the filter estimates are redundant. In practice, we
can additionally regularize the update to ensure full rank condition is met. Since (26) has block
constraints, it can be broken down in to solving L independent sub-problems

n}inglkl(M).blk,(A)T—U.diag(FFT(f,)).UHHi st. |fli=1vlell]  (13)

Our proof for the closed form solution is similar to the analysis in (Eberle and Maciel, [2003)), where
they proposed a closed form solution for finding the closest circulant/toeplitz matrix. For a detailed
proof of Theorem 2] see Appendix [B] O

Thus, the reformulated problem in can be solved in closed form efficiently. A bulk of the
computational effort will go into computing M in (I0). Computation of M requires 2L fast Fourier
Transforms of length n filters and simple matrix multiplications without explicitly forming G or H.
We make this concrete in the next section. The closed form update after getting M is highly parallel.
With O(n%L/ logn) processors, it takes O (logn) time.

5. Algorithm Optimization to Reduce Memory and Computational Costs

We now focus on estimating M := C3((% ® G) ") in (T0). If done naively, this requires inverting
n? x nL matrix and multiplication of n x n? and n? x nL matrices with O(n%) time. However,
forming and computing with these matrices is very expensive when n (and L) are large. Instead,
we utilize the properties of circulant matrices and the Khatri-Rao product ® to efficiently carry
out these computations implicitly. We present our final result on computational complexity of the

proposed method. Recall that n is the filter size and L is the number of filters.
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Lemma 3 [Computational Complexity ] With multi-threading, the running time of our algorithm
for n dimensional input and L number of filters is O(logn + log L) per iteration using O(L*n3)
processors.

Note that before the iterative updates, we compute the third order cumulanﬂ Cs once whose compu-
tational complexity is O(log N') with % processors, where N is the number of samples. However,
this operation is not iterative. In contrast, alternating minimization (AM) requires pass over all the
data samples in each iteration, while our algorithm requires only one pass of the data.
The parallel computational complexity of AM is as follows. In each iteration of AM, computing
the derivative with respect to either filters or activation maps requires /N L number of FFTs (requires
O(N Lnlogn) serial time), and the degrees of parallelism are O(Nnlog L) and O(Nnlogn) re-
spectively. Therefore with multi-threading, the running time of AM is O(max(log n log L, lognlog N))
per iteration using O(max(l’f)g L, ﬁf; L)) processors. Comparing with Lemma (3| we find that our
algorithm is advantageous in the regime of N > Ln?, which is the typical regime in applications.
Let us describe how we utilize various algebraic structures to obtain efficient computation.
Property 1 (Khatri-Rao product): (H©G)T)T = (HOG)(HH).x(GTG))!, where .« denotes
element-wise product.
Computational Goals:  Find ((H'H). » (G'G))! first and multiply the result with C3(H © G)
to find M.

We now describe in detail how to carry out each of these steps.

5.1 Challenge: Computing ((H ' H).x (GTG))f

A naive implementation to find the matrix inversion ((H ' H).x(G " G)) is very expensive. However,
we incorporate the stacked circulant structure of G and H to reduce computation. Note that this is
not completely straightforward since although G and H are column stacked circulant matrices, the
resulting product whose inverse is required, is not circulant. Below, we show that however, it is
partially circulant along different rows and columns.

Property 2  (Block circulant matrix): The matrix (% '#H). x (G'G) consists of row and column
stacked circulant matrices.

We now make the above property precise by introducing some new notation. Define column
stacked identity matrix I := [I,...,I] € R™"L, where I is n x n identity matrix. Let U :=
Blkdiag(U, U, ...U) € R*"*"L be the block diagonal matrix with U along the diagonal. The first
thing to note is that G and H, which are column stacked circulant matrices, can be written as

G=1-U diag(v) U", vi=[FFT(g1); FFT(g2);...;FFT(g0)], (14)
where g1, ..., g1, are the filters corresponding to G, and similarly for H, where the diagonal matrix
consists of FFT coefficients of the respective filters h1, ..., hr.

By appealing to the above form, we have the following result. We use the notation blk; (P) for
a matrix ¥ € R*"*"L to denote (4, 7)" block of size n x n.
Lemma 4 (Form of (HTH). * (ng) ) We have

(H™H).«(GTg) =Uu-wf.U", (15)

2. Instead of computing the cumulant tensor Cgs, a randomized sketch can be computed efficiently, following the recent
work of (Wang et al.l 2015), and the ALS updates can be performed efficiently without forming the cumulant tensor
Cs.
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where W € R">"L pag [ by L blocks, each block of size n x n. Its (j,1)" block is given by
bli/ (®) = diagH (FFT(g;)) - diag" (FFT(h;)) - diag(FFT(g;)) - diag(FFT(h)) € R™™  (16)

Therefore, the inversion of (%" H).x(G' G) can be reduced to the inversion of row-and-column
stacked set of diagonal matrices which form W. Computing ¥ simply requires FFT on all 2L
filters g1,...,9r and hy,...,hy, i.e. 2L FFTs, each on length n vector. We propose an efficient
iterative algorithm to compute ¥ via block matrix inversion theorem(Golub and Van Loan, [2012)
in Appendix [C|

5.2 Challenge: Computing M = C3(H ©G) - (H'H). * (GTG)!

Now that we have computed ((H'#). » (GTG))' efficiently, we need to compute the resulting
matrix with C3(H © G) to obtain M. We observe that the m™ row of the result M is given by

M™= " Uldiag" (z) ™ diag (v) (U)PU/ETU",  vm € [nL], (17)
J€[nL]

where v := [FFT(g1);...;FFT(gz)], z := [FFT(h1);...; FFT(hy)] are concatenated FFT coeffi-
cients of the filters, and

ot = UMT'T™IU, [TV = (ol ), Visdom € [n) (18)
Note that (™) and T'™) are fixed for all iterations and need to be computed only once. Note that
(™) is the result of taking m™ row of the cumulant unfolding Cs3 and matricizing it. Equation (17)
uses the property that C3" (H © G) is equal to the diagonal elments of H'TM g,

We now bound the cost for computing (T7). (1) Inverting ¥ takes O(log L + logn) time with
O(n*L?/(logn + log L)) processors according to appendix [Cl (2) Since diag(v) and diag(z) are
diagonal and W is a matrix with diagonal blocks, the overall matrix multiplication in equation ((17])
takes O(L?n?) time serially with O(L?n?) degree of parallelism for each row. Therefore the overall
serial computation cost is O(L?n3) with O(L?*n?) degree of parallelism. With multi-threading, the
running time is O(1) per iteration using O(L?n3) processes. (3) FFT requires O(nlogn) serial
time, with O(n) degree of parallelism. Therefore computing 2L FFT’s takes O(logn) time with
O(Ln) processors.

Combining the above discussion, it takes O(log L + log n) time with O(L?n?) processors.

6. Experiments: Comparison with Alternating Minimization

We compare our convolutional tensor decomposition framework with solving equation using
alternating (between filters and activation map) minimization method where gradient descent is em-
ployed to update f; and w; alternatively. The error comparison between our proposed convolutional
tensor algorithm and the alternating minimization algorithm is in figure [3a] We evaluate the errors
for both algorithms by comparing the reconstruction of error and filter recovery erroﬂ Our algo-
rithm converges much faster to the solution than the alternating minimization algorithm. In fact,
alternating minimization leads to spurious solution where the reconstruction error is significantly

3. Note that circulant shifts of the filters result in the same reconstruction error, and we report the lowest error between
the estimated filters and all circulant shifts of the ground-truth.
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larger compared to the error achieved by the tensor method. The error bump in the reconstruction
error curve in figure [3a) for tensor method is due to the random initialization following deflation of
one filter, and estimation of the second one. The running time is also reported in figure [3bjand [3c|be-
tween our proposed convolutional tensor algorithm and the alternating minimization. Our algorithm
is orders of magnitude faster than the alternating minimization. Both our algorithm and alternat-
ing minimization scale linearly with number of filters. However convolutional tensor algorithm is
almost constant time with respect to the number of samples, whereas the alternating minimization
scales linearly. This results in huge savings in running time for large datasets.
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Figure 3: (a) Error comparison between our convolutional tensor method (proposed CT) and the
baseline alternate minimization method (baseline AM). (b) Running time comparison between our
proposed CT and the baseline AM method under varying L. (c) Running time comparison between
CT and AM method under varying N.

7. Conclusion

In this paper, we proposed a novel tensor decomposition framework for learning convolutional dic-
tionary models. Unlike the popular alternating minimization, our method avoids expensive decoding
of activation maps in each step and can reach better solutions with faster run times. We derived ef-
ficient updates for tensor decomposition based on modified alternating least squares, and it consists
of simple operations such as FFTs and matrix multiplications. Our framework easily extends to
convolutional models for higher dimensional signals (such as images), where the circulant matrix
is replaced with block circulant matrices (Gray, |2005). More generally, our framework can handle
general group structure, by replacing the FFT operation with the appropriate group FFT (Kondor,
2008). By combining the advantages of tensor methods with a general class of invariant represen-
tations, we thus have a powerful paradigm for learning efficient latent variable models and embed-
dings in a variety of domains.
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Appendix for Convolutional Dictionary Learning through
Tensor Factorization

Appendix A. Cumulant Form

In |Anandkumar et al.| (2014)), it is proved that in ICA model, the cumulant of observation x is
decomposed into multi-linear transform of a diagonal cumulant of h. Therefore, we aim to find the
third order cumulant for input x.

As we know that the r™ order moments for variable x is defined as

py = E[z"] € R X7 (19)

Let us use [u3); ;1 to denote the (4, j, k)™ entry of the third order moment. The relationship between
3™ order cumulant k3and 3™ order moment p3is

(k3lijk = [3lijk — [pa)ijluale — [neliplpn)y — [w2ljelpa)s + 2(palspa]jlue (20)

Therefore the shift tensor is in this format: We know that the shift term

(Z)ape = E[z!|E[ziz?] + Elzy|Elzezl] + Bl Elzezy] — 2E[zq|Elzy|Elz], a,b,c € [77(,]21)

It is known from |Anandkumar et al.| (2014) that cumulant decomposition in the 3 order tensor
format is

Epor@d-Z= ) NFoF ek (22)
jE[nL]

Therefore using the Khatri-Rao product property,

wfold( Y NFj @ FjeF) =Y NFFF) =FNFoF) @)

Therefore the unfolded third order cumulant is decomposed as C3 = F*A* (F* & F*)'.
Appendix B. Proof for Main Theorem 2]
Our optimization problem is

min [|C; ~FAH ©G) " |[F st. blky(F) = U -diag(FFT(fy)) - U™, |Ill3 = 1.VL € [L], (24)

where we denote D := A (H © G) ' for simplicity. Therefore the objective is to minimize ||C3 —F DI%.
Let the SVD of D be D = PXQ". Since the Frobenius norm remains invariant under orthogonal
transformations and full rank diagonal matrix (Eberle and Maciel, [2003)), it is obtained that

|C3—FD|% = ||Cs— FPEQ||3 = |C3Q%T — FP|% = |[C3QXTPT — F|Z  (25)
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Therefore the optimization problem in (9) is equivalent to
min|[C3((H © §))IAT = F[% st blky(F) = U-diag(FFT(£))- UM, | fill3 = 1,¥L € [L] 26)

when (H ® G) and A are full column rank.

The full rank condition requires nL. < n? or L < n, and it is a reasonable assumption since
otherwise the filter estimates are redundant. Since has block constraints, it can be broken down
in to solving L independent sub-problems

n}inglkl(M)-blkl(A)T—U-diag(FFT(fl))-UHHi st. |fIR=1Yelll. @

Appendix C. Parallel Inversion of ¥

We propose an efficient iterative algorithm to compute ¥ via block matrix inversion theoremGolub
and Van Loan| (2012)).

Lemma 5 (Parallel Inversion of row and column stacked diagonal matrix) Let J* = W be parti-
tioned into a block form:
JE1 (@)

L
7= R blkE(®) |’ (28)

blk} ()
where O = : ,and R := [blk}l_l(\ll), e blkf_l(\Il)]. After inverting blkk (W)
blkE—1 (@)
which takes O(1) time using O(n) processors, there inverse of W is achieved by
_ -1 \_ _1,\—1 i1 Ay
g [ OO TR ) ik (%) - R T0)
—blkE (@) R(JE! — OblkE(®) R)"!  (blkk(®) - R(JE1H) T 0O) !
(29)
assuming that J*~1 and blkX W are invertible.

This again requires inverting R, O and J“~!. Recursively applying these block matrix inversion
theorem, the inversion problem is reduced to inverting L? number of n by n diagonal matrices with
additional matrix multiplications as indicated in equation (29).

Inverting a diagonal matrix results in another diagonal one, and the complexity of inverting
n X n diagonal matrix is O(1) with O(n) processors. We can simultaneous invert all blocks. There-
fore with O(nL?) processors, we invert all the diagonal matrices in O(1) time. The recursion takes
L steps, for step i € [L] matrix multiplication cost is O(lognL) with O(n?L/log(nL)) proces-
sors. With L iteration, one achieves O(log n + log L) running time with O(n?L?/(log L + logn))
processors.
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