
The 1st International Workshop “Feature Extraction: Modern Questions and Challenges”

JMLR: Workshop and Conference Proceedings 44 (2015) 130-144 NIPS 2015

FEAST at Play:
Feature ExtrAction using Score function Tensors

Majid Janzamin∗ mjanzami@uci.edu

Hanie Sedghi∗ sedghih@uci.edu

U.N. Niranjan∗ un.niranjan@uci.edu

Animashree Anandkumar a.anandkumar@uci.edu

Department of Electrical Engineering and Computer Science

University of California, Irvine

Engineering Hall, Room 4406

Irvine, CA 92697, USA

Editor: Dmitry Storcheus

Abstract

Feature learning forms the cornerstone for tackling challenging learning problems in do-
mains such as speech, computer vision and natural language processing. In this paper, we
build upon a novel framework called FEAST(Feature ExtrAction using Score function Ten-
sors) which incorporates generative models for discriminative learning. FEAST considers a
novel class of matrix and tensor-valued feature transform, which can be pre-trained using
unlabeled samples. It uses an efficient algorithm for extracting discriminative information,
given these pre-trained features and labeled samples for any related task. The class of
features it adopts are based on higher-order score functions, which capture local variations
in the probability density function of the input. We employ efficient spectral decomposi-
tion algorithms (on matrices and tensors) for extracting discriminative components. The
advantage of employing tensor-valued features is that we can extract richer discriminative
information in the form of overcomplete representations (where number of discriminative
features is greater than input dimension). In this paper, we provide preliminary experiment
results on real datasets.

Keywords: Discriminative features, spectral decomposition, tensor representations, score
function

1. Introduction

Having good features or representations of the input data is critical to achieving good per-
formance in challenging machine learning tasks in domains such as speech, computer vision
and natural language processing. Traditionally, feature engineering relied on carefully hand-
crafted features, tailored towards a specific task, which is laborious and time-consuming.
Instead, the modern approach is to automatically learn good feature representations from
data. An overarching principle behind automated feature learning is the discovery of a
latent representations that can succinctly summarize the observed data. Examples include
sparse coding (Raina et al., 2007), independent component analysis (ICA) (Le et al., 2011),

. ∗ These authors contributed equally to this work.

c©2015 Majid Janzamin, Hanie Sedghi, U.N. Niranjan and Animashree Anandkumar.

FEAST at Play

Fisher kernels (Jaakkola et al., 1999) and auto-encoders (Bengio et al., 2013). Many of
these approaches are unsupervised, and can therefore exploit the vast amounts of unlabeled
samples present in many domains. The idea is to then use these learnt representations in
classification tasks.

It is often the case that the learnt representations through unsupervised learning may
not be relevant for the specific classification task, since they are not trained using label
information. Moreover, learning complex latent representations of the input is challenging
and error-prone, and directly using it in a classifier may degrade performance (Cozman
et al., 2002). Are there principled approaches to first extract discriminative features from
pre-trained representations, before employing them in a classifier?

It has been postulated that humans mostly learn in an unsupervised manner (Raina
et al., 2007), gathering “common-sense” or “general-purpose” knowledge, without worrying
about any specific goals. Indeed, when faced with a specific task, humans can quickly and
easily extract relevant information from the accrued general-purpose knowledge. Can we
design machines with similar capabilities? Are there a class of pre-trained representations
which serve as “general-purpose” knowledge? Are there efficient algorithms to quickly
specialize them for a task at hand? Are there theoretical guarantees for such methods?

Recently, Janzamin et al. (2014) have provided positive answers to all these questions.
They have provided a method for extracting discriminative features in a semi-supervised
manner. They proposed a new method called FEAST (Feature ExtrAction using Score func-
tion Tensors) which adopts a class of matrix and tensor-valued “general-purpose” features,
which can be pre-trained using unlabeled samples. When presented with labeled samples,
they leverage these pre-trained features to extract discriminative information using efficient
spectral decomposition algorithms.

They incorporate a generative model for the input and consider a class of features based
on score functions of the input. Score functions are normalized derivatives of the input
probability density function (pdf) and capture its “local manifold structure” (Janzamin
et al., 2014). While the first-order score function (i.e., first order derivative of the pdf) is a
vector, assuming a vector input, the higher-order score functions are matrices and tensors.
These score functions can be pre-trained in an unsupervised manner, without the need for
labels (Janzamin et al., 2014). This is very useful as in practice we have access to more
unlabeled data than labeled data.

1.1 Summary of results

In this paper, we adopt a new method called FEAST (Feature ExtrAction using Score func-
tion Tensors) for extracting discriminative features proposed by Janzamin et al. (2014). As
explained above, they propose score functions which can be pre-trained in an unsuper-
vised manner, without the need for labels. In this work, we demonstrate how these score
functions can be efficiently approximated using denoising auto-encoders (DAE), without as-
suming any parametric class of models. In addition, we provide preliminary experiments on
real datasets. We describe our summary of results by first providing a motivating example
on how these new features can be used for a classification task.

Motivating Toy Example with Swiss Roll: In Figure 1, we plot a two dimen- sional
Swiss roll, which is a simple non-linear manifold. Reconstructing it with a denoising auto-

131

Janzamin, Sedghi, Niranjan, and Anandkumar

encoder (DAE) (in an unsupervised manner) results in significant distortions. However,
DAE provides us with more information. We show that it allows for reconstructing the
score function. The first order score function is a vector field and the second order score
function is a matrix field. Therefore, we use DAE for approximating vector and matrix
fields. We plot the first and second order score functions in Figures 1(a),(b). The arrows
represent the vector and matrix fields.

Given these pre-trained score-function features and labeled samples, Janzamin et al.
(2014) extract discriminative information based on the spectral methods. Spectral meth-
ods involve various iterative operations to yield matrix and tensor features. They are fast,
embarrassingly parallel and can handle huge datasets with billions of dimensions. They
employ spectral methods to decompose moment matrices/tensors which encode the correla-
tion between labels and input score functions. The extracted eigenvectors from label-score
function moments are then used to train the classifiers as follows: we project the input
data along the extracted eigenvectors (and apply suitable non-linearity) and then train a
standard classifier such as a linear/non-linear SVM. Using such simple classifiers enables
fast inference at test time. The end-to-end framework (Janzamin et al., 2014) is provided
in Figure 2 and it is referred as FEAST (Feature ExtrAction using Score function Tensors).
Note that since the extracted eigenvectors bear discriminative directions, throughout the
paper we refer to them as discriminative features.

Spectral methods have previously been mostly used on raw moments of input, such as
pairwise correlations, skewness, kurtosis, and so on, as in the case of principal component
analysis (PCA), canonical correlation analysis (CCA), and tensor decompositions (Anand-
kumar et al., 2014a). In (Janzamin et al., 2014), they instead, transform the input into score
functions and then correlate them with the labels. These score function transformations
are in general non-linear and therefore, enable us to capture higher order moments of data,
which are argued to be crucial for classification (Bruna and Mallat, 2013). Instead of using
a fixed non-linear transform, as done in standard frameworks such as kernels (Scholkopf
and Smola, 2001), wavelets (Bruna and Mallat, 2013), Janzamin et al. (2014) learn the
transform from data itself and capture local variations of the input through score functions.

Why extract discriminative features in this manner? What is the nature of information
extracted? Janzamin et al. (2014) establish that the moments encoding the correlation
between the label and input score functions yield information about how the label varies
as a function of the input. Concretely, they prove that the label-score function moment is

(a) (b)

Figure 1: Reconstruction of Swiss roll using denoising auto-encoder (DAE) and extracting discrim-
inative directions using FEAST method (Janzamin et al., 2014). In (a), (b), we plot score
functions Sm(x) approximated using DAE. (a) Vector field S1(x). (b) Top eigenvector of
matrix field S2(x).

132

FEAST at Play

equal to the (expected) derivative of the label, as a function of the input. By considering
the mth order score function, they obtain the mth order derivative of the label function.
Thus, these label-score function moments capture variations of the label function, and are
therefore informative for discriminative tasks.

Why tensor decompositions are needed? While the first order score function is
a vector, higher order score functions are matrices and tensors. By going to higher order
scores, we can extract more information about the label function variation by decomposing
the label-score function moments. The use of tensor score functions allows us to extract
overcomplete representations since the rank of the tensor can exceed its dimensions. Note
that this is not the case with matrices. It has been argued that having overcomplete repre-
sentations is crucial to getting good classification performance (Coates et al., 2011). This
is verified in our experiments. For details, see Section 4. Another advantage of the tensor
methods is that they do not suffer from spurious local optima, compared to typical non-
convex problems such as expectation maximization or backpropagation. Anandkumar et al.
(2014a,b,c) provide detailed analysis of efficient tensor decomposition algorithms. Thus, we
can leverage the latest advances in spectral methods for efficient extraction of discrimina-
tive information from moment tensors. At the same time, going to tensors does not result
in significant increase in computational complexity. In fact, FEAST has computational
complexity which is logarithmic in number of relevant dimension when using a polynomial
number of processors.

Experiment Results: In this paper, we use denoising auto-encoders for estimating the
score function. We first illustrate score functions of different orders for Swiss roll dataset
and also notice that although the output of DAE is noisy, if we think of each piece of Swiss
roll as a class, FEAST can correctly classify the two classes when we use the third order
score function. Next, we perform FEAST on MNIST and obtain competitive results with a
simple linear SVM without additional tuning of parameters. In addition, we use Gaussian
kernel SVM and obtain better results compared to linear SVM. In both cases, we obtain
better performance in the overcomplete setting and this is only possible when using higher
order score functions and tensor moments. Moreover, by increasing the rank of the tensor
we achieve better classification performance. This is the case as the rank of the tensor
is equal to the number of discriminative features and having more discriminative features
improves the classification accuracy.

2. Related Work

Feature learning forms a cornerstone of modern machine learning (Bengio et al., 2013). Ap-
propriate feature transformations are crucial for obtaining good classification performance.
While deep learning is presented as an efficient framework for feature extraction, a theo-
retical understanding is mostly lacking. In contrast, in this paper, we use FEAST which
is a feature learning framework that has theoretical backing. FEAST employs a generative
model of the input, which is also done in Fisher kernels (Jaakkola et al., 1999). However,
in practice, a common complaint is that these generative features are not discriminative for
the task at hand. Previous solutions have prescribed joint training discriminative features
using labeled samples, in conjunction with unlabeled samples (Mairal et al., 2009; Maaten,
2011; Wang et al., 2013). However, the resulting optimization problems are complex and

133

Janzamin, Sedghi, Niranjan, and Anandkumar

expensive to run, may not converge to good solutions, and have to be re-trained for each
new task. FEAST is an alternative approach to extract discriminative features from gener-
ative models by using efficient spectral decomposition algorithms on moment matrices and
tensors.

We now contrast FEAST with previous moment-based approaches for discriminative
learning, which consider moments between the label and raw input, e.g., canonical corre-
lation analysis (CCA) and generalized eigen analysis (Karampatziakis and Mineiro, 2014).
In contrast, FEAST constructs cross-moments between the label and the score function
features. We show that using score function features is crucial to mining discriminative
information with provable guarantees. In addition, Karampatziakis and Mineiro (2014) ob-
tain discriminative features by only incorporating pairwise information between different
label classes. Their method is not scalable to large output spaces since it is quadratic in the
number of classes. In contrast, by using tensors, we can incorporate all label dimensions
together, and obtain rich discriminative features.

2.1 Notation

Let [n] denote the set {1, 2, . . . , n}. Throughout this paper, ∇(m)
x denotes the m-th order

derivative w.r.t. variable x and notation ⊗ represents tensor (outer) product. A real r-th
order tensor T ∈

⊗r
i=1Rdi is a member of the outer product of Euclidean spaces Rdi ,

i ∈ [r]. The different dimensions of the tensor are referred to as modes. For convenience,
we restrict to the case where d1 = d2 = · · · = dr = d, and simply write T ∈

⊗r Rd. As is
the case for vectors (where r = 1) and matrices (where r = 2), we may identify a r-th order
tensor with the r-way array of real numbers [Ti1,i2,...,ir : i1, i2, . . . , ir ∈ [d]], where Ti1,i2,...,ir
is the (i1, i2, . . . , ir)-th coordinate of T with respect to a canonical basis. Also, the notation
u⊗3 is the short form for u⊗ u⊗ u.

3. Overview of the Method

In this section, we first review the FEAST framework (Janzamin et al., 2014) for Feature
ExtrAction using Score function Tensors, then we elaborate on our approach to implement-
ing FEAST. The end-to-end framework is presented in Figure 2. Figure 3 shows a proof of
concept of performing FEAST on MNIST data set1. In a snapshot, FEAST method consists
of two parts, first we learn some function of the input called score function in an unsuper-
vised manner. Next, using labeled data we form the cross-moment between label and score
function of the input. We then run tensor decomposition on the calculated moment which
provides us with discriminative features.

Score Function Sm(x): Let p(x) denote the joint pdf of random vector x ∈ Rd. Janzamin
et al. (2014) denote Sm(x) as the m-th order score function, which is given by

Sm(x) := (−1)m
∇(m)
x p(x)

p(x)
, (1)

1. http://yann.lecun.com/exdb/mnist/

134

 http://yann.lecun.com/exdb/mnist/

FEAST at Play

Unlabeled data: {xi}

General-purpose features:

Score functions Sm(x) := (−1)m
∇(m)

x p(x)

p(x)
,

where x ∼ p(·)

Form cross-moments: E [y · Sm(x)]
Labeled data:

{(xi, yi)}

FEAST result: obtaining derivatives of label function:

E [y · Sm(x)] = E
[
∇(m)G(x)

]
,

when E[y|x] := G(x)

Spectral/tensor method:

find uj ’s s.t. E
[
∇(m)G(x)

]
=
∑
j∈[k]

u⊗mj

Extract discriminative features using uj ’s/

do model-based prediction with uj ’s as parameters

Figure 2: Overview of the FEAST framework (Janzamin et al., 2014)

where ∇(m)
x denotes the m-th order derivative operator w.r.t. variable x. The estimation

of score functions Sm(x) is performed in an unsupervised manner using unlabeled samples
{xi}.

Score function estimation with auto-encoders: One framework for estimating score
functions is via auto-encoders. We employ them in our experiments due to their simplicity.
In order to estimate the score function of the input we either need to assume a generative
model for input features or use a model-free method such as auto-encoder. Both methods are
applicable in FEAST. In this paper, we elaborate on the latter. Recall that auto-encoders
attempt to find encoding and decoding functions which minimize the reconstruction error
under noise (the so-called denoising auto-encoders or DAE). In an auto-encoder, let f(x)
be the encoding function and g(h) be the decoding function that maps f(x) back to the
input space. The reconstruction function r(x) = g(f(x)) is the composition of encoder and
decoder functions. Denoising is a form of regularization and the goal of DAE is to penalize
the error made in r(x) as a prediction of x denoted by LDAE = E[‖x− r(x+ ε)‖2], where ε
is the Gaussian corruption noise source. This is an unsupervised framework involving only
unlabeled samples. Alain and Bengio (2012) argue that the DAE approximately learns the
score function of the input, as the noise variance goes to zero.

r∗σ(x) = x+ σ2∇x log p(x) + o(σ2) as σ → 0, (2)

where r∗σ(x) is the optimal reconstruction function and σ is noise variance. We extend this
framework to estimate higher order score functions. In Section 3.1, we establish that DAEs
can correctly estimate the higher order score functions in the limit as the noise goes to zero.

After estimating the score function, we form the cross moment E[y ⊗ Sm(x)] between
label y and (higher order) score function Sm(x) using labeled data.

135

Janzamin, Sedghi, Niranjan, and Anandkumar

Tensor Decomposition Method: Janzamin et al. (2014) have shown that the cross-
moment E [y ⊗ Sm(x)] yields information of derivative of the label w.r.t. the input (which
are matrices or tensors). They then find efficient representations using spectral/tensor
decomposition methods. When we employ the first order score function, we carry out
spectral decomposition on the cross-moment matrix (assuming y is vector). With higher
order score function (m ≥ 2), we carry out tensor decomposition, as depicted in Figure 7 in
the Appendix B.3. The advantage of using tensors is that the number of the components
we obtain can be more than the input dimension(this is called overcomplete setting), which
is not the case with matrices. In our experiments in Section 4, we find that overcomplete
representations yield better classification performance than undercomplete representations.

Classification: The output of the spectral method provides us with discriminative fea-
tures {ui}. We then form a nonlinear function of 〈ui, x〉 and feed it to a linear SVM classifier.
We can apply different non-linearities on 〈ui, x〉. Karampatziakis and Mineiro (2014) discuss
different nonlinear functions of the form max(0, δ〈ui, x〉)α/2). In our experiment we use the
same nonlinear function with α = 2, and notice that the performance is fairly invariant to
the choice of α in a small range around it. Note that since we have recovered the discrim-
inative features, the simple classifier described above suffices for competitive classification
performance. Such simple classifiers enables fast inference at test time. In addition, we
employ Gaussian kernel SVM as classifiers and compare the results. We note that Gaussian
kernel SVM provide better classification performance compared to linear SVM.

Next, we provide a method for estimating higher order score functions using auto-
encoders. These higher-order score functions capture “local manifold structure” of the
pdf. While the first-order score function is a vector (for a vector input), the higher-order
functions are matrices and tensors, and thus capture richer information about the input
distribution, which results in extracting better discriminative information.

3.1 Score function approximation through auto-encoders

In this section we provide a provable method for estimating higher order score functions by
using DAE. Let p(x) denote the joint probability density function of random vector x ∈ Rdx .
We denote Sm(x) as the m-th order score function, which from (Janzamin et al., 2014) is
given by Equation (1).

Lemma 1. The m-th order score function can be estimated using DAE as follows

S1(x) = lim
σ→0

1

σ2
(r∗σ(x)− x) , (3a)

Sm(x) = −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x). (3b)

with S0(x) = 1.

Here ⊗ denotes the tensor product. Equation (3a) is a direct result of (2) by (Alain and
Bengio, 2012). Equation (3b) is from (Janzamin et al., 2014).

Given r∗(x), we can form S1(x) from equation 3a. For m ≥ 2 we combine the above
result with Equation (3b). It is straight forward to see that

S2(x) = S1(x)⊗ S1(x) + lim
σ→0

[
1

σ2
(∇xr∗σ(x)− I)

]
, (4a)

136

FEAST at Play

S3(x) = S1(x)⊗3 + lim
σ→0

[
1

σ2
Sym [(∇xr∗σ(x)− I)⊗ S1(x)]− 1

σ2
∇(2)
x r∗σ(x)

]
. (4b)

where the Sym(·) subscript in the third term of S3(x) refers to considering all transpositions
of the corresponding tensor. Tensor transposition is defined in Appendix A. We need to
mention that the approach proposed here can be extended to m > 3 as well.

3.2 Estimation of S2(x) and S3(x) for sigmoid activation function

Let x ∈ Rdx and σ(x) denote the sigmoid function applied to each entry of the vector x,
i.e., entry i is computed as [σ(x)]i = 1

1+e−xi
. We consider the auto-encoder wherein the

reconstruction is defined as:

r(x) = σ
(
Wσ

(
W>x+ bh

)
+ bv

)
where W ∈ Rdx×dh is the weight matrix and bv and bh are the biases for the visible and
hidden units. Lemma 1, provides the means for obtaining the score functions of the auto-
encoder model. We recall the first two derivatives of the sigmoid function applied to a scalar
input z:

σ′(z) = σ(z)(1− σ(z)), σ′′(z) = σ(z)(1− σ(z))(1− 2σ(z)).

Using the above, we may compute

∇xr(x) = diag2 [q]
(
I>,W diag2 [p]W>

)
, (5)

∇(2)
x r(x) = diag3 [q̃]

(
I>,W diag2 [p]W>,W diag2 [p]W>

)
+ diag3 [p̃]

(
[diag2 [q]W]> ,W>,W>

)
, (6)

where for a given vector x, we define the diagonal matrix diag2(x)ij := xi δ(i = j), the
diagonal tensor diag3(x)ijk := xi δ(i = j = k), vector p := σ′

(
W>x+ bh

)
, vector q :=

σ′
(
Wσ

(
W>x+ bh

)
+ bv

)
, vector p̃ := σ′′

(
W>x+ bh

)
and vector q̃ := σ′′

(
Wσ

(
W>x+ bh

)
+bv).

Factor form for the cross-moment tensors: Note that computing and storing the
cross-moment tensor E [y ⊗ S3(x)] can be enormously expensive for high-dimensional prob-
lems. But, we do not run into this problem since we do not form the tensor. When score
function is estimated via a DAE, the cross-moment tensor has an efficient factor form, and
we can directly manipulate the factors to obtain the gradients through multi-linear opera-
tions, leading to efficient computational complexity. We establish the exact factor form of
the empirical moment tensor Ê [y ⊗ S3(x)] using equations (4b),(6). Specifically, we estab-
lish that T̂ := Ê[y ⊗ S3(x)] =

∑
i yi ⊗ zi ⊗ zi ⊗ zi, zi := g(xi), where zi is a closed-form

function of xi, and depends on the weights and biases of the auto-encoder.

Computational Complexity: If score function is estimated through DAE, the parallel
computational complexity of FEAST framework is O(log min(dh, dx)) per iteration with
O(kd2xdh/ log(min(dh, dx))) processors, where k, dx and dh denote rank of the cross-moment
tensor (i.e. number of extracted features), input dimension, and the number of neurons in
the DAE, respectively. Note that the dominant step in terms of computational complexity
is the tensor decomposition step.

137

Janzamin, Sedghi, Niranjan, and Anandkumar

3.3 Score function properties

Theorem 2 (Higher order differential operators, informal statement (Janzamin et al.,
2014)). For random vector x, let p(x) and Sm(x) respectively denote the joint density func-
tion and the corresponding m-th order score function in (1). Then, under some mild regu-
larity conditions, for all random variables y, we have

E [y ⊗ Sm(x)] = E
[
∇(m)
x G(x)

]
,

where ∇(m)
x denotes the m-th order derivative w.r.t. variable x and G(x) := E[y|x].

Unlabeled data: {xi}

Auto-Encoder

r(x)

Compute score function Sm(x)

Form cross-moments: E [y ⊗ Sm(x)]

Labeled data:

{(xi, yi)}

Spectral/tensor method:

Tensor T

= +

Tensor M3 lambda1 lambda2

....

uj ’s

Train SVM with max(0, 〈xi, uj〉)

Figure 3: Applying FEAST (Janzamin et al., 2014) to
MNIST

Thus, Janzamin et al. (2014)
prove that the cross-moments be-
tween the label and the score func-
tion features are equal to the ex-
pected derivative of the label as a
function of the input. But when are
these derivatives informative? In-
deed, in trivial cases, where the
derivatives of the label function van-
ish over the support of the input
distribution, these moments carry
no information. Yet, such cases
are pathological, as either there is
no variation in the label function
or the input distribution is nearly
degenerate. Another possibility is
that a certain derivative vanishes,
when averaged over the input dis-
tribution, even though it is not zero
everywhere. Nevertheless, the next
derivative cannot be averaged out
to zero, and will carry information
about the variations of the label
function. Hence, in practical scenar-
ios, the cross-moments contain dis-
criminative information.

4. Experiment Results on MNIST Data Set

We use MNIST dataset to empirically illustrate the practicality of the discriminative features
obtained from FEAST in classification and provide more intuition. The overall pipeline can
be summarized in five main steps. (1) Train a DAE model using unlabeled input samples.
(2) Use the auto-encoder parameters to compute the score function and form the cross-
moment between labels and the score function using a portion of labeled training samples.
(3) Extract discriminative features via tensor decomposition. (4) Project rest of the training

138

FEAST at Play

Table 1: Accuracy for different estimated rank of the cross-moment Ê[y ⊗ S3(x)] (estimated rank
is the same as # of discriminative features).

Rank 50 200 500 1000

Accuracy (Classifier: Linear SVM) 86.5% 90.65% 94.4% 95.6%

Accuracy (Classifier: Gaussian Kernel SVM) 95.88% 96.12% 96.86% 97.54%

samples into the new feature space and train a classifier in this space. (5) Report the
classification accuracy on test set. The end-to-end framework and the input/output at each
step are depicted in Figure 3. The details of the implementation steps are provided in
Appendix B.2. Table 1 summarizes the classification accuracy on the test set.

Figure 4: Leading four right singular
vectors of Ê[y ⊗ S1(x)]. The
result is not satisfactory.

Order of score function: Note that for
MNIST the cross-moment E[y ⊗ S1(x)] is a matrix.
Thus, the rank is bounded by the number of labels,
10. This limits the number of discriminative features
that could be obtained to 10. However, if we use
higher-order score functions Sm, m ≥ 2, the cross-
moment is a tensor. Hence, the rank can exceed the
dimension and we obtain overcomplete representations. The extracted discriminative fea-
tures when using the first-order score function and third-order score function for the cross-
moment are shown in Figures 4, 5. It can readily be seen that although the former does
not provide good discriminative features, the latter reveals features that distinguish digits.

Figure 5: Sixteen discriminative features
obtained by tensor decomposition
on tensor Ê[y ⊗ S3(x)]. Derived
features can be used to distinguish
digits/groups.

Some observations in MNIST: (a) In-
creasing the number of hidden neurons in DAE
does not improve the results of the subsequent
steps noticeably, while it makes the computation
more expensive. We use 100 neurons. (b) The
number of extracted discriminative features, size
of the hidden layer of the DAE, batch size used
to train the DAE and regularization parame-
ter in SVM affect the classification performance.
The most effective parameter is the number of
extracted discriminative features. Note that the
number of discriminative features is equal to the
cross-moment tensor rank. Table 1 summarizes
the obtained accuracy for different estimates of
the rank. We obtain 95.6% accuracy with rank
1000 using a linear SVM and 97.54% using a
non-linear SVM with Gaussian kernel SVM. Intuitively, by increasing the rank, we retrieve
more discriminative directions and we train the classifier with a higher dimensional input.
Hence the points are more separable by the classifier. (c) Using a specific nonlinear gating
function such as max(0, U>xi) affects the classification accuracy marginally compared to
effect of other parameters mentioned above. We did not tune our steps extensively and used
a simple classifier. Yet, we achieve promising results due to extracting good discriminative
features.

139

Janzamin, Sedghi, Niranjan, and Anandkumar

References

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data
generating distribution. arXiv preprint arXiv:1211.4246, 2012.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor Methods for
Learning Latent Variable Models. J. of Machine Learning Research, 15:2773–2832, 2014a.

Anima Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed Non-Orthogonal Tensor
Decomposition via Alternating Rank-1 Updates. arXiv preprint arXiv:1402.5180, Feb.
2014b.

Anima Anandkumar, Rong Ge, and Majid Janzamin. Sample Complexity Analysis for
Learning Overcomplete Latent Variable Models through Tensor Methods. arXiv preprint
arXiv:1408.0553, Aug. 2014c.

Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6. Available
online, February 2015. URL http://www.sandia.gov/~tgkolda/TensorToolbox/.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 35(8):1798–1828, 2013.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1872–1886, 2013.

Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In International Conference on Artificial Intelligence and
Statistics, pages 215–223, 2011.

Fabio Gagliardi Cozman, Ira Cohen, and M Cirelo. Unlabeled data can degrade classification
performance of generative classifiers. In FLAIRS Conference, pages 327–331, 2002.

Tommi Jaakkola, David Haussler, et al. Exploiting generative models in discriminative
classifiers. In Advances in neural information processing systems, pages 487–493, 1999.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Score Function Features for Dis-
criminative Learning: Matrix and Tensor Frameworks. arXiv preprint arXiv:1412.2863,
Dec. 2014.

Nikos Karampatziakis and Paul Mineiro. Discriminative features via generalized eigenvec-
tors. In Proceedings of The 31st International Conference on Machine Learning, pages
494–502, 2014.

Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. ICA with Reconstruction Cost for Efficient
Overcomplete Feature Learning. In NIPS, pages 1017–1025, 2011.

Laurens Maaten. Learning discriminative fisher kernels. In Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-11), pages 217–224, 2011.

140

http://www.sandia.gov/~tgkolda/TensorToolbox/

FEAST at Play

Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis R Bach.
Supervised dictionary learning. In Advances in neural information processing systems,
pages 1033–1040, 2009.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught
learning: transfer learning from unlabeled data. In Proceedings of the 24th international
conference on Machine learning, pages 759–766. ACM, 2007.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond. MIT press, 2001.

Hua Wang, Feiping Nie, and Heng Huang. Robust and discriminative self-taught learning. In
Proceedings of The 30th International Conference on Machine Learning, pages 298–306,
2013.

Appendix A. Notations and Tensor Preliminaries

Tensor as multilinear form: We view a tensor T ∈ Rd×d×d as a multilinear form.
Consider matrices Ml ∈ Rd×dl , l ∈ {1, 2, 3}. Then tensor T (M1,M2,M3) ∈ Rd1 ⊗Rd2 ⊗Rd3
is defined as

T (M1,M2,M3)i1,i2,i3 :=
∑

j1,j2,j3∈[d]

Tj1,j2,j3 ·M1(j1, i1) ·M2(j2, i2) ·M3(j3, i3). (7)

In particular, for vectors u, v, w ∈ Rd, we have 2

T (I, v, w) =
∑
j,l∈[d]

vjwlT (:, j, l) ∈ Rd, (8)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a
multilinear combination of the tensor entries, and T (I, I, w) ∈ Rd×d is a linear combination
of the tensor slices.

CP decomposition and tensor rank: A 3rd order tensor T ∈ Rd×d×d is said to be
rank-1 if it can be written in the form

T = w · a⊗ b⊗ c⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (9)

where notation ⊗ represents the tensor (outer) product, and a ∈ Rd, b ∈ Rd, c ∈ Rd are
unit vectors (without loss of generality). A tensor T ∈ Rd×d×d is said to have a CP rank
k ≥ 1 if it can be written as the sum of k rank-1 tensors

T =
∑
i∈[k]

wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ Rd. (10)

With the third order score function (m = 3), we carry out tensor decomposition of the form∑
i λiui ⊗ ui ⊗ ui, as depicted in Figure 7.
Finally, the transposition of a tensor with respect to a permutation matrix is defined as

follows.

2. Compare with the matrix case where for M ∈ Rd×d, we have M(I, u) = Mu :=
∑

j∈[d] ujM(:, j) ∈ Rd.

141

Janzamin, Sedghi, Niranjan, and Anandkumar

(a) (b) (c)

Figure 6: Zoomed out version: Reconstruction of Swiss roll using denoising auto-encoder (DAE)
and extracting discriminative directions using proposed method FEAST. In (a), (b), (c),
we plot score functions Sm(x) approximated using DAE. (a) Vector field S1(x). (b) Top
eigenvector of matrix field S2(x). (c) Top eigenvector of tensor field S3(x).

Definition 3 (Tensor transposition). Consider tensor A ∈
⊗r Rd and permutation vector

π = [π1, π2, . . . , πr] ∈ Rr as a permutation of index vector 1 : r. Then, the π-transpose of A
denoted by A〈π〉 is defined such that it satisfies

A〈π〉(jπ1 , . . . , jπr) = A(j1, . . . , jr).

In other words, the i-th mode of tensor A〈π〉 corresponds to the πi-th mode of tensor A.

Appendix B. Implementation Details

B.1 Visualizing higher order score function for Swiss roll data set

Following the existing convention, we generate the Swiss roll as follows. We generate 4000
uniformly-spaced points ζ such that ζ ∈ ([5, 8]∪[9, 12]) and half of the point are chosen from
each segment. Then we transform each point ζ using the map x = φ(ζ) = (ζ cos ζ, ζ sin ζ).
We consider a 2-class classification where points from the first and second segment are
assigned the label +1,−1 respectively. The results on estimating the score functions of
order 1, 2 are shown in Figure 1 in the main text. Figure 6 provides the zoomed out version
for estimating the score functions of order 1, 2 and 3 .

Next we provide detailed explanation on implementation steps for MNIST data set.

B.2 Implementation details for MNIST data set

Step 1: First, we train a denoising auto-encoder3 with input having 20% random cor-
ruption drawn from the original MNIST database to obtain the weight matrix and bias
vector for the input layer of the DAE. i.e., the goal is to find W and b for the input layer
where the transfer function is f(x) = σ(Wx+ b). Note that we vectorize each image sample
(which is 28× 28) , so dx = 784 and we set dh = 50 for the hidden layer. We train the DAE
using stochastic gradient descent for 100 epochs and using minibatches of size 15, with a
learning rate of 0.1.

Step 2: We use a subset 4 of the original MNIST dataset for the rest of our pipeline. For
each digit 1000 samples are available. We select 300 samples of each digit to perform the

3. We use the code available at http://deeplearning.net/tutorial/dA.html

4. The dataset is available at http://cis.jhu.edu/~sachin/digit/digit.html

142

http://deeplearning.net/tutorial/dA.html
http://cis.jhu.edu/~sachin/digit/digit.html

FEAST at Play

feature extraction using the score function method. We then compute the third order score
function using each sample. To form the cross-moments with the labels, we use the one-hot
encoding method for the labels. Note that the result is a fourth-order tensor. The first mode
bears no discriminative information as the formed tensor is of the form

∑
i ei ⊗ u

⊗3
i where

ei is the basis vector. Therefore, we discard the first mode after tensor decomposition.

Step 3: For MNIST dataset we perform stochastic ALS updates. We perform the tensor
decomposition in a ‘stochastic manner’ with ‘deflation’, described as follows. We form yi ⊗
S3(xi) for each labeled sample (xi, yi) and perform four iterations of the ALS algorithm for
a rank-1 CP decomposition5 described in Appendix A. This tensor decomposition method
is explained in more details in Appendix B.3. We use random initialization for the first
iteration, i.e., when i = 1. Afterwards, for sample i, we initialize the ALS algorithm with
the factor matrices obtained from the ALS iterations executed on sample i− 1. We repeat
this 20 times to get a new discriminative feature. Let the output tensor be T . Then,
we continue this process on [yi ⊗ S3(xi) − T]. As mentioned earlier, this process is called
’deflation’. In order to find 1000 discriminative features, we perform deflation 1000 times
and collect all the rank-1 components. Hence, we obtain 1000 discriminative features. The
key point to note is that we never form the 10 × 784 × 784 × 784 tensor. This is because
we perform tensor decomposition in a stochastic manner with deflation. Also, we note that
this is much faster and efficient in terms of memory requirements than exactly forming the
tensor and doing the decomposition.

Step 4: For projection into the new feature space, we note that the tensor obtained
from Step 3 is symmetric in the last three modes and the first mode is ignored since it
bears no information as explained above. Let U be the 784 × 1000 feature matrix. We
compute U>xi for each input sample from the the training set marked for the SVM and
perform max(0, U>xi) where the max operator is applied elementwise. The justification
for this non-linear gating is its robustness property (Karampatziakis and Mineiro, 2014).
Then, we use 500 samples to train a multiclass SVM6. The best performance is obtained for
the regularization parameter C = 1. We have also illustrated the extracted discriminative
features when using the first-order score function for the cross-moment, see Figure 4. Note
that the rank of E[y⊗S1(x)] can atmost be 10, hence this limits the number of disctiminative
features that could be obtained. However, by going to higher-order score functions Sm,
m ≥ 2, we may obtain overcomplete representations. In this work we have considered S3
extensively.

Step 5: We evaluate the performance by computing the classification accuracy on the
remaining 100 samples. Table 1 summarizes the obtained accuracy for different ranks.

B.3 Stochastic tensor decomposition: stochastic rank-1 ALS updates

When using stochastic rank-1 ALS updates, we obtain the components of the empirical
cross-moment tensor T̂ using a stochastic version of the popular rank-1 alternating mini-
mization. For simplicity, we assume that the label is a scalar, so that T̂ is a third order
tensor. The method can be directly extended to more complex outputs. The rank-1 ALS

5. We use the MATLAB tensor toolbox (Bader et al., 2015)
6. We use Liblinear library for MATLAB available at http://www.csie.ntu.edu.tw/~cjlin/liblinear/

143

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Janzamin, Sedghi, Niranjan, and Anandkumar

= +

Tensor M3 lambda1 lambda2

....

Figure 7: Tensor decomposition into rank-1 elements

method attempts to minimize the objective

min
a,b,c

∥∥∥T̂ − a⊗ b⊗ c∥∥∥
F
,

where ‖ · ‖F denotes the Frobenious norm. The ALS method updates each vector by fixing
the other two, e.g., a is updated by fixing b and c. The update has a closed form as

a← T̂ (I, b, c)

‖T̂ (I, b, c)‖2
,

where T̂ (I, b, c) =
∑

j,l T̂ (:, j, l)bjcl.
As explained in Section 3, when score function is estimated via a DAE, we form an

efficient factor form of the cross-moment tensor using samples, and we can manipulate
the samples directly to perform the tensor decomposition steps as multi-linear operations,
leading to efficient computational complexity. We establish the exact factor form of the
empirical tensor Ê [y ⊗ S3(x)] in Equations (4b) and (6). Specifically, we establish that

T̂ := Ê[y ⊗ S3(x)] =
∑
i

yi ⊗ zi ⊗ zi ⊗ zi, zi := g(xi), (11)

where zi is a function of xi (which we obtain in closed form), and depends on the weights
and biases of the auto-encoder. Note that when T̂ is the empirical cross-moment tensor
in (11), T̂ (I, b, c) =

∑
i yi · 〈zi, b〉〈zi, c〉zi can be computed efficiently, as it only consists

of multi-linear operations. The stochastic version of this method only uses samples in the
current mini-batch to compute the update. In our experiments, we used a single sample
as the mini-batch, and found that it gave good performance, in addition to being fast to
implement. We run this update to convergence. Once we learn a component, we subtract it
from the tensor and run tensor decomposition on the result assuming now the rank is less
by 1. This procedure is called deflation. Then we repeat the rank-1 ALS. In the end, we
can appropriately symmetrize the estimated components to obtain the set of vectors {ui}.

144

	Introduction
	Summary of results

	Related Work
	Notation
	Overview of the Method
	Score function approximation through auto-encoders
	Estimation of S2(x) and S3(x) for sigmoid activation function
	Score function properties

	Experiment Results on MNIST Data Set
	Notations and Tensor Preliminaries
	Implementation Details
	Visualizing higher order score function for Swiss roll data set
	Implementation details for MNIST data set
	Stochastic tensor decomposition: stochastic rank-1 ALS updates

