
The 1st International Workshop “Feature Extraction: Modern Questions and Challenges”

JMLR: Workshop and Conference Proceedings 44 (2015) 160-172 NIPS 2015

Deep Clustered Convolutional Kernels

Minyoung Kim minyoung.kim@us.panasonic.com
Panasonic Silicon Valley Laboratory
10900 N. Tantau Ave, STE 200
Cupertino, CA 95014, USA

Luca Rigazio luca.rigazio@us.panasonic.com

Panasonic Silicon Valley Laboratory

10900 N. Tantau Ave, STE 200

Cupertino, CA 95014, USA

Editor: Afshin Rostamizadeh

Abstract

Deep neural networks have recently achieved state of the art performance thanks to new
training algorithms for rapid parameter estimation and new regularizations to reduce over-
fitting. However, in practice the network architecture has to be manually set by domain
experts, generally by a costly trial and error procedure, which often accounts for a large
portion of the final system performance. We view this as a limitation and propose a novel
training algorithm that automatically optimizes network architecture, by progressively in-
creasing model complexity and then eliminating model redundancy by selectively removing
parameters at training time. For convolutional neural networks, our method relies on it-
erative split/merge clustering of convolutional kernels interleaved by stochastic gradient
descent. We present a training algorithm and experimental results on three different vision
tasks, showing improved performance compared to similarly sized hand-crafted architec-
tures.

Keywords: Deep Learning, Convolutional Neural Networks, Convolutional Kernels

1. Introduction

Recently, deep neural networks (DNNs) have led to significant improvement in several
machine learning domains, from speech recognition (Dahl et al., 2012) to computer vi-
sion (Krizhevsky et al., 2012; Taigman et al., 2013) and machine translation (Sutskever
et al., 2014). DNNs have reached state of the art performance thanks to their theoreti-
cally proven modeling and generalization capabilities (Hornik et al., 1989; Hornik, 1991;
Kůrková, 1992), and practically driven by improvements in training algorithms for rapid
parameter estimation (Martens, 2010; Sutskever et al., 2013), novel regularization methods
to reduce overfitting (Srivastava et al., 2014) as well as ever increasing data-sets (Deng
et al., 2009) and powerful new computing platforms (Chetlur et al., 2014). However, before
parameter estimation (so called training) can begin the DNN’s structure (also called model
architecture) is usually manually defined by domain experts (Lin et al., 2013), and can often
account for a substantial portion of the final system performance (Szegedy et al., 2014). We
view this step as a bottleneck in the current deep learning pipeline, one that relies on a trial
and error human expert in the loop approach which is, to say the least, rather alchemic

c©2015 Minyoung Kim and Luca Rigazio.

Deep Clustered Convolutional Kernels

in nature. We want to address this basic scalability issue of the deep learning develop-
ment pipeline with training methods that automatically search for DNN architectures while
jointly estimating model parameters.

While structural optimization is a notoriously difficult combinatorial task, successful
strategies were adopted in the past for (shallow) models that motivated our approach.
For instance, for Hidden Markov Models with Gaussian mixture kernels, split/merge algo-
rithms were used to independently vary model complexity for each HMM state, resulting in
improved accuracy for large vocabulary speech recognition (Sankar, 1998). Information the-
oretic methods, such as the minimum description length criterion, were also applied to the
problem of structural optimization (Barron et al., 1998), resulting in improved performance
in speech recognition (Shinoda and Watanabe, 2000) and as well as training algorithms for
auto-encoders (Hinton and Zemel, 1994). However, to the best of our knowledge, there
is little published work on structural optimization in the deep learning community, with
the notable exception of work based on empirical evaluation (Bergstra and Bengio, 2012)
and random search strategies (Bergstra and Bengio, 2012). Although, recently Bayesian
optimization of hyper-parameters have been introduced (Snoek et al., 2012).

While these works are interesting, hyper-parameters are only one aspect of the DNN
structure, albeit one which is closely related to the performance of the training algorithm.
However, there are several other structural parameters that strongly affect DNN’s perfor-
mance which are usually set by experimental trial and error, such as network depth and for
convolutional models the number of convolutional filters and kernel size for each layer. In
our work, we aim to optimize model architecture, specifically targeting convolutional neural
networks (CNNs), and optimizing complexity for each layer. Therefore, in our approach,
the model architecture is not maintained constant during training, instead the model com-
plexity is continuously optimized throughout the training step (parameter estimation by
stochastic gradient descent), resulting, we believe, in a more scalable approach to the train-
ing of deep neural networks. In Section 2, we describe the general approach we are taking
for problem of structure optimization of convolutional neural networks. In Section 2.1, we
describe the theoretical foundations of our approach. In Section 3, we discuss data-sets
and experimental results and in Section 4 we discuss about limitations and possible future
improvements.

2. Deep Clustered Convolutional Kernels

The basic idea for our Deep Clustered Convolutional Kernels (DCCKs) it a convolutional
model architecture and associated structural training algorithm. We adopt a split/merge
outer-loop to the training process that first increases model capacity to model new factors
of variability seen in the data, then estimates new parameters for this larger model by
stochastic gradient descent (SGD), and finally reduces model capacity to minimize model-
space redundancy. Our approach takes inspiration by previous work in the area of Gaussian
kernel HMMs (Sankar, 1998; Rigazio et al., 2000; Bocchieri and Mak, 2001; Lee et al., 2001),
and is philosophically based on Occam’s razor principle whereby a smaller model with
similar performance on a given data-set is likely to have better generalization capabilities
to new unseen data.

161

Minyoung Kim and Luca Rigazio

An alternative view of work may be in the context of recent developments in DNN’s
compression: (Ba and Caruana, 2014) shows that a (shallow) DNN can approach the
performance of a substantially larger DNN when trained to mimic the logit output of the
larger model. Similarly, (Hinton et al., 2014) shows that logit-mimic training (referred to as
“Dark Knowledge”) results in orders of magnitude smaller models, compared to the initial
complex ensemble models, yet provides competitive performance when tested on both small
tasks (MNIST) as well as large scale industrial tasks (large vocabulary speech recognition).
It is important to notice that for both these works the authors acknowledge that, while
such smaller high performance models can be obtained by logit mimic training from a more
complex model set, thus showing that there is an optimal point in the parameter space with
high performance, there is currently no known training procedure to directly achieve such
optimal point in the smaller model. In this view finding such an elusive point in parameter
space by systematically optimizing DNN’s structure to eliminate redundancy and minimiz-
ing number of parameters, while at the same time estimating the model parameters under
the given loss function. The main contribution of our work is a training methodology to
iteratively optimize the number of convolutional kernels while estimating the convolutional
filter parameters.

2.1 Training algorithm

Conceptually our training procedure is rather straightforward: starting from an initial
network architecture, we first train the model by SGD until performance tops out on a
validation set. Next, we increase the model complexity of selected convolutional layers
by splitting the convolutional kernels. Splitting has the purpose of creating new plausible
convolutional filters given the current set of filters and can be done by applying image
pre-processing techniques to the kernels, as well as adding jittering and noise to create
enough variation. After splitting, the model is again trained by SGD and possibly split
again until performance tops out. At that point model is merged to reduce redundancy in
the parameter space and again trained by SGD. Notice that the split/merge procedure can
start at any layer but then it has to propagate upwards to change the number of kernels of
the connecting layers (fan-out). In our setup, given by input data x, forward propagation
f is done by:

f(x) = g(Wx+B) (1)

where g is ReLU activation function with g(x) = max(0, x), W is the weight parameters of
the convolutional layer, and B is the biases, each with the following dimensions:

Wl = Nl ×
P︷ ︸︸ ︷

dl × kl × kl (2)

Bl = 1× 1× 1×Nl (3)

where l is a convolutional layer with l ∈ {1, ..., L}, Nl is the number of outputs of l, dl
is number of channels of l, and kl is size of kernel used for l. We use square convolutional
kernels, so kernel dimensions are kl × kl. For simplicity, we define sub-dimension of W as

162

Deep Clustered Convolutional Kernels

P , shown in Equation 2. For the first convolutional layer we have d1 = 3 for RGB images
and d1 = 1 for gray-scale images. In the following convolutional layers, d is the output
of the previous convolutional layer thus, P would be the size of the feature vectors. This
implies that, when we perform the split/merge steps for level l, we need to update both
Wl and Bl as well as Wl+1. Biases for the following convolutional layer are independent.
An important caveat is that the order of the optimal split/merge operation depends on the
specific data-set and the filter parameters. For instance, if the initial filters are sparse it is
beneficial to do merge first. Otherwise, it is best to perform split first especially on smaller
data-sets when the initial filters are already compact and discriminative.

2.2 Splitting Kernels

With splitting, we want to increase model complexity by creating new convolutional kernels
from the set of existing well-trained kernels. Therefore, we create new kernels by selec-
tively choosing from a fixed set of transformations. The possible set of transformations
to play with is vast and includes the six isometries of the plane, angular rotation, change
in contrast (negative “reversing”) and many others. In our experiments, we focus on two
transformations that seemed to provide a consistent improvement:

• Rotation creates new kernels by rotating existing kernels in random directions.

• Noise perturbation creates new kernels by adding Gaussian noise to the existing
kernels.

One important aspect we verified in our experiments is that rotating kernels has a lower
computational cost at training time than rotating training images to create augmented
training set. Moreover, we observed that rotating the filters can help improve robustness
for highly tilted objects outlets, which would be otherwise hard to correctly classify (see
Figure 1). Adding random Gaussian noise, on the other hand, has the obvious benefit of
creating diversity and helping with the SGD, like previously reported by (Srivastava et al.,
2014). Regarding the splitting strategy, currently we took the simplest approach and split
every kernel by a fixed amount. This is bound to be locally unoptimal, and surely a better
splitting strategy that tries to maximize some diversity or discrimination criteria could be
devised, instead of indiscriminately splitting every single kernel. However, for the most
part, we observe that wasteful parameters created by this simple splitting strategy will be
eliminated during the final merging step; therefore, aside from a potential sub-optimality in
the CPU/Memory usage, we speculate the final model accuracy might not be very affected
by this uniform splitting strategy.

2.3 Merging Kernels

After the splitting step, the model might have too much capacity and thus part of the model
might become over-parameterized, possibly resulting in over-fitting and lower generalization
power. Therefore, the merging step has the purpose of removing model space redundancies
and reducing model size, while maintaining the overall model accuracy. In our algorithm we
use k -means clustering to merge kernels since, naturally, k -means cluster distortion under
the defined distortion measure (we employ L2 norm to compute cluster distortion). We

163

Minyoung Kim and Luca Rigazio

(a) 0 10 20 30 40
(b)

0.0
0.2
0.4
0.6
0.8
1.0

(c) 0 10 20 30 40
(d)

0.0
0.2
0.4
0.6
0.8
1.0

(e) 0 10 20 30 40
(f)

0.0
0.2
0.4
0.6
0.8
1.0

Figure 1: (a) Highly tilted, misclassified test
image (b) Soft-max output of original baseline
model resulting in miss-classification (c) Base-
line model convolutional kernels: notice high
proportion of redundant kernels (d) Soft-max
at DCCKs intermediate training stage, after
split and fine-tuning (e) Final DCCK convo-
lutional kernels, after merge and fine-tuning,
showing reduced redundancy (f) Final DCCK
soft-max output, correctly classifying the image

Finetune
96 kernels

150 kernels

32 kernels

MERGE

SPLIT

Figure 2: DCCK training example: starting
from a large GTSRB model 150 convolutional
kernels for the first layer, the algorithm first
merges it to 32 kernels. After fine-tuning, ker-
nels are split by adding noise and rotating, then
fine-tuned one more time.

empirically observe that k -means clustering to merge filter maps is effective in reducing
kernel’s redundancy (see filters in Figure 2). Then, we train the network and get weight
and bias matrices from each convolutional layer to then choose the filters that are nearest
to each centroid. We update Wl and Bl, with W ′l and B′l using k-means clustering to get
centroids C as:

C = arg min
P

C∑
j=1

∑
p∈P
||p− µj ||2 (4)

W ′l =

{
[P ′1, ..., P

′
i , ..., P

′
C], or

[C1, ..., Ci, ..., CC]
(5)

where

P ′i = arg min
P ′

||P ′ − Ci ||2 , i = {1, ..., C} (6)

and finally,

B′l =

{
[B′1, ..., B

′
i, ..., B

′
C], or

[β1, ..., βi, ..., βC]
(7)

164

Deep Clustered Convolutional Kernels

where B′i is P ′i ’s matched biases matrix, and βi is

β′i =

∑
i
bn

ηi
, n = {1, ...Nl} (8)

where ηi is number of p in group Ci.
As shown in Equation 5 and 8, we explored two different methods to update W and B.

The first method consists in choosing the Pi that is closer to each centroid Ci. In this case,
we use the correspondent bias vector Bi to the corresponding Pi selected. The other way is
to use the centroid Ci itself as filter parameters and update Bi with average bias from each
cluster. An important detail to choose the right value of k : if we choose k too small then
average cluster distortion will be too high to appropriately represent the model parameters,
possibly resulting in ineffective features maps. On the other hand, if we choose k too big,
not enough kernels will be merged.

3. Experimental results

Our experimental results are based on three different data-sets: MNIST, German Traffic
Sign Recognition Benchmark (GTSRB), and CIFAR-10. To make our experiments signif-
icant and to validate our approach, we started from hand-tuned model architectures that
were as close as possible to the state of the art, in an effort to prove that our split/merge
training procedure can still improve model architecture even when starting from a very
highly tuned architecture. Our baseline performance on each dataset is 0.82% (MNIST),
2.44% (GTSRB1), 1.24% (GTSRB-3DNN), and 10.4% (CIFAR-10). For all experiments,
we used the BVLC Caffe C++ package (Jia et al., 2014). We started our experiments
from MNIST since the quick training time allowed to quickly determine reasonable range of
hyper-parameters such as the number of centroids k, number of kernels for the split/merge
procedure. Next, we move to a more realistic task such as GTSRB for which we started from
an initial model, extremely close to the state of the art and finally confirm the portability
of our findings on the harder CIFAR-10 data-set. We report the details of each data-set
experiments in the following sections.

Table 1: MNIST baseline architecture

Layer
of
maps

Kernel
size

Input 3
Convolutional 100 5x5
Max Pooling 100 2x2
Convolutional 50 5x5
Max Pooling 50 2x2
Fully connected 100 1x1
Fully connected 10 1x1

Table 2: GTSRB-3DNN architecture

Layer
of
maps

Kernel
size

Input 3
Convolutional 150 3x3, 3x3, 3x3
Max Pooling 150 2x2, 2x2, 2x2
Convolutional 150 4x4, 4x4, 2x2
Max Pooling 150 2x2, 2x2, 2x2
Convolutional 250 4x4 4x4, 2x2
Max Pooling 250 2x2 2x2, 2x2
Fully Connected 500 1x1 1x1, 1x1
Fully Connected 43 1x1 1x1, 1x1

165

Minyoung Kim and Luca Rigazio

Table 3: MNIST Error Rate after fine-tuning

No. Stage conv1 conv2 Err(%)

1 original 100 50 0.82
2 original 200 50 0.78
3 original 300 50 0.75
4 split from [1] 200 50 0.58
5 merge from [4] 100 50 0.59

3.1 MNIST results

The MNIST data-set contains 60,000 training and 10,000 testing images of hand-written
digits of size 28x28. The baseline model is composed of two convolutional layers and two
fully-connected layers, as shown in Table 1, with ReLU and pooling following each convolu-
tional layer. This baseline model achieves 0.82% error rate with the simple network. DCCKs
training algorithm begins by splitting the first convolutional layer from 100 to 200 kernels;
after the subsequent fine-tuning the model achieved 0.59% error rate, which is almost 30%
relative improvement from the original model. This compared favorably to a 200 kernel
model trained from scratch, which achieves 0.78%, and even a 300 kernel model trained
from scratch, which achieves 0.75%. This verifies that splitting filters has the potential
to help the following SGD based fine-tuning to achieve an optimal point which general-
izes better. Also, more importantly after following merging step, back to 100 kernels, the
performance dropped only 0.01% to an error rate of 0.59%.

3.2 GTSRB results

Table 4: Results for GTSRB1

No. Stage conv1 conv2 Err(%)

1 original 150 150 2.44
2 merge [1] 32 150 2.34
3 merge [2] 32 32 2.7
4 merge [2] 32 64 2.36
5 split [2] 64 150 2.5
6N split [3] 32 64 2.25
7R split [3] 32 64 2.15
8 split [1] 300 150 2.24
9 merge [1] 40 150 2.31
10 split [1] 150 300 2.27

Table 5: Results for GTSRB-3DNN

No. Stage conv1 conv2 Err(%)

1 original 150 150 1.24
2 original 16 150 1.67
3 merge [1] 32 150 1.18
4 merge [1] 16 150 1.25
5 split [1] 300 150 1.21
6 split [3] 64 150 1.15

The GTSRB data-set contains 39,209 training images and 12630 testing images with var-
ious size, with 43 different classes consisting of standard traffic signs from Germany (Houben
et al., 2013). First, we resized all images to 48x48 and then we applied pre-processing

166

Deep Clustered Convolutional Kernels

Table 6: Speed comparisons for GTSRB models

Model Stage conv1 conv2 Speed(ms)

1. simple original 150 150 14.8
2. simple merge [1] 32 150 14.1
3. simple merge [2] 32 64 12.6

4. 3-DNNs original 150 150 27.9
5. 3-DNNs merge [4] 32 150 19.4

techniques such as histogram equalization, adaptive histogram equalization, and contrast
normalization. For this task, we have two sets of initial networks: a single model base-
line GTSRB1, consisting of three convolutional and two fully connected reaching 2.44%
error rate, and larger state of the art ensemble model GTSRB-3DNN (Table 2), inspired by
MCDNN(Ciresan et al., 2012), and reaching 1.24% error rate, which is within 0.2% from the
best published result. We remark the ensemble models use different input size of 48x48 pix-
els, 38x48 pixels and 28x48 pixels: because of this, we expected a high degree of redundancy
on the GTSRB-3DNN kernels which may be successfully exploited by the DCCKs merging
step. Indeed, by visually inspecting the lower convolutional layers we could easily iden-
tify an abundant amount of redundancy (see Figure 2). Because of this highly redundant
structure in the initial model, we inverted the sequence of our training procedure to first
merge kernels instead of splitting, which maintains the accuracy and provides significantly
faster training. Table 6 shows speed comparisons for GTSRB models and corresponding
DCCK trained models. Test time of forward-pass with minibatches of 10 48x48 images was
measured using Nvidia GeForce GTX 770.

Furthermore, the specific structure of the traffic signs provided for some peculiar behav-
iors on this database: for instance, kernel rotation especially helped improving performance.
A detailed inspection of the recognition errors highlighted that several traffic signs were mis-
classified by the baseline model were highly tilted; such instances were mostly recovered and
correctly recognized after DCCKs training (see Figure 1 for one example of such instance).
We also remark that using centroids as new kernels resulted in better gains on this data
set.

Table 4 and 5 shows the experimental results. In Table 4, ’R’ denotes ’Rotation’ and ’N’
denotes ’Noise perturbation’. We remark that in all the experiments, in almost all cases,
we either achieve significantly better performance or similar performance with significantly
reduced model size. (e.g. [7R] in Table 4, which splits both the first and second convolutional
layer followed by merge of the second layer, achieved the best performance). One exception
we observed during the experiment is that, it shows the worst performance of all experiments
when we merged the last convolutional layer which is fully connected to the first fully
connected layer of this network architecture. We speculate this issue is due to the fact that
is notoriously hard to optimize parameters of fully connected layers, splitting a convolutional
layer which fans-out into a fully connected layer has the potential to harm the parameter
structure to a point where SGD cannot easily recover.

167

Minyoung Kim and Luca Rigazio

3.3 CIFAR10 results

Table 7: Results for CIFAR-10

No. Stage conv1 conv2 conv3 Err(%)

1 original 192 192 192 10.4
2 split [1] 384 192 192 10.29
3 split [1] 576 192 192 10.25
4 merge [3] 192 192 192 10.2
5 split [1] 192 192 384 10.04
6 split [1] 192 384 192 10.04
7 merge [6] 192 192 192 10.28

The CIFAR-10 data-set consists of 50,000 training and 10,000 testing images. Each
image is 32x32 pixels and represent a class of natural occurring objects. To develop the
CIFAR-10 baseline we used the same techniques discussed in (Goodfellow et al., 2013) and
the Network-In-Network (Lin et al., 2013) model which achieves a baseline 10.4% error rate,
which is within reasonable distance from to the state of the art. When we apply DCCKs
training on the CIFAR-10 data-set, the increased performance is not as large as on the
previous data-sets but it is still significant and consistent. We believe that this is because
the highly successful highly (manually) optimized Network-In-Network architecture makes
it harder for the automatically devised DCCKs training to provide a large improvement.
Therefore these results should demonstrate that DCCKs may still provide some improve-
ment even when applied on top of more complex highly tuned architectures, while keeping
the number of parameters under control. Additionally we show that by splitting layers and
doubling the number of parameters we could achieve an additional 0.5% average error rate
improvement.

4. Discussion

In this work, we introduced the concept of DCCKs and introduced a training procedure
whereby convolutional kernels learned by SGD can be effectively split and merged. Exper-
imental results confirmed this process results in gradually improving performance, while
the training algorithm jointly optimizes structure as well as model’s parameters. Results
show that DCCKs can make parsimonious use of model capacity by converging towards the
minimal number of parameters that gives the best performance, even when starting with
highly manually optimizing network architecture. Figure 3 and 4 shows validation data
accuracy and loss over fine-tune epochs; the “original” and the “merge” curves refer to
training and generalization loss for models having the same number of parameters; notice
how the “merge” curve is consistently above the “original” curve, apparently providing an
upper-bound to the loss, and thus empirically confirming that the DCCKs architecture was
indeed an improved by the training algorithm. Moreover, in some experiments, DCCKs
resulted in significantly higher performance with smaller number of parameters than the
original model. On the other hand, DCCKs showed bigger gains on simpler databases, such

168

Deep Clustered Convolutional Kernels

as MNIST and GTSRB, than on more complex CIFAR-10 data-set and to the more complex
Network-In-Network model architecture. This is however to be expected, especially because
the NIN architecture is extremely well tuned and very high performance to begin with, so
it is natural to expect smaller gains by our automatic structure optimization procedure.
Beside the obvious advantage of automatic structure optimization, a side benefit of DCCKs
training is that manipulating kernels takes less computations than pre-processing training
data, which makes DCCKs optimization more efficient.

0 20 40 60 80 100 120 140
Epochs

0.966

0.968

0.970

0.972

0.974

0.976

0.978

0.980

Ac
cu
ra
cy

GTSRB1_merge
GTSRB1_original
GTSRB1_split

Figure 3: Test-set accuracy of GTSRB1 (sim-
ple) network during fine-tuning. Notice that
GTSRB1 merge and GTSRB1 merge have the
same number of parameters, but the opti-
mized DCCK architecture shows better accu-
racy throughout epochs.

0 20 40 60 80 100 120 140
Epochs

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.125

Lo
ss

GTSRB1_merge
GTSRB1_original
GTSRB1_split

Figure 4: Test-set loss of GTSRB1 (sim-
ple) network during fine-tuning. Notice that
GTSRB1 merge and GTSRB1 merge have the
same number of parameters, but the opti-
mized DCCK architecture shows better accu-
racy throughout epochs.

To conclude, we believe there are several aspects of DCCKs training algorithm that
could be improved. As we mentioned in Section 2.2, currently all kernels are split by the
same amount. However, one could argue that some kernels might be better than others and
should be replicated first, possibly based on the ability provide new discriminative features.
If we could determine such kernels, we could potentially improve training speed, though,
final accuracy after the merge step might not be much impacted as much. Finding a more
extensive set of kernel transformations to achieve a highly selective split step would also be
an appropriate next step, as well as comparison and combination with logit-mimic training
and model compression techniques (Ba and Caruana, 2014; Hinton et al., 2014). Ultimately,
like for any new methodology in the deep learning sector, it would be very important to
test how well DCCKs scale higher dimensional larger problems, such as ImageNet and to
different non-vision tasks such as speech recognition or language modeling.

169

Minyoung Kim and Luca Rigazio

References

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural
Information Processing Systems, pages 2654–2662, 2014.

Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length principle
in coding and modeling. Information Theory, IEEE Transactions on, 44(6):2743–2760,
1998.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The
Journal of Machine Learning Research, 13(1):281–305, 2012.

Enrico Bocchieri and BK-W Mak. Subspace distribution clustering hidden markov model.
Speech and Audio Processing, IEEE Transactions on, 9(3):264–275, 2001.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. CoRR,
abs/1410.0759, 2014. URL http://arxiv.org/abs/1410.0759.

Dan Ciresan, Ueli Meier, and Jrgen Schmidhuber. Multi-column deep neural networks
for image classification. In IN PROCEEDINGS OF THE 25TH IEEE CONFERENCE
ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2012, pages 3642–
3649, 2012.

George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. Audio, Speech, and Language
Processing, IEEE Transactions on, 20(1):30–42, 2012.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout networks. In ICML, 2013.

Geoffrey Hinton, Oriol Vinyalsm, and Jeff Dean. Dark knowledge. 2014. URL http:

//www.ttic.edu/dl/dark14.pdf.

Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description length, and
helmholtz free energy. Advances in neural information processing systems, pages 3–3,
1994.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251–257, 1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel.
Detection of traffic signs in real-world images: The German Traffic Sign Detection Bench-
mark. In International Joint Conference on Neural Networks, number 1288, 2013.

170

http://arxiv.org/abs/1410.0759
http://www.ttic.edu/dl/dark14.pdf
http://www.ttic.edu/dl/dark14.pdf

Deep Clustered Convolutional Kernels

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, volume 1, page 4, 2012.

Věra Kůrková. Kolmogorov’s theorem and multilayer neural networks. Neural networks, 5
(3):501–506, 1992.

Jay J Lee, Jahwan Kim, and Jin H Kim. Data-driven design of hmm topology for on-
line handwriting recognition. International journal of pattern recognition and artificial
intelligence, 15(01):107–121, 2001.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400,
2013. URL http://arxiv.org/abs/1312.4400.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning, pages 735–742, 2010.

Luca Rigazio, Brice Tsakam, and Jean-Claude Junqua. An optimal bhattacharyya centroid
algorithm for gaussian clustering with applications in automatic speech recognition. In
Proceedings of International Conference on Acoustics, Speech, and Signal Processing,
volume 3, pages 1599–1602. IEEE, 2000.

Ananth Sankar. Experiments with a gaussian merging-splitting algorithm for hmm training
for speech recognition. In Proceedings of DARPA Speech Recognition Workshop, pages
99–104. Citeseer, 1998.

Koichi Shinoda and Takao Watanabe. Mdl-based context-dependent subword modeling for
speech recognition. The Journal of the Acoustical Society of Japan (E), 21(2):79–86, 2000.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems,
pages 2951–2959, 2012.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research, 15:1929–1958, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th International
Conference on Machine Learning, pages 1139–1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V V Le. Sequence to Sequence Learning with Neural
Networks. In Z Ghahramani, M Welling, C Cortes, N D Lawrence, and K Q Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 3104–3112. Curran
Associates, Inc., 2014.

171

http://arxiv.org/abs/1312.4400

Minyoung Kim and Luca Rigazio

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.

4842.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1701–1708, 2013.

Appendix A.

In this appendix we introduce the following algorithm from Section 2.1:

Algorithm 1 Deep Clustered Convolutional Kernels training algorithm

Input: Initial network architecture net with parameters λ, noise variance σn and jitter
angle σα, stopping conditions δ0,1,2 and mini-batch size M
while ∆ Validation Accuracy > δ0 do

while ∆ Validation Accuracy > δ1 do
// SPLIT
nk = gaussianNoise(σn)
αk = gaussianNoise(σα)
λ1 = concat(λ, λ+ nk)
λ = concat(λ1, rotate(kernels(λ), αk))
// FINETUNE
while ∆ Validation Accuracy > δ2 do

runSGD(M mini-batches)
end while

end while
// MERGE
centroid = Kmeans(kernels(λ))
λ = nearest(kernels(λ), centroid)
while ∆ Validation Accuracy > δ2 do

runSGD(M mini-batches)
end while

end while

172

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

	Introduction
	Deep Clustered Convolutional Kernels
	Training algorithm
	Splitting Kernels
	Merging Kernels

	Experimental results
	MNIST results
	GTSRB results
	CIFAR10 results

	Discussion

