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Abstract
The problem of extracting features from given input data is of critical importance for the success-
ful application of machine learning. Feature extraction, as usually understood, seeks an optimal
transformation from input data into a (typically real-valued) feature vector that can be used as an
input for a learning algorithm. Over time, this problem has been attacked using a growing number
of diverse techniques that originated in separate research communities, including feature selection,
dimensionality reduction, manifold learning, distance metric learning and representation learning.
The goal of this paper is to contrast and compare feature extraction techniques coming from differ-
ent machine learning areas, discuss the modern challenges and open problems in feature extraction
and suggest novel solutions to some of them.

Keywords: feature selection, feature weighting, feature normalization, column subset selection,
random projection, clustering, nearest neighbor, dimensionality reduction, manifold learning, dis-
tance metric learning, multiple kernel learning, representation learning, embedding, PCA, LDA,
RCA, kernel PCA, Isomap, LLE, Laplacian eigenmap, neural networks, autoencoders, restricted
Boltzmann machines

1. Introduction

Over the recent years, the volume of data available to machine learning algorithms has grown
tremendously, not only in the number of instances, but also in the amount of raw information that
each instance contains. Millions or, in some cases, even billions of input features are available
in applications such as natural language processing, image recognition, text categorization, audio
analysis, bioinformatics and physics. Given such excessive amounts of raw information, the task
of feature extraction, that is transforming input data into features that can be useful for a learning
algorithm, is as critical as ever for the successful application of machine learning.

One major goal of feature extraction is to increase the accuracy of learned models by compactly
extracting salient features (understandable to the learning algorithm) from the input data, while
also potentially removing noise and redundancy from the input (Guyon et al., 2008). Additional
objectives include low-dimensional representations for data visualization and compression for the
purpose of reducing data storage requirements as well as increasing training and inference speed
(Guyon and Elisseeff, 2003). Note that in this work, depending on the context, we use the term
input data (or equivalently input features) to indicate either potentially unstructured raw data (such
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as an image, text string, or audio signal) or a well defined set (say a set of real-valued variables),
from we wish to extract more valuable features.

In general, without informative features, it is not possible to train a model with low generaliza-
tion error, but if relevant features can be extracted, then even a simple method can show remarkable
results (Yang and Pedersen, 1997; van der Maaten et al., 2009). Accordingly, much effort is spent
during practical machine learning in building and maintaining complex feature extraction pipelines
(Sculley et al. (2014), Sec. 4.2). This has driven feature extraction research in various industrial and
academic fields, making the topic quite broad and diverse. In this survey, we try to give a structured
outline on this diverse topic, compare and contrast key approaches, as well as describe how they
attack specialized open problems.

The domain of feature extraction has accumulated a diverse set of terminology, and here we
work towards clarifying the terms and explaining how they fit together. When referring to feature
extraction, we mean the most general class of methods that deal with any transformation from
input data to features for machine learning algorithms (Guyon et al., 2008). One particular feature
extraction approach is feature selection, also known as variable subset selection, which is concerned
with choosing the best subset from a larger input feature set (and does not synthesize new features)
(Blum and Langley, 1997; Kohavi and John, 1997). Common methods for feature selection include
variable ranking (Rakotomamonjy, 2003), feature subset selection (Narendra and Fukunaga, 1977)
and penalized least squares (Fan and Li, 2001). These methods derive from classic statistics and
heavily rely on hypothesis testing framework. A more general approach is feature (re)weighting,
which aims at finding best weight for each feature (Wettschereck et al., 1997). Variable selection can
be viewed as a special case of feature weighting (Wettschereck et al., 1997) when weights restricted
to {0, 1}. An applied study of feature weighting methods is presented in Bai et al. (2010); Hussein
et al. (2001).

Another approach that is closely related with feature weighting is feature normalization, which
may involve feature centring, rescaling them to a target range, scaling to a unit balls, etc. (Aksoy
and Haralick, 2001; Ekenel and Stiefelhagen, 2006; Barras and Gauvain, 2003). Furthermore, for
the purpose of scaling features to a unit ball, a custom metric can be defined that reflects desirable
data properties for a specific application (Stolcke et al., 2008).

The creation of new features from input data is usually referred to as feature construction (Liu
and Motoda, 1998; Guyon et al., 2008). A standard example of feature construction is feature
crossing of real-valued input data or constructing a bag-of-words or n-gram based vector from input
text data. A more complex example of feature construction is clustering (Duda et al., 2001), which
replaces a concentrated subsets of variables by their cluster center, in which case the constructed
features are cluster centers instead of original variables.

When the goal of feature construction is to map the input features onto a lower dimensional
space, it is referred to as dimensionality reduction (van der Maaten et al., 2009). Dimensionality
reduction techniques extract features by projecting the input data into a lower dimensional subspace
(van der Maaten et al., 2009; Cunningham and Ghahramani, 2014, 2015). Classic dimensionality
reduction methods assume that this lower dimensional subspace of features is restricted to the span
of input data points: Principal Component Analysis (Pearson, 1901), Random Projection (Hegde
et al., 2008) and Linear Discriminant Analysis (Fisher, 1938). Selecting a smaller subset of available
features can also be thought of as a very special case of dimensionality reduction.

Dimensionality reduction can be also treated from a probabilistic perspective, which is based on
the maximum-likelihood estimation of a latent variable model (see Probabilistic PCA in Tipping and
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Bishop (1999)). A classic non-linear extension of probabilistic methods, which allows to represent
mode complex high-dimensional data, is the Gaussian Process Latent Variable Model (GP-LVM),
developed in Lawrence (2004, 2007). A more general overview of probabilistic dimensionality
reduction methods is given in Lawrence (2012).

Over the last decade, nonlinear dimensionality reduction methods have been extensively stud-
ied, which aim at learning a map from input data onto some nonlinear low-dimensional geometric
structure (manifold) (Lee and Verleysen, 2007). This area is also referred to as manifold learning
(Law and Jain, 2006; Roweis and Saul, 2000). The main goal of mapping input features onto a
manifold is to capture non-linear relationships between the input features and reduce dimension by
embedding into a low dimensional surface. Thus, these methods are also referred to as feature em-
beddings (Roweis and Saul, 2000). Usually a map from the input data to a manifold must preserve
some statistical measure on the data (e.g. variance, reconstruction error). The preservation of dif-
ferent measures gives rise to different manifold learning algorithms. Classic examples are Isometric
Feature Mapping (Isomap) (Tenenbaum et al., 2000), locally linear embedding (Roweis and Saul,
2000), and Laplacian eigenmaps (Belkin and Niyogi, 2003). An overview of these and other related
methods is provided in (Saul et al., 2006; Venna et al., 2007). A remarkable result is that all of
the manifold learning techniques already mentioned and many others are specific instances of the
kernel PCA (KPCA) algorithm for different choices of the kernel function (Ham et al., 2004). Tech-
niques that allow to make kernel methods scalable are kernel approximations; they involve either
approximating the sample kernel matrix or the kernel function, for example with Nyström method
(Drineas and Mahoney, 2005), or random Fourier features (Rahimi and Recht, 2007).

A vast majority of feature extraction methods, including those described above, rely on the no-
tion of a distance metric defined on the space of input instances (Yang and Jin, 2006). Apart from
using standard distance metrics (Lp, kernel functions), an appropriate metric can be learned from a
parametrized class of metric functions (Weinberger et al., 2005; Xing et al., 2002). This brings us
to an important area of feature extraction - distance metric learning (Yang and Jin, 2006). Common
algorithms for metric learning include local LDA (Hastie and Tibshirani, 1996), relevance compo-
nent analysis (Bar-Hillel et al., 2003), large margin nearest neighbor (Weinberger et al., 2005), and
Bayesian active distance metric learning (Yang et al., 2012a). Since a distance metric can be derived
from a kernel function (Davis et al., 2007), the methods found in (multiple) kernel learning highly
overlap with the field of metric learning (Cortes et al., 2009, 2010a).

Finally, breakthroughs in deep networks (as well as growth in amounts of data and computa-
tional resources) have had a significant impact on feature extraction (Hinton and Salakhutdinov,
2006; Bengio et al., 2007; Poultney et al., 2006). Neural networks essentially learn a composition
of multiple non-linear transformations (Bengio et al., 2013) of the input features, thus creating a
new feature representation. Extracting features via layers of a neural network is commonly referred
to as representation learning.

The paper is structured as follows: in Section 2 we formulate a general scenario for feature
extraction and also outline common algorithms and explain how they fit into the general scenario
defined. In Section 3 we discuss open challenges and questions in feature extraction and compare
how the algorithms that we reference attempt solving those.

3



STORCHEUS, ROSTAMIZADEH, KUMAR

2. Overview and comparison of feature extraction methods

Here, we describe the learning scenario of feature extraction in a general framework and explain how
existing feature extraction techniques from different fields can be represented using this framework.
Let X denote the input feature space and Y the set of output labels (if we are dealing with a super-
vised task). We assume that the learner receives a sample of size m, S = ((x1, y1), . . . , (xm, ym)),
drawn i.i.d. according to some distribution D over X × (Y ∪ {∅}), where yi = ∅ indicates that ith
point is unlabelled.

Let H be another space, referred to as a feature space and let F be a set of functions that map
from X toH. Given f ∈ F and for any i ∈ [1,m] define the feature extraction of an input data point
xi ∈ X as f(xi) ∈ H. In this framework F describes a set of feature extraction functions (methods)
available to the learner. The learner picks some feature extraction method f? ∈ F (we will discuss
below how the choice of f? is performed) and applies it to every xi in the sample S, thus producing
a feature extracted sample f(S) = ((f(x1), y1), . . . , (f(xm), ym)).

The subsequent classification stage involves training a classifier on the extracted features f(S).
For that, given some hypothesis set H of mappings from H to Y , a classifier h? ∈ H is learned on
the training set f(S). In order to apply the classifier h? to a test point x ∈ X , we first apply the
feature extraction method f? chosen at extraction stage to x and then classify it with h?, thus the
application of classifier to a test point x is the composition h?(f?(x)).

One of the key discussions that we address is how to choose the “best” feature extraction func-
tion f? ∈ F. For example, if F is parametrized, how to choose the best values of the param-
eters. Traditionally, the selection of best feature extraction method has been done in an unsu-
pervised fashion, independently from the training of a classifier h? ∈ H, which will be further
referred to as unsupervised uncoupled feature extraction. For that, a loss function related to the
feature extraction problem is introduced L(f, x1, ..., xm) that depends only on f ∈ F and unla-
belled x ∈ X . Then, the best feature extraction method is selected as a loss minimization problem
f? = argminf∈F L(f, x1, ..., xm). A classic example for which f? can be derived analytically is
when X = Rn and F is the set of orthogonal projections onto some r−dimensional subspaces of
Rn. Then, if the loss function maximizes variance, f? is PCA (Pearson, 1901), if it preserves dis-
tances along a fixed manifold, then f? is Isomap (Tenenbaum et al., 2000) and when it preserves
angles, then f? is Maximum Variance Unfolding (Weinberger and Saul, 2006).

A feature extraction function can also be selected in a supervised uncoupled way, where the
labels of the input data are introduced into the loss function L(f, x1, ..., xm, y1, ..., ym). A simple
example would be feature selection based on correlation with the label, such as the MTFS algo-
rithm (Argyriou et al., 2008). Finally, the most holistic feature extraction is done in a supervised
coupled way. For that a loss function is formulated with both f ∈ F and h ∈ H as arguments
L(f, h, x1, ..., xm, y1, ..., ym), which is minimized simultaneously to obtain a coupled solution for
feature extraction and classification function (f?, h?) = argminf∈F,h∈H L(f, h, x1, ..., xm, y1, ..., ym).
One example of this is supervised training of deep neural networks, which jointly learns a feature
representation as well as a labeling function. It has been argued that optimizing a feature extraction
function jointly with a classifier can significantly improve classification accuracy (Gönen, 2014),
though it usually costs more in terms of algorithmic complexity.

In the following subsections, we give more concrete examples of feature extraction techniques
and how they fit into the framework described above.
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2.1 Feature selection

Traditionally, feature selection methods have been divided into three groups (Guyon and Elisseeff,
2003; Liu and Motoda, 2007): filter methods, wrapper methods, and embedded methods. Filter
methods select a subset of features based on the notion of an importance score that is computed
independent of the classifier (Gu et al., 2012; Boutsidis et al., 2009; He et al., 2005; Chen and Lin,
2006). Such methods may be supervised or unsupervised, depending on the choice of importance
score, but in any either case, they are certainly uncoupled feature extraction methods. The super-
vised coupled analogue are called wrapper methods (Kohavi and John, 1997), which select a subset
of features that provides the best classification accuracy according to some underlying black-box
model. A class of more specialized supervised coupled techniques are called embedded methods
(Breiman et al., 1984), which select features (possibly in an online manner) simultaneously with the
process of model training.

As discussed in (Wettschereck et al., 1997), feature selection is a special case of the more gen-
eral feature weighting approach. Referring back to the framework defined in Section 2, we define
the input feature space in this scenario as X d × T d, where the first component in the Cartesian
product defines a general set of d features and the second component T d ⊆ Rd corresponds to
the space of input weights for the d features. A general set of feature extraction functions here is
F = {(x, t) 7→ (x,w(t)) : x ∈ X d, t ∈ T d}, where w : T d → T d. Thus, feature weighting is con-
cerned with constructing or learning the weighting function w. Note, we are implicitly assuming
that out learning algorithm can consume weighted features, i.e. elements of X d × T d. This can,
for example, be accomplished by weighting an instance’s empirical loss proportional to its weight.
Clearly, in the special case of feature selection, where T = {0, 1}, this coincides with simply
removing the feature from the learning problem when it’s weight is zero.

An illustrative example of a loss function for feature selection is given in Geng et al. (2007),
where they filter features based on precomputed importance and similarity scores. Here, the input
feature space is simply Rd × {0, 1}d and w(t) = [w1t1, . . . , wdtd], where wi ∈ {0, 1}. Then, given
vi, the importance score of the i-th feature, and ei,j , the similarity score between features i and
j, the feature selection problem is defined as f? = argminwi∈{0,1},

∑
i wi<nC

∑
i

∑
i 6=j ei,jxixj −∑

i viwi ,where n is the threshold on the number of selected features andC > 0 is a tuned parameter
that trades off the diversity of selected features with the total importance of selected features.

2.2 Embeddings

Linear dimensionality reduction methods are based on projecting input data to a lower dimensional
subspace, usually using an objective that is uncoupled with the classifier. Many popular linear
dimensionality reduction problems can be formulated as a minimization problem with orthogonal
matrix constraints (Cunningham and Ghahramani, 2014, 2015). Assuming that the input space is
Rn and the output feature space has dimension d, where d < n, the set of linear dimensionality re-
duction functions is F = {x 7→ Πx : rank(Π) = d, x ∈ Rn}, where Π : Rn 7→ Rd is an orthogonal
projection. If the loss function for choosing a feature extraction method is the reconstruction error
L(f, x1, ..., xm) =

∑m
i=1 ‖xi − f(xi)‖2, then f? = argminf∈F L(f, x1, ..., xm) is rank-d PCA

projection, which is by far the most popular unsupervised linear dimensionality reduction technique
(van der Maaten et al., 2009).

If the objective is to preserve distances in the projected d-dimensional feature space, for example
L(f, x1, ..., xm) =

∑m
i,j=1

(
‖x̃i − x̃j‖ − ‖f(xi) − f(xj)‖

)2, then the solution f? is the multidi-
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mensional scaling algorithm (Torgerson, 1952). There are plenty of other dimensionality reduction
methods based on projections that derive from various loss functions; for a detailed overview refer
to (Cunningham and Ghahramani, 2015).

In the same way that popular linear dimensionality reduction methods can be generalized as
projections in Euclidean space, common nonlinear techniques can be generalized as projections in
the reproducing kernel Hilbert space (Ham et al., 2004). All these methods can be thought of as
first mapping input vectors into a reproducing kernel Hilbert space and then conducting a low-rank
projection within that space. Conceptually this can even be treated as a composition of feature
extraction functions, where an orthogonal projection is composed of a reproducing space map.

A well known theorem (Aronszajn, 1950) states that if K : X × X 7→ R is a PDS kernel, then
there exists a Hilbert space HK and a mapping ΦK : X 7→ HK such that (∀x, y ∈ X ) : K(x, y) =
〈ΦK(x),ΦK(y)〉HK

. The spaceHK is referred to as the associated reproducing kernel Hilbert space
(RKHS). Thus, the set of feature extractors for nonlinear dimensionality reduction can be defined
as F = {x 7→ ΠΦK(x) : x ∈ X}, where Π is a rank-d orthogonal projection in HK . Assuming the
kernel function K is fixed in advance, let us consider one of the feature extraction losses mentioned
previously, but in the feature space HK : L(f, x1, ..., xm) =

∑m
i=1 ‖ΦK(xi) − ΠΦK(xi)‖2HK

. In
this case argminf∈F L(f, x1, ..., xm) is the rank-dKernel PCA (KPCA) algorithm (Schölkopf et al.,
1997; Blanchard et al., 2007), which is the projection onto the top-d eigenspace of the empirical
covariance operator inHK .

When performing KPCA, the choice of the kernel function is crucial. As already mentioned, for
most known manifold learning algorithms, a kernel function can be constructed so that the solution
to KPCA is equivalent to that of the desired manifold learning algorithm. As shown by (Ham et al.,
2004), if the kernel function is K = −1

2(I − eeT )S(I − eeT ), where S is the squared distance
matrix and e = 1√

m
(1, ..., 1)T , then KPCA solution recovers Isomap. Similar arguments are shown

for LLE and Laplacian eigenmap (Ham et al., 2004).
Since the definition of the kernel map is a vital part of many embeddings, approximate kernel

methods have been developed to make these embeddings scalable. These methods include approx-
imating the kernel matrix, for example with Nyström method (Drineas and Mahoney, 2005; Cortes
et al., 2010c), or approximating the kernel function with random Fourier features (Rahimi and Recht,
2007; Pham and Pagh, 2013; Hamid et al., 2013). A comparison of these two fundamentally dif-
ferent approaches is attempted in (Yang et al., 2012b), who show that Nyström approximations
provide better generalization guarantees than random features when the eigen-gap of the sample
kernel matrix is significant.

Nonlinear dimensionality reduction is not restricted to KPCA, in fact it can involve the construc-
tion of a more general projection inHK or learn a spectral projection of a combination of operators
in reproducing space (Mohri et al., 2015). This ability of kernel function to generalize nonlinear
methods of dimensionality reduction provides great opportunities and at the same time a hard chal-
lenge - how to best choose a kernel function? That is a vital question in the area of feature extraction
and it has been heavily studied in machine learning literature where it is commonly referred to as
(multiple) kernel learning. We will expand more in the next section.

2.3 Metric learning

We have seen above that feature extraction techniques crucially rely on the definition of distance
metric between data points, especially in case of Mahalanobis distance. A different distance metric
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may result in a completely different extraction algorithm. As argued in Globerson and Roweis
(2005) “there is a close link between distance learning and feature extraction”, since extracting
features and then using a natural metric in the feature space can be thought of as metric learning.
The question of how to pick a distance function, or a feature space with natural metric, from a
discrete set of available options has been well studied before. Now research is focused on a more
general and challenging problem - how to learn a distance metric? For a detailed distance metric
learning review refer to Kulis (2012).

Following our general framework, distance metric learning as feature extraction can be repre-
sented as F = {x̃ 7→ (x, d) : x̃ ∈ X , x ∈ H}, where X is the input space andH is the feature space
with associated metric d. Oftentimes, the metric is implicitly defined by the space itself (i.e. via the
inner-product), but we make it explicit for this formulation.

Many nonlinear distance learning methods can be obtained by kernalization (Kulis, 2012), that
is, by mapping raw data to a RKHS HK . Since HK is a Hilbert space, it has the natural metric
‖ ·‖HK

induced by the inner product. Specifying different kernel functionsK equivalently specifies
different metrics onHK . Thus, learning a kernel function can be thought of as learning a particular
class of metrics, which may be non-linear with respect to raw input data. This reveals a close
connection between metric learning and multiple kernel learning. In the case of learning a kernel,
the feature extractors can be represented as F = {x̃ 7→ (x, ‖ · ‖HK

) : x̃ ∈ X , x ∈ HK}.
In multiple kernel learning, F is usually parametrized by a kernel function K that is restricted

to some pre-defined set of PSD kernel functions K defined with respect to fixed base kernels
(K1, . . . ,Kp), e.g. F = {x 7→ ΦK(x) : K ∈ K}. Various kernel families K have been stud-
ied (Bach et al., 2004; Weinberger et al., 2004; Cortes et al., 2010b, 2013; Lanckriet et al., 2004;
Cortes et al., 2010b; Bach et al., 2004), but the most widely used family is that of non-negative
linear combinations of base kernels K = {

∑p
i=1 µiKi : µ ∈ Rp, ‖µ‖q ≤ 1}, where the weight

vector µ is regularized within a unit ball with some Lq norm. Generalization bounds for learning
a linear combination of kernels have been rigorously analyzed. Particularly, for q = 1, it is shown
(Cortes et al., 2010b) that the generalization bound is logarithmic in the number of base kernels,
which suggests to use more variety in the choice of base kernels (hence base distance metrics).

With linear combinations of kernels, distance metric learning reduces to fitting a weight vector
µ. This can be done in an uncoupled manner, for instance tuning µ to maximize some statistical
measure on sample kernel matrix K =

∑p
i=1 µkKk, such as kernel alignment (Cortes et al., 2012).

Alternatively, a potentially more effective, albeit complex, approach is to use a supervised coupled
method where µ is learned jointly with a classifier or regression in HK . For example, in the case
of kernel ridge regression (Saunders et al., 1998), if a linear combination of kernels is learned
jointly, then the resulting supervised coupled problem requires solving following minimax problem
min‖µ‖q≤1 maxα L(µ,α) = −λαTα−

∑p
k=1 µkα

TKkα+ 2αT y (Cortes et al., 2009).

2.4 Representation learning

In the most general sense, representation learning could refer to the entire literature of extracting
features from input data, however, in practice it is usually associated with extracting features via
multi-layer neural networks and is studied within neural network research community. Here, we
will treat representation learning as the subset of feature extraction methods that leverage neural
networks and its specific realizations, such as autoencoders and Boltzmann machines. The holy
grail of representation learning is to completely automate the feature extraction step from raw input
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data (e.g. images) so that no human engineering is necessary for hand crafting features (Bengio and
Courville, 2013). Recently, a remarkable success on video, image and speech data has been demon-
strated by deep networks, which attempt to learn multiple levels of representations of increasing
complexity and abstraction (Bengio et al., 2013). The main aspect that distinguishes deep nets from
other techniques is that, unlike previously mentioned feature extraction methods (clustering, feature
selection, PCA, manifold learning) they learn multiple levels of representation. Usually the higher
level of representations are more abstract and nonlinear, capturing structures that are not obvious
from the input data.

To define the deep learning representation problem in the framework of this paper, we define the
family of feature extraction functions as composition of functions F = {x 7→ fn(...f1(f0(x))...)},
where fi : Hi 7→ Hi+1, andHi is the data representation at ith layer. As for the target loss function,
the idea was to learn fi sequentially from i = 0 to n + 1 in an unsupervised uncoupled manner
(for example, by reducing reconstruction error) that first revolutionized deep architectures (Hinton
and Salakhutdinov, 2006; Bengio et al., 2007; Poultney et al., 2006). The supervised analogue of
the loss function depends not only on input data representation at nth level, but also on prediction
made by the last layer fn+1 as well as the data labels for the supervised task (Lee et al., 2009a,b).
Examples of representation learning using deep architectures are autoencoders (Bengio et al., 2007;
Goodfellow et al., 2009), denoising autoencoders (Vincent et al., 2008)), contractive autoencoders
(Rifai et al., 2011), restricted Boltzmann machines (Hinton and Salakhutdinov, 2006).

It is important to stress that there is a connection between representation learning and manifold
learning, especially for shallow architectures. For instance, linear autoencoders with square loss
function are equivalent (up to rotation) to PCA (Bourlard and Kamp, 1988), as they essentially learn
to represent data in the subspace with smallest squared reconstruction error. Moreover, approximate
kernel feature maps (Rahimi and Recht, 2007; Pham and Pagh, 2013; Hamid et al., 2013) provide the
representation of data, the inner product of which approximates kernel function. Such approximate
feature maps can also be learned, in which case representation learning is shown (Yu et al., 2015) to
be equivalent to training a shallow neural network. It is a major open challenge to study connections
between representation learning and manifold learning, especially for deep architectures.

3. Questions and challenges in feature extraction

3.1 Supervised and unsupervised approaches

Classic manifold learning methods such as LLE, Isomap, Laplacian Eigenmap have proven to be
able to efficiently extract patterns in unlabeled data. Various supervised extensions of these methods
have emerged that make use of labels for adjusting the distance between distinct classes (de Ridder
et al., 2003; Zhao et al., 2005; Kouropteva et al., 2003; Geng et al., 2005; Yang et al., 2006; Li and
Guo, 2006). Distance metric learning also has efficient supervised extensions (Hoi et al., 2008).
Moreover, supervised learning of projections in a fixed RKHS have proven to be effective for non-
linear feature extraction (Blanchard and Zwald, 2008; Fukumizu et al., 2004) as well as for multiple
kernel learning (Gönen and Alpaydın, 2011; Gönen, 2014). This progress in supervised methods
and compelling empirical evidence raises an important debate: should supervised and coupled fea-
ture extraction always be preferred to uncoupled and/or unsupervised methods? It is an open debate,
since even though supervised methods often improve classification accuracy, this comes at a cost
flexibility and scalability. It is often the case that unlabeled examples can be gathered much more
easily than their labeled counterparts. Additionally, supervised coupled methods generally require

8



QUESTIONS AND CHALLENGES IN FEATURE EXTRACTION

much more computationally intensive algorithms. Can we shed more light on the trade-off between
supervised and unsupervised methods? Can we understand, which methods are most useful for
particular settings and why?

There are multiple interesting attempts to address the open question described above. In Mohri
et al. (2015) the authors show examples where conducting dimensionality reduction blindly (i.e.
in an unsupervised manner) adversely affects subsequent classification stage. Thus, they argue for
supervised coupled dimensionality reduction by providing a general framework of learning a com-
bination of multiple kernels jointly with projection in the reproducing space for classification. The
argument is supported by a favorable generalization bound for such a hypothesis set that depends on
the number of base kernels logarithmically. On the other hand, it is shown that for some data types
and settings, unsupervised methods work better. An interesting example is the work of (Guerra
et al., 2011), where they show on clinical test data that unsupervised techniques work better than
supervised for very high dimensional representations. Also, (Wang et al., 2010) claims that kernel
based unsupervised dimensionality reduction by maximizing information in covariates is preferable
to supervised approach for the purpose of clustering and visualization as well as embedding data
into very few dimensions.

3.2 Scalability

Tremendous growth in the size of datasets for machine learning makes many feature extraction
methods infeasible, especially the more complex nonlinear methods. Almost ten years ago (Guyon
and Elisseeff, 2003) it was a challenge to run a feature selection algorithm on thousands of features,
now the challenge is to do so for millions of input dimensions. This raises a significant challenge:
how can we scale up feature extraction? Which methods can be parallelized? How can we balance
bottlenecks between the number of features and the number of instances?

The scaling of linear feature extraction methods mostly relies on matrix approximations and
parallel linear algebra algorithms. Significant progress has been made in column subset selection
(Tropp, 2009), where scalability is achieved by randomly sampling columns with an appropriate
distribution. For instance (Boutsidis et al., 2009) develop a column sampling algorithm, where the
distribution depends on the singular subspace of input matrix. Large scale non-linear methods such
as deep neural networks also benefit heavily from distributed training algorithms, such as distributed
stochastic gradient descent (SGD) (Zinkevich et al., 2010; Dean et al., 2012).

While the computational bottleneck for linear feature extraction is often the number of features,
the bottleneck for kernelized non-linear methods is the number of instances. Since most nonlinear
projections involve decomposition of anm-by-m kernel matrix, wherem is the number of instances,
and implies that only datasets of up to tens of thousand of points are feasible for manifold learning on
a single machine. A breakthrough that has allowed kernel methods to scale are approximate kernel
feature maps (Rahimi and Recht, 2007), which map the input data to a randomized feature space,
where the inner product approximates the kernel function. This allows one to switch from solving
the dual problem to solving the primal problem and overcome the number of instances bottleneck
as well as use more easily distributed algorithms such as SGD. A number of efficient approximate
maps have been proposed for different types of kernels, with particular attention to polynomial
kernels (Pham and Pagh, 2013; Hamid et al., 2013). However a useful approximation generally
requires generating a large number of random features (a factor larger than the input dimension),
which creates another bottleneck. One novel work that attacks this problem is Pennington et al.
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(2015), where they show that a simple normalization of input data to a unit l2 sphere and the use
of spherical random Fourier features achieves an accurate kernel approximation with many fewer
random features. Moreover, the use of Monte Carlo methods for shift invariant kernels has shown
strong results (Avron et al., 2014).

The latest research in approximate kernel methods is asking an even deeper question than how
to make kernel methods scalable. The question is: how can we learn approximate nonlinear maps
in a supervised manner jointly with a classifier? A recent work (Yu et al., 2015) attempts to answer
that question by supervised learning of nonlinear approximate map parameters instead of random
generation, which results in a more compact model and competitive performance. Additionally,
joint learning of approximate feature maps can be represented as a shallow neural network, which
brings us to the open problem described in the next section: connection between convex and non-
convex feature extraction.

3.3 Global and local minima in feature extraction

As discussed in previous paragraphs, representation learning is a novel and promising feature extrac-
tion technique that relies on neural networks. However, despite compelling empirical performance,
neural networks lack well grounded theoretical guarantees in part due to their non-convexity (al-
though there has been some recent progress (Arora et al., 2014; Livni et al., 2014; Sedghi and
Anandkumar, 2014)) and multiple local minima. On the other hand, we have well studied dimen-
sionality reduction methods with global minima and as showed in previous paragraphs, most of
them can be described with kernels. This raises a significant open question that links distinct parts
of feature extraction, inspired by the developments in both kernel methods and deep learning: what
is the connection between kernels and deep neural networks as means of feature extraction? While
deep nets suffer from non-convexity and the lack of theoretical guarantees, kernel machines are
convex and well studied mathematically. Thus, it is extremely tempting for us to resort to kernels
(in addition to any other available tools) to help better understanding neural nets. Answering these
question could help bridge the gap between convex and non-convex feature extraction techniques.

There has been some progress to that end. Particularly, sequences of deep kernels have been
used to study the layer-wise transformation of neural nets input. The works of (Montavon et al.,
2011; Bach et al., 2015) analyzed deep network with the idea of relevance decomposition - that is,
determining which inputs/pixels are important for an image to be classified as what type of objects.
The importance of pixels is explained by a heatmap that highlights pixels that are responsible for
the predicted class membership. This sheds light on the internal decision logic of a deep network.

A major impulse towards understanding the connection between kernels and deep networks
comes from the development of scalable approximate kernel maps. Achieving scalability is a nec-
essary first step in comparison of kernel methods versus deep nets, because until recently the data
sets for which deep nets perform best are not even computationally feasible for kernels. A success-
ful attempt to solve that issue comes from the works that use distributed approximate feature maps
(Lu et al., 2014; Huang et al., 2014), which allows them to build large scale kernel architectures that
match deep networks in accuracy. As discussed in Yu et al. (2015), the problem of joint learning of
approximate map and a classifier can be described as training a shallow neural network, which is a
great start for understanding the connection. If the gap can be bridged for shallow nets, can this be
done for deep ones?

10
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Given that for some applications shallow networks can achieve the performance of deep ones,
there is a natural question: “Do deep nets really need to be deep?” (Ba and Caruana, 2014). More
specifically, the question addressed by Ba and Caruana (2014) as well as by Vincent et al. (2010);
Dauphin and Bengio (2013); Seide et al. (2011) is whether the increase in accuracy of deep nets
over the shallow nets is explained by the inherent ability of deep nets to learn more complex repre-
sentations or merely by better training. It has been shown in Ba and Caruana (2014) that if a shallow
network is trained on the output of a more complex deep network to mimic it, then the former can
be as accurate as the latter, in some cases with the same number of parameters. Such empirical
evidence suggests that, possibly, the outstanding performance of deep networks arises from “a good
match between deep architectures and the current training procedures”.

4. Conclusion

In this paper we have surveyed, compared and contrasted several different methods for feature ex-
traction. We have also described some high level research directions and challenges in this field,
including supervised versus unsupervised methods, scalability and convex versus non-convex mod-
els. We hope this serves as a useful resource across the related fields.
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