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Abstract

We introduce the concept of a Modular Autoencoder (MAE), capable of learning a set of
diverse but complementary representations from unlabelled data, that can later be used for
supervised tasks. The learning of the representations is controlled by a trade off parameter,
and we show on six benchmark datasets the optimum lies between two extremes: a set
of smaller, independent autoencoders each with low capacity, versus a single monolithic
encoding, outperforming an appropriate baseline. In the present paper we explore the
special case of linear MAE, and derive an SVD-based algorithm which converges several
orders of magnitude faster than gradient descent.
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1. Introduction

In a wide variety of Machine Learning problems we wish to extract information from high
dimensional data sets such as images or documents. Dealing with high dimensional data
creates both computational and statistical challenges. One approach to overcoming these
challenges is to extract a small set of highly informative features. These features may then
be fed into a task dependent learning algorithm. In representation learning these features
are learnt directly from the data (Bengio et al., 2013).

We consider a modular approach to representation learning. Rather than extracting a
single set of features, we extract multiple sets of features. Each of these sets of features is
then fed into a separate learning module. These modules may then be trained independently,
which addresses both computational challenges, by being easily distributable, and statistical
challenges, since each module is tuned to just a small set of features. The outputs of the
different classifiers are then combined, giving rise to a classifier ensemble.

Ensemble methods combine the outputs of a multiplicity of models in order to obtain
an enriched hypothesis space whilst controlling variance (Friedman et al., 2001). In this
work we shall apply ensemble methods to representation learning in order to extract several
subsets of features for an effective classifier ensemble. Successful ensemble learning results
from a fruitful trade-off between accuracy and diversity within the ensemble. Diversity
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Figure 1: A Modular Autoencoder (MAE).

is typically encouraged, either through some form of randomisation, or by encouraging
diversity through supervised training (Brown et al., 2005).

We investigate an unsupervised approach to learning a set of diverse but complementary
representations from unlabelled data. As such, we move away from the recent trend towards
coupled dimensionality reduction in which the tasks of feature extraction and supervised
learning are performed in unison Gönen (2014); Mohri et al. (2015). Whilst coupled di-
mensionality reduction has been shown to improve accuracy for certain classification tasks
Gönen (2014), the unsupervised approach allows us to use unlabelled data to learn a trans-
ferable representation which may be used on multiple tasks without the need for retraining
Bengio et al. (2013).

We show that one can improve the performance of a classifier ensemble by first learning
a diverse collection of modular feature extractors in a purely unsupervised way (see Section
4) and then training a set of classifiers independently. Features are extracted using a Mod-
ular Autoencoder trained to simultaneously minimise reconstruction error and maximise
diversity amongst reconstructions (see Section 2). Though the MAE framework is entirely
general to any activation function, in the present paper we focus on the linear case and
provide an efficient learning algorithm that converges several orders of magnitude faster
than gradient descent (see Section 3). The training scheme involves a hyper-parameter λ.
We provide an upper bound on λ, enabling a meaningful trade off between reconstruction
error and diversity (see Section 2.2).

2. Modular Autoencoders

A Modular Autoencoder consists of an ensemble W = {(Ai,Bi)}Mi=1 consisting of M auto-
encoder modules (Ai,Bi), where each module consists of an encoder map Bi : RD → RH
from a D-dimensional feature space RD to an H-dimensional representation space RH , and
a decoder map Ai : RD → RH . For reasons of brevity we focus on the linear case, where
Ai ∈MD×H (R) and Bi ∈MH×D (R) are matrices. See Figure 1.

In order to train our Modular Autoencoders W we introduce the following loss function

Lλ (W,x) :=
1

M

M∑
i=1

reconstruction error︷ ︸︸ ︷
||AiBix− x||2 −λ · 1

M

M∑
i=1

diversity︷ ︸︸ ︷∣∣∣∣∣∣
∣∣∣∣∣∣AiBix−

1

M

M∑
j=1

AjBjx

∣∣∣∣∣∣
∣∣∣∣∣∣
2

, (1)
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for feature vectors x ∈ RD. The loss function Lλ (W,x) is inspired by (but not identical
to) the Negative Correlation Learning approach of by Liu and Yao for training supervised
ensembles of neural networks (Liu and Yao, 1999)1. The first term corresponds to the
squared reconstruction error typically minimised by Autoencoders (Bengio et al., 2013).
The second term encourages the reconstructions to be diverse, with a view to capturing
different factors of variation within the training data. The hyper-parameter λ, known as
the diversity parameter, controls the degree of emphasis placed upon these two terms. We
discuss its properties in Sections 2.1 and 2.2. Given a data set D ⊂ RD we train a Modular
Autoencoder to minimise the error Eλ (W,D), the loss function Lλ (W,x) averaged across
the data x ∈ D.

2.1 Between two extremes

To understand the role of the diversity parameter λ we first look at the two extremes of
λ = 0 and λ = 1. If λ = 0 then no emphasis is placed upon diversity. Consequently
L0 (W,x) is precisely the average squared error of the individual modules (Ai,Bi). Since
there is no interaction term, minimising L0 (W,x) over the training data is equivalent to
training each of the auto-encoder modules independently, to minimise squared error. Hence,
in the linear case E0 (W,D) is minimised by taking each Bi to be the projection onto the
first H principal components of the data covariance (Baldi and Hornik, 1989).

If λ = 1 then, by the Ambiguity Decomposition (Krogh et al., 1995),

L1 (W,x) =

∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
i=1

AiBix− x

∣∣∣∣∣
∣∣∣∣∣
2

.

Hence, minimising L1 (W) is equivalent to minimising squared error for a single large Au-
toencoder (A,B) with an M ·H-dimensional hidden layer, where B = [BT

1 , · · · ,BT
M ]T and

A = M−1[A1, · · · ,AM ].
Consequently, moving λ between 0 and 1 corresponds to moving from training each of

our autoencoder modules independently through to training the entire network as a single
monolithic autoencoder.

2.2 Bounds on the diversity parameter

The diversity parameter λ may be set by optimising the performance of a task-specific
system using the extracted sets of features on a validation set. Theorem 1 shows that the
search region may be restricted to the closed unit interval [0, 1].

Theorem 1 Suppose we have a data set D. The following dichotomy holds:

• If λ ≤ 1 then inf Eλ (W,D) ≥ 0.

• If λ > 1 then inf Eλ (W,D) = −∞.

In both cases the infimums range over possible parametrisations for the ensemble W.
Moreover, if the diversity parameter λ > 1 there exist ensembles W with arbitrarily low

error Eλ (W,D) and arbitrarily high average reconstruction error.

1. See the Appendix for details.
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Theorem 1 is a special case of Theorem 3, which is proved the appendix.

3. An Efficient Algorithm for Training Linear Modular Autoencoders

One method to minimise the error Eλ (W,D) would be to apply some form of gradient
descent. However, Linear Modular Autoencoders we can make use of the Singular Value
Decomposition to obtain a fast iterative algorithm for minimising the error Eλ (W,D) (see
Algorithm 1).

Algorithm 1 Backfitting for Linear Modular Autoencoders

Inputs: D × N data matrix X, diversity parameter λ, number of hidden nodes per
module H, number of modules M , maximal number of epochs T,
Randomly generate {(Ai,Bi)}Mi=1 and set Σ←XXT ,
for t = 1 to T do

for i = 1 to M do
Zi ←M−1

∑
j 6=iAjBj

Φ← (ID − λ ·Zi) Σ (ID − λ ·Zi)
T , where ID denotes the D ×D identity matrix.

Ai ← [u1, · · · ,uH ], where {u1, · · · ,uH} are the top eigenvectors of Φ.
Bi ← (1− λ · (M − 1)/M)−1 ·Ai

T (ID − λ ·Zi)
end for

end for
return Decoder-Encoder pairs (Ai,Bi)

M
i=1

Algorithm 1 is a simple greedy procedure reminiscent of the back-fitting algorithm for
additive models (Friedman et al., 2001). Each module is optimised in turn, leaving the
parameters for the other modules fixed. The error Eλ (W,D) decreases every epoch until a
critical point is reached.

Theorem 2 Suppose that Σ = XXT is of full rank. Let (Wt)
T
t=1 be a sequence of parame-

ters obtained by Algorithm 1. For every epoch t = {1, · · · , T}, we have Eλ (Wt+1,D) <
Eλ (Wt,D), unless Wt is a critical point for Eλ (·,D), in which case Eλ (Wt+1,D) ≤
Eλ (Wt,D).

Theorem 2 justifies the procedure in Algorithm 1. The proof is given in Appendix B.
We compared Algorithm 1 with (batch) gradient descent on an artificial data set consisting
of 1000 data points randomly generated from a Gaussian mixture data set consisting of
equally weighted spherical Gaussians with standard deviation 0.25 and a mean drawn from
a standard multivariate normal distribution. We measured the time for the cost to stop
falling by at least ε = 10−5 per epoch for both Algorithm 1 and (batch) gradient descent.
The procedure was repeated ten times. The two algorithms performed similarly in terms
of minimum cost attained, with Algorithm 1 attaining slightly lower costs on average.
However, as we can see from Table 1, Algorithm 1 converged several orders of magnitude
faster than gradient descent.
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Algorithm 1 Gradient Descent Speed up

Minimum 0.1134 s 455.2 s 102.9×
Mean 1.4706 s 672.9 s 1062.6×

Maximum 4.9842 s 1871.5 s 6685.4×

Table 1: Convergence times for Algorithm 1 and batch gradient descent.

4. Empirical results

In this section we demonstrate the efficacy of Modular Autoencoders for extracting useful
sets features for classification tasks. In particular, we demonstrate empirically that we can
improve the performance of a classifier ensemble by first learning a diverse collection of
modular feature extractors in an unsupervised way.

Our methodology is as follows. We take a training data set D = {(xn, yn)}Nn=1 consisting
of pairs of feature vectors xn and class labels yn. The data set D is pre-processed so each
of the features have zero mean. We first train a Modular Autoencoder W = (Ai,Bi).
For each module i we take Ci to be the 1-nearest neighbour classifier with the data set
Di = {(Bixn, yn)}Nn=1. The combined prediction of the ensemble on a test point x is

defined by taking a modal average of the class predictions {Ci(Bix)}Mi=1.

We use a collection of six image data sets from Larochelle et al. (2007), Basic, Rotations,
Background Images and Background Noise variants of MNIST as well as Rectangles and
Convex. In each case we use a Modular Autoencoder consisting of ten modules (M = 10),
each consisting of ten hidden nodes (H = 10). The five-fold cross-validated test error is
shown as a function of the diversity parameter λ. We contrast with a natural baseline
approach Bagging Autoencoders (BAE) in which we proceed as described, but the modules
(Ai,Bi) are trained independently on bootstrapped samples from the data. In all cases,
as the diversity parameter increases from zero the test error for features extracted using
Modular Autoencoders falls well below the level attained by Bagging Autoencoders. As
λ→ 1 the ensemble error begins to rise, sometimes sharply.

5. Understanding Modular Autoencoders

In this section we analyse the role of encouraging diversity in an unsupervised way with
Modular Autoencoders and the impact this has upon supervised classification.

5.1 A more complex decision boundary

We begin by considering a simple two-dimensional example consisting of a Gaussian mixture
with three clusters. In this setting we use a Linear Modular Autoencoder consisting of two
modules, each with a single hidden node, so each of the feature extractors is simply a
projection onto a line. We use a linear Softmax classifier on each of the extracted features.
The probabilistic outputs of the individual classifiers are then combined by taking the mean
average. The predicted label is defined to be the one with the highest probability. Once
again we observe the same trend as we saw in Section 4 - encouraging diversity leads to a
substantial drop in the test error of our ensemble, with a test error of 21.3± 1.3% for λ = 0
and 12.8± 1.0% for λ = 0.5.
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Figure 2: Test error for Modular Autoencoders (MAE) and Bagging Autoencoders (BAE).

To see why this is the case we contrast the features extracted when λ = 0 with those
extracted when λ = 0.5. Figure 3 shows the projection of the class densities onto the two
extracted features when λ = 0. No emphasis is placed upon diversity the two modules are
trained independently to maximise reconstruction. Hence, the features extract identical
information and there is no ensemble gain. Figure 5 shows the resultant decision boundary;
a simple linear decision boundary based upon a single one-dimensional classification.
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Figure 3: Projected class densities with λ = 0 .
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Figure 4: Projected class densities with λ = 0.5 .

Figure 5: The decision boundary for λ = 0 (left) and λ = 0.5 (right).

In contrast, when λ = 0.5 the two features yield diverse and complementary information.
As we can see from Figure 4, one feature separates class 1 from classes 2 and 3, and the other
separates class 3 from classes 1 and 2. As we can see from the right of Figure 5, the resulting
decision boundary accurately reflects the true class boundaries, despite being based upon
two independently trained one-dimensional classifiers. This leads to the reduction in test
error for λ = 0.5.

In general, Modular Autoencoders trained with the loss function defined in (1) extract
diverse and complementary sets of features, whilst reflecting the main factors of variation
within the data. Simple classifiers may be trained independently based upon these sets of
features, so that the combined ensemble system gives rise to a complex decision boundary.

5.2 Diversity of feature extractors

In this Section we give further insight into the effect of diversity upon Modular Autoen-
coders. We return to the empirical framework of Section 4. Figure 6 plots two values test
error for features extracted with Linear Modular Autoencoders. We plot both the average
individual error of the classifiers (without ensembling the outputs) and the test error of the
ensemble. In every case the average individual error rises as the diversity parameter moves
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away from zero. Nonetheless, the ensemble error falls as the diversity parameter increases
(at least initially).
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Figure 6: Test error for the ensemble system (Ens) and the average individual error (Ind) .
Note that as the diversity parameter λ increases, the individual modules sacrifice
their own performance for the good of the overall set of modules - the average
error rises, while the ensemble error falls.

To see why the ensemble error falls whilst the average individual error rises we consider
the metric structure of the different sets of extracted features. To compare the metric
structure captured by different feature extractors, both with one another, and with the
original feature space, we use the concept of distance correlation introduced by (Székely
et al., 2007).

Given a feature extractor map F (such as x 7→ Bix) we compute D (F,D), the distance
correlation based upon the pairs {(F (x), x) : x ∈ D}. The quantity D (F,D) tells us how
faithfully the extracted feature space for a feature map F captures the metric structure
of the original feature space. For each of our data sets we compute the average value of
D (F,D) across the different feature extractors. To reduce computational cost we restrict
ourselves to a thousand examples of both train and test data, Dred. Figure 7 shows how
the average value of M−1

∑M
i=1D

(
Bi,Dred

)
varies as a function of the diversity parameter.

As we increase the diversity parameter λ we also reduce the emphasis on reconstruction
accuracy. Hence, increasing λ reduces the degree to which the extracted features accurately

249



Reeve and Brown

reflect the metric structure of the original feature space. This explains the fall in individual
classification accuracy we observed in Figure 6.
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Figure 7: Average distance correlation between extracted features.

Given feature extractor maps F and G (such as x 7→ Bix and x 7→ Bjx), on a data set D
we compute C (F,G,D), the distance correlation based upon the pairs {(F (x), G(x)) : x ∈ D}.
The quantity C (F,G,D) gives us a measure of the correlation between the metric struc-
tures induced by F and G. Again, to reduce computational cost we restrict ourselves to a
thousand examples of both train and test data, Dred. To measure the degree of diversity
between our different sets of extracted features we compute the average pairwise correlation
C
(
Bi,Bj ,Dred

)
, averaged across all pairs of distinct feature maps Bi,Bj with i 6= j. Again

we restrict ourselves to a thousand out-of-sample examples. Figure 8 shows how the degree
of metric correlation between the different sets of extracted features falls as we increase the
diversity parameter λ. Increasing λ places an increasing level of emphasis on a diversity
of reconstructions. This diversity results in the different classifiers making different errors
from one another enabling the improved ensemble performance we observed in Section 4.

6. Discussion

We have introduced a modular approach to representation learning where an ensemble
of auto-encoder modules is learnt so as to achieve a diversity of reconstructions, as well
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Figure 8: Average pairwise distance correlation between different feature extractors.

as maintaining low reconstruction error for each individual module. We demonstrated
empirically, using six benchmark data sets, that we can improve the performance of a
classifier ensemble by first learning a diverse collection of modular feature extractors in
an unsupervised way. We explored Linear Modular Autoencoders and derived an SVD-
based algorithm which converges three orders of magnitude faster than gradient descent.
In forthcoming work we extend this concept beyond the realm of auto-encoders and into a
broader framework of modular manifold learning.
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Appendix A. Modular Regression Networks

We shall consider the more general framework of Modular Regression Networks (MRN)
which encompasses Modular Autoencoders (MAE).

A Modular Regression Network F = {Fi}Mi=1 is an ensemble system consisting of M
mappings Fi : RD → RQ. The MRN F is trained using the following loss,

Lλ (F ,x,y) :=
1

M

M∑
i=1

error︷ ︸︸ ︷
||Fi (x)− y||2−λ · 1

M

M∑
i=1

diversity︷ ︸︸ ︷∣∣∣∣Fi(x)− F (x)
∣∣∣∣2, (2)

where x is a feature vector, y a corresponding output, and F denotes the arithmetic average
F := 1

M

∑M
i=1 Fi. Given a data set D = {(xn,yn)}Nn=1 we let Eλ (F ,D) denote the loss

Lλ (F ,x,y) averaged over (x,y) ∈ D. The MRN F is trained to minimise Eλ (F ,D).

A.1 Investigating the loss function

Proposition 1 Given λ ∈ [0,∞) and an MRN F , for each example (x,y) we have

Lλ (F ,x,y) = (1− λ) · 1

M

∑
i

||Fi (x)− y||2 + λ ·
∣∣∣∣F (x)− y

∣∣∣∣2 .
Proof The result may be deduced from the Ambiguity Decomposition (Krogh et al., 1995).

The following proposition relates MRNs to Negative Correlation Learning (Liu and Yao,
1999).

Proposition 2 Given an MRN F and (x,y) ∈ D we have

∂Lλ (F ,x,y)

∂Fi
=

2

M
·
(
(Fi (x)− y)− λ ·

(
Fi (x)− F (x)

))
.

Proof This follows from the definitions of Lλ (F ,x,y) and F (x).

In Negative Correlation Learning each network Fi is updated in parallel with rule

θi ← θi − α · ∂Fi
∂θi

(
(Fi (x)− y)− λ ·

(
Fi (x)− F (x)

))
,

for each example (x,y) ∈ D in turn, where θi denotes the parameters of Fi and α denotes
the learning rate (Liu and Yao, 1999, Equation 4). By Proposition 2 this is equivalent
to training a MRN F to minimise Eλ (F ,D) with stochastic gradient descent, using the
learning rate M/2 · α.

A.2 An upper bound on the diversity parameter

We now focus on a particular class of networks. Suppose that there exists a vector-valued
function ϕ (x; ρ), parametrised by ρ. We assume that ϕ is sufficiently expressive that for
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each possible feature vector x ∈ RD there exists a choice of parameters ρ with ϕ (x; ρ) 6= 0.
Suppose that for each i there exists a weight matrix W i and parameter vector ρi such
that Fi (x) = W iϕ

(
x; ρi

)
. We refer to such networks as Modular Linear Top Layer Net-

works (MLT). This is the natural choice in the context of regression and includes Modular
Autoencoders with linear outputs.

Theorem 3 Suppose we have a MLT F and a dataset D. The following dichotomy holds:

• If λ ≤ 1 then inf Eλ (F ,D) ≥ 0.

• If λ > 1 then inf Eλ (F ,D) = −∞.

In both cases the infimums range over possible parametrisations for the MRN F .
Moreover, if λ > 1 there exists parametrisations of F with arbitrarily low error Eλ (F ,D)

and arbitrarily high squared loss for the ensemble output F and average squared loss for the
individual regression networks F .

Proof It follows from Proposition 1 that whenever λ ≤ 1, Lλ (F ,x,y) ≥ 0 for all choices
of F and all (x,y) ∈ D. This implies the consequent in the case where λ ≤ 1.

We now address the implications of λ > 1.
Take (x̃, ỹ) ∈ D. By the (MLT) assumption we may find parameters ρ so that ϕ (x̃; ρ) 6=

0. Without loss of generality we may assume that 0 6= c = ϕ1 (x̃; ρ), where ϕ1 (x; ρ) denotes
the first coordinate of ϕ (x; ρ). We shall leave ρ fixed and obtain a sequence (Fq)q∈N, where

for each q we have F qi (x) = W (i,q)ϕ (x; ρ) by choosing W (i,q).
First take W (i,q) = 0 for all i = 3, · · · ,M , so

F (x) =
1

M
(F1(x) + F2(x)) .

In addition we choose W
(1,q)
kl = W

(2,q)
kl = 0 for all k > 1 or l > 1. Finally we take

W
(1,q)
11 = c ·

(
q2 + q

)
and W

(2,q)
11 = −c · q2. It follows that for each (x,y) ∈ D we have,

F1(x) = W (1,q)ϕ (x, ρ) =
(
c(q2 + q)ϕ1 (x; ρ) , 0, · · · , 0

)
F1(x) = W (2,q)ϕ (x, ρ) =

(
−cq2ϕ1 (x; ρ) , 0, · · · , 0

)
,

F (x) =
(
M−1cqϕ1 (x; ρ) , 0, · · · , 0

)
.

Noting that ϕ1 (x; ρ) = c 6= 0 and (x̃, ỹ) ∈ D we see that,

1

N

N∑
n=1

(
F (xn)− yn

)2
= Ω(q2). (3)

On the other hand we have,

1

N

N∑
n=1

(F1(xn)− yn)2 = Ω(q4),
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and clearly for all i,

1

N

N∑
n=1

(F1(xn)− yn)2 > 0.

Hence,

1

N

N∑
n=1

1

M

M∑
i=1

(F1(xn)− yn)2 = Ω(q4).

Combining with Equation (3) this gives

Eλ (Fq,D) = (1− λ) · Ω(q4) + λ · Ω(q2).

Since λ > 1 this implies

Eλ (Fq,D) = −Ω(q4). (4)

By Equations 3 and 4 we see that for any Q1, Q2 > 1, by choosing q sufficiently large we
have

Eλ (Fq,D) < −Q1,

and

1

N

N∑
n=1

1

M

M∑
i=1

(Fi(xn)− yn)2 ≥ 1

N

N∑
n=1

(
F (xn)− yn

)2
> Q2,

This proves the second item.

The impact of Theorem 3 is that whenever λ > 1, minimising Eλ will result in one or more
parameters diverging. Moreover, the resultant solutions may be arbitrarily bad in terms of
training error, leading to very poor choices of parameters.

Theorem 4 Suppose we have a MLT F on a data set D. Suppose we choose i ∈ {1, · · · ,M}
and fix Fj for all j 6= i. The following dichotomy holds:

• If λ < M
M−1 then inf Eλ (F ,D) > −∞.

• If λ > M
M−1 then inf Eλ (F ,D) = −∞.

In both cases the infimums range over possible parameterisations for the function fi, with
fj fixed for j 6= i.

Proof We fix Fj for j 6= i. For each pair (x,y) ∈ D we consider Lλ (F) for large ||Fi(x)||.
By Proposition 1 we have

Lλ (F ,x,y) = (1− λ) · 1

M
Ω
(
||Fi(x)||2

)
+ λ · Ω

(
|| 1

M
Fi(x)||2

)
=

(
1− λ · M − 1

M

)
· Ω
(
||Fi(x)||2

)
.
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Hence, if λ < M
M−1 we see that Lλ (F ,x,y) is bounded from below for each example (x,y),

for all choices of Fi. This implies the first case.

In addition, the fact that ϕ(x1, ρ) 6= 0 for some choice of parameters ρ means that we
may choose a sequence of parameters such that ||Fi(x)|| → ∞ for one or more examples
(x,y) ∈ D. Hence, if λ > M

M−1 , we may choose weights so that Lλ (F ,x,y) → −∞ for
some examples (x,y) ∈ D. The above asymptotic formula also implies that Lλ (F ,x,y) is
uniformly bounded from above when λ > M

M−1 . Thus, we have inf Eλ (F ,D) = −∞.

Appendix B. Derivation of the Linear Modular Autoencoder Training
Algorithm

In what follows we fix D,N , and H < D and define

CD,H :=
{

(A,B) : A ∈ RD×H ,B ∈ RH×D
}
.

We data set D ⊂ RD, with D features and N examples, and let X denote the D×N matrix
given by X = [x1, · · · ,xN ].

Given any λ ∈ [0,∞) we define our error function by

Eλ (W,D) =
1

N

N∑
n=1

 1

M

M∑
j=1

||xn −AjBjxn||2 − λ ·

∣∣∣∣∣
∣∣∣∣∣AjBjxn −

1

M

M∑
k=1

AkBkxn

∣∣∣∣∣
∣∣∣∣∣
2


=
1

N ·M

M∑
i=1

||X −AjBjX||2 − λ ·

∣∣∣∣∣
∣∣∣∣∣AjBjX −

1

M

M∑
k=1

AkBkX

∣∣∣∣∣
∣∣∣∣∣
2
 ,

where W = ((Ai,Bi))
M
i=1 ∈ (CD,P )M , and ||·|| denotes the Frobenius matrix norm.

Proposition 3 Suppose we take X so that Σ = XXT has full rank D and choose λ <
M/(M − 1). We pick some i ∈ {1, · · · ,M}, and fix Aj ,Bj for each j 6= i. Then we find
(Ai,Bi) which minimises Eλ (W,D) by

1. Taking Ai to be the matrix whose columns consist of the D unit eigenvectors with
largest eigenvalues for the matrixID −

λ

M

∑
j 6=i

AjBj

Σ

ID −
λ

M

∑
j 6=i

AjBj

T

,

2. Choosing Bi so that

Bi =

(
1− λ · M − 1

M

)−1
·AT

i

ID −
λ

M

∑
j 6=i

AjBj

 .
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Moreover, for any other decoder-encoder pair
(
Ãi, B̃i

)
which also minimises Eλ (W,D)

(with the remaining pairs Aj ,Bj fixed) we have ÃiB̃i = AiBi.

Proposition 3 implies the following proposition from Section 3.

Theorem 2 Suppose that Σ is of full rank. Let (Wt)
T
t=1 be a sequence of parameters ob-

tained by Algorithm 1. For every epoch t = {1, · · · , T}, we have Eλ (Wt+1,D) < Eλ (Wt,D),
unless Wt is a critical point for Eλ (·,D), in which case Eλ (Wt+1,D) ≤ Eλ (Wt,D).

Proof By Proposition 3, each update in Algorithm 1 modifies a decoder-encoder pair
(Ai,Bi) so as to minimise Eλ (W,D), subject to the condition that (Aj ,Bj) remain fixed
for j 6= i. Hence, Eλ (Wt+1,D) ≤ Eλ (Wt,D).

Now suppose Eλ (Wt+1,D) = Eλ (Wt,D) for some t. Note that Eλ (Wt+1,D) is a func-
tion of C = {Ci}Mi=1 where Ci = AiBi for i = 1, · · · ,M . We shall show that Ct is a
critical point in terms for Eλ. Since Eλ (Wt+1,D) = Eλ (Wt,D) we must have Ct+1

i = Ct
i

for i = 1, · · · ,M . Indeed, Proposition 3 implies that Algorithm 1 only modifies Ci when
Eλ (W,D) is reduced (although the individual matrices Ai and Bi may be modified). Since
Ct+1
i = Ct

i we may infer that Ct
i attains the minimum value of Eλ (W,D) over the set of

parameters such that Cj = Ct
j for all j 6= i. Hence, at the point Ct we have ∂Eλ/∂Ci = 0

for each i = 1, · · · ,M . Thus, ∂Eλ/∂Ai = 0 and ∂Eλ/∂Bi = 0, for each i, by the chain rule.

To prove Proposition 3 we require two intermediary lemmas. The first is a theorem
concerning Rank Restricted Linear Regression.

Theorem 5 Suppose we have D×N data matrices X,Y . We define a function E : CD,H →
R by

E (A,B) = ||Y −ABX||2 .

Suppose that the matrix XXT is invertible and define Σ := (Y XT )(XXT )−1(XY T ). Let
U denote the N × D matrix who’s columns are the D unit eigenvectors of Σ with largest
eigen-values. Then the minimum for E is attained by taking,

A = U

B = UT (Y XT )(XXT )−1.

Proof See Baldi and Hornik (1989, Fact 4).

Note that the minimal solution is not unique. Indeed if A,B attain the minimum, then so
does AC, C−1B for any invertible H ×H matrix C.
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Lemma 6 Suppose we have D × N matrices X and Y1, · · · ,YQ, and scalars α1, · · · , αQ
such that

∑Q
q=1 αq > 0. Then we have

arg min
(A,B)∈CD,H


Q∑
q=1

αq||Yq −ABX||2


= arg min
(A,B)∈CD,H

||
 Q∑
q=1

α̃qY

−ABX||2
 ,

where α̃q = αq/
(∑Q

q′=1 αq′
)

.

Proof We use the fact that under the Frobenius matrix norm, ||M ||2 = tr(MMT ) for
matrices M , where tr denotes the trace operator. Note also that the trace operator is linear
and invariant under matrix transpositions. Hence, we have

Q∑
q=1

αq ||Yq −ABX||2

=

Q∑
q=1

αq · tr
(
(Yq −ABX)(Yq −ABX)T

)
=

Q∑
q=1

αq · tr
(
YqY

T
q − 2(AB)XY T

q + (AB)XX(AB)T
)

=

Q∑
q=1

αq ||Yq||2 − tr

2(AB)X

 Q∑
q=1

αqYq

T
+ tr

 Q∑
q=1

αq

 (AB)XXT (AB)T

 .

Note that we may add constant terms (ie. terms not depending on A or B) and multiply by
positive scalars without changing the minimising argument. Hence, dividing by

∑Q
q=1 αq > 0

and adding a constant we see that the minimiser of the above expression is equal to the
minimiser of

tr
(
(AB)XXT (AB)T

)
+ tr

2(AB)X

 Q∑
q=1

α̃qYq

T
+ tr


 Q∑
q=1

α̃qYq

 Q∑
q=1

α̃qYq

T
 .

Moreover, by the linearity of the trace operator this expression is equal to∣∣∣∣∣∣
∣∣∣∣∣∣
 Q∑
q=1

α̃qYq

−ABX

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

This proves the lemma.
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Proof [Proposition 3] We begin observing that if we fix Aj ,Bj for j 6= i, then minimising
Eλ (W,D) is equivalent to minimising

||X −AiBiX||2 − λ
(

1− 1

M

)2 ∣∣∣∣∣∣∣∣ 1

M − 1
· S−i −AiBiX

∣∣∣∣∣∣∣∣2−
λ

M2

∑
j 6=i
||(MAjBjX − S−i)−AiBiX||2 ,

where S−i =
∑

j 6=iAjBjX. This holds as the above expression differs from Eλ (W,D)
only by a multiplicative factor of NM and some constant terms which do not depend upon
Ai,Bi.

By Lemma 6, minimising the above expression in terms of Ai,Bi is equivalent to min-
imising

||Y −AiBiX||, (5)

with

Y =

(
1− λ

((
1− 1

M

)2

+
M − 1

M2

))−1

·

X − λ ·

(1− 1

M

)2 1

M − 1
· S−i +

1

M2

∑
j 6=i

(MAjBjX − S−i)

 .

Here we use the fact that λ < M/(M − 1), so

1− λ

((
1− 1

M

)2

+
M − 1

M2

)
= 1− λ · M − 1

M
> 0.

We may simplify our expression for Y as follows,

Y =

(
1− λ · M − 1

M

)−1
·

ID −
λ

M

∑
j 6=i

AjBj

X.

By Theorem 5, we may minimise the expression in 5 by taking Ai to be the matrix whose
columns consist of the D unit eigenvectors with largest eigenvalues for the matrixID −

λ

M

∑
j 6=i

AjBj

(XXT
)ID −

λ

M

∑
j 6=i

AjBj

T

,

and setting

Bi =

(
1− λ · M − 1

M

)−1
·AT

i

ID −
λ

M

∑
j 6=i

AjBj

 .

This completes the proof of the proposition.
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