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Abstract

Machine learning algorithms have been traditionally used to understand user behavior
or system performance. In computer networks, with a subset of input features as control-
lable network parameters, we envision developing a data-driven network resource allocation
framework that can optimize user experience. In particular, we explore how to leverage a
classifier learned from training instances to optimally guide network resource allocation to
improve the overall performance on test instances. Based on logistic regression, we propose
an optimal resource allocation algorithm, as well as heuristics with low-complexity. We
evaluate the performance of the proposed algorithms using a synthetic Gaussian dataset,
a real world dataset on video streaming over throttled networks, and a tier-one cellular
operator’s customer complaint traces. The evaluation demonstrates the effectiveness of the
proposed algorithms; e.g., the optimal algorithm can have a 400% improvement compared
with the baseline.

Keywords: Classification, Resource Allocation, User Experience

1. Introduction

The growth of storage and processing capability allows the collection and processing of
massive and continuous data streams that are generated by modern computer systems
such as data centers and mobile carriers. Large scale data collection and analysis enables
the extraction of useful information and knowledge about end-user experience that was
previously unavailable. Data-driven models have been used in computer networks to char-
acterize or understand the network performance, application performance or user behavior
at large. Balachandran et al. (2013) uses machine learning to model user-engagement in
watching videos over internet and to understand the impact of network parameters on such
user engagement. Baik et al. (2015) models the end-user video watching experience based
on the buffering or bitrate variations in the “distorted” video, which can be tracked back
to the network using results in Chan et al. (2012). Similarly, Huang et al. (2010) perform a
reliability analysis of nodes in a wireless sensor network using logistic regression, a widely
used machine learning approach. The wide-spread availability of such logged/stored data
has extended to other application domain such as smart homes and smart cities. However,
most research only focused on passive measurements and analysis of such datasets using
machine-learning techniques.

The generated prediction models can estimate the end-user’s Quality of Experience
(QoE), hence allowing network operators to observe the network status and to take suitable
“action” to improve its performance. Ideally, it would be desirable that the model can guide

© 2015 Y. Bao, X. Liu & A. Pande.



BaAo Liu PANDE

the appropriate allocation of network resources. For example, in a typical example of video
being streamed by a cellular service provider to dozens of users in a cell, the operator can
take the real-time feedback of received video quality to allocate bandwidth or any other
resource at disposal to improve user experience.

In this work, we articulate a framework to enable such applications. Generally speaking,
machine learning returns a classifier based on training data, and it is used to predict the
labels of test data: positive and negative (users). With some network resources at our
disposal, we could increase the overall user satisfaction by transforming likely positives
into likely negatives — one intuitive strategy is to evenly distribute the available additional
resources to all predicted unsatisfied users (positives). However, we argue that the learned
classifier (both the model and its parameters) provides more information than just the
predicted labels, and thus we should use it as the objective function in modeling the resource
optimization problem. Such integration allows us to better guide the allocation of network
resources for optimal performance improvement. This paper makes the following main
contributions:

1. This paper investigates the use of machine learning techniques (particularly logistic regression)
to improve network resource allocation with the goal of maximizing the total number of
satisfied users.

2. Given the logistic regression-based resource allocation problem, we propose a Sweep algorithm
that can find the optimal solution, as well as a heuristic algorithm with low complexity.

3. The algorithms are evaluated on both synthetic and real world datasets from computer net-
works. Results indicate the Sweep algorithm can outperform the baseline up to 400%.

The remainder of this paper is organized as follows. Sec. 2 discusses the related work.
In Sec. 3, the framework of data-driven resource allocation is introduced. Sec. 4 presents
an algorithm to find the optimal solution for logistic regression-based resource allocation,
as well as a heuristic algorithm with low complexity. Three experiments are reported in
Sec. 5, the first is designed to have ground truth and the others come from the real world.
Finally, Sec. 6 discusses the limitations and future work and Sec. 7 concludes the paper.

2. Related Work

The classification model considered in the paper is logistic regression (Hosmer Jr and
Lemeshow, 2004; Harrell, 2001). We choose it because it is one of the most widely used
classification models with good intuitions and explainable results.

A large literature considers the learning-based cost-efficient decision making. Horvitz
and Mitchell (2010) discuss the pipeline of data collection, predictive model, and decision
analysis. The problem of patient readmission in hospitals with congestive heart failure is
considered by Bayati et al. (2014). The authors construct a classifier to predict readmissions
and propose to use patient-specific interventions to reduce the cost. The combination of
prediction and allocating interventions shows a reduction of both rehospitalization rate and
cost. In the problem of machine learning and traveling repairman, the combination of learn-
ing and decision making is studied by Tulabandhula and Rudin (2013) and Tulabandhula
and Rudin (2014). A recommendation system is designed by Qu et al. (2014) to maximize
taxi drivers’ profits in a cost-efficient way. However, none of the existing work, to the best
of our knowledge, have considered data-driven network resource allocation problem.

Resource allocation has been widely studied in different areas. Extensive research can
be found on the power, rate and bandwidth allocations in wireless networks, with the water-
filling algorithm to be the most well known (Song and Li, 2005; Shen et al., 2005). Similarly,

128



DATA-DRIVEN RESOURCE ALLOCATION

c
S
5 Training Data Test Data 2
S
g k- —
S | Machine Learning QoE < Optimized
o Optimization g Outcomes
= -
a 5
& 2
o U

Trained Classifier

Additional Resources

Nl

Figure 1: The framework of data-driven resource allocation.

the power management, speed-scaling and capacity provisioning have been considered in
the design of server farms (Gandhi et al., 2010; Buyya et al., 2010).

The combination of learning and resource allocation is discussed by Lee et al. (2010) and
Berral et al. (2010) in their specific situations. However, to the best of our knowledge, none
of these papers applied the classifier learned on training data to guide resource allocation
on test data.

3. Problem Formulation

Fig. 1 illustrates the overall framework for the data-driven network resource allocation.
First of all, we choose an appropriate classifier based on the types of resources available
and the nature of the problem. Then, we train the parameters of the classifier based on
the training data. Last, the trained classifier is fed into the resource allocation module as
the objective function of allocating resource to test data.

3.1. Classifier Creation

Consider instances in a D-dimensional space. Given a training set including N instances,
the features of instance i are denoted by a vector @; = [x;1,%; 2, ..., a:LD]T, and the corre-
sponding label is y;, for i = 1,2, ..., N. In this work, we consider two labels: positive (label
1) and negative (label 0).

A classifier §; = f(x;,w) maps the instance x; to the estimated label g;, and the
parameter w can be learned from the training data. The difference between y; and g; is
depicted by a function named Loss(y;, §;). Based on the training data, the optimal w* is
found by solving the following problem

N
arg min Z Loss(yi, f(xi, w)).

i=1

For example, linear regression, logistic regression, and Support Vector Machine (SVM)
apply L2-norm distance, sigmoid function, and hinge function as their loss functions, re-
spectively.

3.2. Resource Allocation

The goal of the resource allocation is to improve user experience on test data by allocating
resource to maximize the expected number of satisfied users. We consider maximize the
total number of satisfied users because it is directly related to the revenue of the service
providers. For example, the unsatisfied complaints received by cellular operators is the
key performance indicator of their services. With this goal, the fairness among users is
not guaranteed, and we will consider the fairness in our future work. Specifically, based
on the classifier and its trained parameters, one can predict the labels of the test data.
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(Following the tradition, we assume that negatives represent users in normal states and
positives represents troubled users.) Based on the prediction, one can take actions to
ameliorate the likely positives. While such actions may depend on domain knowledge,
allocating additional resource to them can be a general solution.

We focus on the application scenarios, specifically computer networks, where one can
allocate (additional) resources to improve the experience of users. Such resources may
include network bandwidth, time, transmission power, monetary compensation, etc.. In
such scenarios, we assume that the values of a subset of features can be affected when
allocated additional resource and thus user status can be improved. We note that our
model does not apply to the following cases: 1) the values of features cannot be modified;
e.g., the age of a person, the maker of a vehicle, the weather of a day; 2) labels are the
causes and features are the effects. For example, a cold usually leads to an increase of
white blood cells, but it may not help the patient recover by simply trying to decrease the
number of white blood cells.

The objective is to minimize the number of positives on the test data by allocat-
ing K types of resource denoted by R = [Ry, R, ..., Rx]T. We assume that when r; =
[Pi1, 70,2, e ri7K]T amount of resource is given to x;, the values of its features will change
to g(x;, i), for i = 1,2,..., M, and the classier gives the its estimated probability to be
positive as f (g(x;,r;),w*). Therefore we have the following optimization problem.

min Zf\il f(g(xi,rs), w") (2)
T1,72,..., "M

st. M r <R; (3)

r; >0, i=1,2,... M. (4)

Here the inequality symbol represents component-wise inequality.

3.3. Logistic Regression-Based Resource Allocation

In this paper, we use logistic regression as the classifier to study the framework in details.
With logistic regression, the training process can be modeled as

N
arg max > i—1 Yilog (71%,@(1,“,%1,)) + (1 —y;)log <71+exp(1w%i)) + |w), (5)

where y; = 0or 1, fori = 1,2,..., N, w = [wy,ws, ..., wp|T, and L; regularization is applied.
Assume the changes of features have linear relation with the resources allocated, i.e.,
g(xi,r;) = x; + Qry, where Q is a D x K matrix, and Qg is the effect of resource k on
feature d. Based on the trained logistic regression classifier, when instance i is allocate with
r; amount of resources, its probability to be positive is p; = 7 +exp(7'wT1mi7'wTQ'r'i)' Denote
—wTx; by C;, and Q7w by a = [ay,as,...,ax]T. Here ai, (k = 1,2, ..., K) represents the
aggregated effects of resource k on the linear combination. For the ease of explanation, we
assume ar > 0 (k = 1,2,..., K), ie., allocating any of the K types of resources decreases
instance i’s probability to be positive. Therefore, the expected total number of positives is
Zi]\il Di= i m The optimization problem minimizing the expected total
number of positives is
; M 1 .
(P-1) min = Xisi Hepore! (6)
M
s.t. Y1 Ti < R; (7)
r; >0, i=1,2,..., M. (8)

This is a non-convex optimization, which means it cannot be solved efficiently by gradient-
based numerical methods. Next, we propose an algorithm to obtain an optimal solution.
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4. Resource Allocation Algorithms
In the section, we first propose an optimal algorithm to (P-1). We then propose a heuristic

meta algorithm with low complexity based on the insights of the optimal algorithm.

4.1. The Optimal Resource Allocation Algorithm

First, we derive an equivalent optimization problem that simplifies the formulation in (P-1)

as follows
. M
(P-2) min 1,52, sm]) = Eili trempiorrsy ()
s.t. SMsi <8 (10)
s; >0, 1=1,2,...,M; (11)

where S = a” R. Here s; stands for equivalent resource, which is a weighted summation
of multiple types of resources, and the effectiveness of different resource is reflected by
the weights. In this problem, the number of variables is reduced from MD to M, and
the number of constraints is reduced from D(M + 1) to M + 1. We have the following
proposition.

Proposition 1 (P-1) and (P-2) are equivalent problems.

Proof Assume the optimal solution and minimum for (P-1) and (P-2) are ([r1*, r2*, ..., 7ar*], v})

and ([s1*, s2%, ..., sar*], v3), respectively. Define
si=a’ry*, i=1,2,.., M. (12)

Since @ > 0, [s1, S2, ..., Spr] meet constraints (10) and (11). Therefore [s1, s2, ..., Spr] is in
the feasible set of (P-2) and we have vy* < vy*.
Define

ik = S for i=1,2,..,M and k=1,2,..,D, (13)
which meets constraint (8). Moreover, since
M ®

M or = B < Ry for k=1,2,...D, (14)

we have constraint (7) satisfied. Therefore [r1,7a,...,7ar] is in the feasible set of (P-1)
and we have v1* < wo™*.
Therefore, v1* = vy*. [ |

Even though the equivalent problem is still a non-convex optimization, we find special
properties that one of the optimal solutions has to satisfy, given in Lemma 3 and 4 in
Appendix A. These properties reduce the searching space of the optimal solutions. Lemma 4
shows one optimal solution allocates the equivalent resource to a contiguous set of instances
sorted based on C; for i = 1,2, ..., M. Therefore we can test all contiguous sets to find the
right set of candidates. After deciding a set of candidates to receive resources, the equivalent
resource has to be allocated to the candidates in a water filling way (Lemma 3). Based on
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these properties, Algorithm 1 is designed to find an optimal solution [s}, s3, ..., s%,]. Then
Eq. (13) is used to calculate resource [r1*,72*,...,7ps*] in the original dimensions.

Algorithm 1: Sweep Algorithm

Data: C; for i =1,..., M, equivalent resource: S
Result: optimal resource allocation solution: [s},s3,...,53,]
Sort C; in ascending order and denote the sorted list by [C5,C3, ..., C%,];
Initialize s} = %7 for i = 1,2, ..., M, which stands for the best solution to date;
for each contiguous subset of [C,C35,...,C5/], denoted by [C},...,C];
%% | and v are the most left index and the most right index, respectively% % do
if 377 (C3 —C5) < S then
s—xr=l(cs—-cs
Cr=Cs+ —’;il(ﬂ i) ;

s; =C* — C; for j=1,...,r;

sj=0forj=1,..,l—1land j=r+1,...,N;

if F([s1,52,...,s0]) < F([s],55,...,5},]) then

‘ [s1,85, ..., = [s1,82, ..., s0m];

end

end

end

This Sweep algorithm first sorts C; in ascending order, and the sorted list is denoted
by [C3,CS, ...,C3,;] (line 1). Then it initializes a naive solution that allocates the equivalent
resource S evenly to M instances as the best solution to date (line 2). Note that the initial
solution can be any solution that is feasible. After these two steps, the algorithm starts
to update the best solution by trying different ways to allocate resource (the for loop). In
each trial, a contiguous subset of [C,C5,...,C4,] denoted by [C}, ..., C?] is selected, and
S is allocated to the instances in the subset in a water filling way. In particular, first the
algorithm assesses if the resource is enough to achieve the minimal water level for all the
instances in the subset: If the existing resource is insufficient, this trial is skipped (line 5);
Otherwise, the achieved water level is denoted by C* (line 6). The instances in the subset
are allocated with resource according to this water level (line 7); And the instances out
of the subset are not allocated with any resource (line 8). Then, this trial is compared
with the best solution to date, and the best solution is updated if the trial achieves a lower
objective function (line 9 to line 11). After all the contiguous subsets are tested, the best
solution is returned.

Proposition 2 The Sweep algorithm obtains an optimal solution.

4.2

Proof is given in Appendix A.

The complexity of this algorithm is O(M?3). Specifically, sorting has a complexity of
O(M log(M)). There are O(M?) combinations of the left boundaries and right boundaries,
and in each combination, water filling from the left boundary to the right boundary on
average has a complexity of O(M).

. Algorithms with Low Complexity

Due to its O(M?3) complexity, the Sweep algorithm does not scale to a large test data.
For example, consider 10,000 instances in the test data. It takes a PC with a 3.20GHz
CPU and 8 GB memory several hours to find the optimal solution. However there are
scenarios that have a large test data and sensitive delay, e.g., a global data center with
hundreds of thousands of concurrent users. Therefore, we consider a meta algorithm that
joins three heuristic algorithms with low complexity: Average, Water Filling and Binary
Search. The Average algorithm allocates resource uniformly to the instances predicted as
positives. This is also the baseline we can use to evaluate the performance of our optimal
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algorithm. The Water Filling algorithm and the Binary Search algorithm are illustrated
as Algorithm 2 and Algorithm 3, respectively. Both algorithms allocate resource to the
instances with small 7/(C;)-s first and they both will achieve a water level for the instances

with resource allocation'. As defined by Eq. (21) in Appendix A, n/(z) = %
Algorithm 2: Water Filling Algorithm 3: Binary Search
Data: C; for i =1, ..., M, equivalent resource: S Data: C; for i =1, ..., M, equivalent resource: S
Result: resource allocation results: [s1,s2,...,sp] Result: resource allocation results: [s1, s2, ..., Sas]
Sort n’(C;)-s in ascending order and denote the Sort 7' (C;)-s in ascending order and denote the
indices by I; Rank C; according to I and denote the indices by I; Rank C; according to I and denote the
new list by [C},C3, ..., C3,]; new list by [C3,C3,...,C3];
C;" = €3 if € > 0; otherwise C; = —C, for imin = 1; fmax = M;
i=1,2,..,M; Initialize s; =0, for i = 1,2, ..., M;
C* = 0; Sremain = S; Nbelow = 0; Slast = 0; while imin g imaz_ do
Initialize s; = 0, for i = 1,2, ..., M; Tmid = W%,
for Z;‘*SI to M dOO N Cmax = maX([Cf» Cf’ (XXX} Cfmid]);
i remain < 0 then i
: Sneed = 42 (Comax = €3, )5
c* = %Eniam + C*; Sremain = 0; : need 21,1 max imid
break: " if Speeq > S then
end Tmax = Z'mid - 1;
continue;
Sremain = Premain — (C:» - C*)Nbelow§ end
if C¢ < 0 then
‘ + C* = C, + S—Sneed .
if Sremain < C* + Ci then T max tmid ’
Slast = Sremain; Sremain = 0; if ;0 < M — 1 then
break; if '(C*) >n'(CF, 1)) then
end n imin = tmid + 13
Sremain — Oremain — (C* + Cl ) continue;
end end
Npelow = Npelow + 1; C* = C,L+a end
end break;
if Sremain > 0 then end
‘ s; =C% — C; + Sre}&‘““, for j =1,2,..., M; 5i =C* = C7, for i =1,2,...,imiqg;

else
s; =0~ —C’;, forj=1,2,...,i—1;

8; = Slast;

end

Specifically, the Water Filling algorithm increases the water level step by step until all
the resource is used up. It maintains a variable S;emain Which denotes the remaining resource
after each step. In each step, a new instance is included in the set with resource allocation
and the water level 7/(C*) is updated. Note that different from the Sweep algorithm, the
target of water filling in this algorithm is to achieve the same 7(C;), rather than the same
C;. When S;emain is used up, the algorithm returns the last resource allocation result.

The Binary Search algorithm searches for the right size of a subset of instances, such
that allocating resource to them can meet the Karush-Kuhn-Tucker (KKT) conditions.
This subset includes the instances from index 1 to iy;q, Where the indices are based on
sorting 7'(C;)-s in ascending order. During resource allocation, water filling is also used
but the target is to achieve the same Cj. iy;q is updated by binary searching and it stops
when KKT conditions (shown by Eq.(16-20) in Appendix A) are satisfied.

Both the Average algorithm and the Water Filling algorithm have complexity of O(M).
The Binary Search algorithm has complexity of O(M log(M)) at the worst case.

Given different amount of resource, none of the three algorithms can always be the
winner to minimize the number of positives. Since they all have low complexity, it is

1. The last instance that is allocated resource by the Water Filling algorithm may not be able to achieve
the water level.
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necessary to have a heuristic meta algorithm that compares them and selects the best
under different available resource.

5. Experiments

In this section, we conduct three experiments to evaluate the performance of the proposed
algorithms. The first experiment is based on synthetic data generated following a 2-D
Gaussian distribution. The other two experiments use real-world network user experience
data: One is to minimize the subjectively unsatisfied viewers in a video transmission system;
And the other is to reduce the expected number of user complaints in a cellular network.
We illustrate the performance of the Sweep algorithm, and the individual performance
of the three modules of the heuristic meta algorithm. To avoid crowding the figures, we
do not explicitly plot the performance of the meta algorithm, which is the best of the
three heuristic modules. The performance metric is the expected number of positives post
resource allocation.

5.1. Gaussian Distributed Data in 2D space

The most accurate way to evaluate the performance of resource allocation is based on the
ground truth, which is typically unknown in real dataset. Therefore this experiment applies
a synthetic data in low dimensional space with ground truth. The synthetic data can also
illustrate the intuition of the optimal algorithm clearly.
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Figure 2: The positives and negatives in Experiment 1.

Positives/negatives are assumed to have a 2D Gaussian distribution where the mean is
(-10,-10)/(10,10) and the covariance matrix is [8, 0; 0, 8]. We consider a balanced dataset
which includes an equal number of positives and negatives. Therefore, for a instance at
location (z1,x2), its probability to be positive is p(z1,x2) = dp(wlfizfz()ﬁ;i?():zhzz)' This is the
ground truth we assume. The training set contains 1,000 positives and 1,000 negatives.
The test set contains 100 positives and 100 negatives, as shown in Fig. 2(a).

In this experiment, we assume only one resource exists, and it can improve feature 2
which corresponds to the y-axis. The result of the Sweep algorithm is shown in Fig. 2(b).
In the figure, the solid diagonal line is the decision boundary corresponding to w”z = 0
in Eq. (5). It is interesting to see that the Sweep algorithm pushes all instances (positives
and negatives) in an asymmetric region near the decision boundary to a “virtual” diagonal
line in parallel with the decision boundary. The Cj-s of these instances are contiguous
when ranked, as illustrated by line 1 of the Sweep algorithm. In addition, they are on
the steep slope range of the s-shaped sigmoid function (of logistic regression). Therefore,
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when allocated resource, their likelihood to be positive change dramatically than instances
in other areas of the sigmoid function (e.g., the positives far from the decision boundary).
On the other hand, not illustrated in this figure, when the amount of available resource
increases, it might be optimal to allocate enough resource to positives that are far from the
decision boundary because of the non-convexity of the sigmoid function. While the Sweep
algorithm explicitly considers such situations, the heuristics does not, and thus explains the
poor performance of the Water Filling algorithm when the available resource is abundant,
as shown next.
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Figure 3: The impact of available resource on the expected number of positives in Experiment 1.

Fig. 3 shows the performance of different algorithms as a function of the total available
resource. The Sweep algorithm always minimizes the total number of expected positives.
The three modules of the meta algorithm achieve good performance under different ranges
of available resources. In particular, the Binary Search algorithm achieves good perfor-
mance when the total amount of resource is very small. The Average algorithm performs
well when the resource is moderate to large. With the increase of available resource, the
decreasing speeds of the curves slow down due to the fact that the remaining unsolved
positives are usually further away from the decision boundary.

5.2. Video MOS Data

The Mean Opinion Score (MOS, an integer between 1 and 5) is commonly used as the sub-
jective measurement of user experience in video transmission systems. Intuitively, network
bandwidth allocated to a user is a crucial factor in determining the user’s experience on
videos streamed over the network, as also indicated by related research work (Mok et al.,
2011; Balachandran et al., 2013; Krishnan and Sitaraman, 2013; Chan et al., 2012).

In this experiment, we use a dataset from Paudyal et al. (2014), where network band-
width is one of the input features to model user QoE. The dataset contains 8 original
videos and 8*5 streamed videos. The streamed videos are the original videos transmit-
ted over a given network bandwidth. Each video is viewed and subjectively scored by 30
viewers. Therefore the dataset includes 240 views of the original videos and 1200 views of
the streamed videos. For each view, it has two features: the bandwidth used to transmit
the video and the viewer’s strictness. The bandwidth has 5 discrete values: 0.5, 1, 2, 3
and 5Mb/s. The viewer’s strictness is denoted by the average score the viewer gives to the
original videos. Most of viewers have the average score between 3.5 and 5.

In the training data, as the common practice in video quality assessment, we assume
that when MOS < 3, the viewer is unsatisfied with the viewed video and it is a positive
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instance. Otherwise, the viewer is satisfied and it is a negative instance. 50% of the data is
used for training the classifier while the other 50% is used for testing the proposed resource
allocation algorithms.
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Figure 4: The positives and negatives in Experiment 2.

Fig. 4(a) illustrates the locations of positives and negatives of the test data in a 2D
space. Since both features can only take several discrete values, the points are highly
clustered. Therefore, we use the area of a circle/square to indicate the number of posi-
tives/negatives at the corresponding location. Note that the positives and negatives cannot
be separated perfectly: The videos with the same bandwidth can be labeled diversely by
the viewers with the same strictness; Even the same streamed video can get opposite labels
by the viewers with the same strictness. The solid blue line corresponds to the decision
boundary learned on the training data by a logistic regression model. The slope of the line
shows the bandwidth plays an important role in determining viewers’ experience. 10-cross
validation shows the logistic regression has an accuracy of 92%.

The total bandwidth consumed by the original testing videos is 1360Mb/s. Fig. 4(b)
shows the result on test data after allocating an additional bandwidth of 200Mb/s. The
original labels of positives and negatives are still used in this figure, even though the
positives may have changed to negatives after additional bandwidth allocation. Similar
to Experiment 1, only the users near the decision boundary are allocated with additional
bandwidth and thus are pushed upward. The instances that have either very low or very
high probability to be positive are not allocated with any resource.

N
@
S

— Original No. of Complaints
—6— Sweep Algorithm Optimal)
—£— Water Filling Algorithm
—57— Binary Search Algoirthm
—&— Average Algorithm (Baseline)

N}
N
=)

N
-3
=)

Expected Number of Complaints
N
o

Expected Number of Complaints

——— Original No. of Complaints
—O— Sweep Algorithm Optimal)
220 | —A—water Filling Algorithm
—7— Binary Search Algoirthm

210 | —B—Average Algorithm (Baseline)

10° 10° 10" 10" 10°
Normalized Resource Amount Normalized Resource Amount

(a) Normalized R <= 0.1. (b) Normalized R >= 0.1.

Figure 5: The impact of available resource on the expected number of positives in Experiment 2.
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Fig. 5 illustrates the impact of available resource on the expected number of positives
using different algorithms. The amount of available resource is normalized by 1360Mb/s,
the total bandwidth consumed by the original testing videos. When 5% additional resource
is available, the optimal algorithm outperforms the baseline by 60%. Furthermore, using
the optimal algorithm, increasing the existing bandwidth by 1/3 reduces 2/3 unsatisfied
users. Last, the meta algorithm is a combination of the Average algorithm and the Binary
Search algorithm, since the Water Filling algorithm is always dominated by one of them.

5.3. Cellular Customer Complaint Data

Cellular operators may receive complaints from customers stating that the data service
cannot meet their expectation. A tier 1 operator in China records such customer complaints
with time stamp and customer ID. At the same time, its network monitoring system records
13 network features for each customer on an hourly basis. Table 1 gives the features
and their sample values. The operator would like to predict the likelihood of customer
complaints, and then proactively allocate available resource to the potentially complaining
customers to improve their performance so that the provider will receive less complaints.

Table 1: Features of the data in Experiment 3.

No. | Feature Name | Meaning Sample Value | Weight of LR
0 Intercept wy in logistic regression 1 -1.88

1 PDPSuce(%) PDP success ratio 0~100 -2.02

2 Attsuce(%) Attachment success ratio 0~100 -2.24

3 RAUSucc(%) RAU success ratio 0~100 -0.905

4 SessSucc Successful sessions 15 -0.695

5 SessReq Requested sessions 15 -2.34

6 attempt Connection attempts 2 0.42

7 Radiostatus Abnormal line drops 0 0.102

8 CoreFail(%) Failures from core networks | 0~100 0.182

9 RadioFail(%) Failures from core networks | 0~100 0.237
10 TransSucc(%) Transmission success ratio | 0~100 -1.11

11 ThroughputD Downlink throughput 15.26 -0.0596
12 TrafficD(KB) Downlink traffic amount 7.45 2.92

13 TrafficU(KB) Uplink Traffic amount 3.69 0.652

Table 2: AUC scores of machine learning methods.

[ Logistic Regression | Neural Network [ SVM [ Decision Tree | Random Forest | KNN |
[ 0.890 [0.626 | 0.775 [ 0.837 [0.627 |

[ Method
[ AUC score [ 0.910

The dataset contains highly imbalanced data: there are 569170 negative instances and
1275 positive instances. A positive instance means the customer has made at least one
complaint during the hour, and a negative instance otherwise. In the preprocessing step,
each feature is normalized by its mean value. 50% of the data is used for training the
classifier while the other 50% is used for testing.

We build different classification models, including Support Vector Machine (SVM),
neural networks, decision tree, random forest, logistic regression, naive Bayes, k-nearest
neighbors and evaluate their performance by Receiver Operating Characteristic (ROC)
curve. Logistic regression achieves the highest Area Under Curve (AUC) score as shown
in Table 2. The classifier returned by logistic regression has coefficients shown in Table 1.
Feature 0 is constant with value 1, which corresponds to the intercept. Features 1~10 are
related to the connection performance and stability of the networks, which depend on the
implementation of network hardware and software. Feature 11 is the throughput of a user,
which can be increased by allocating more bandwidth to the user. Features 12 and 13
depend on the user requirements and are not controlled by the network.

For each training instance or test instance, the classifier outputs an estimated com-
plaining likelihood to indicate the probability that the instance is positive. Fig. 6(a) and
Fig. 6(b) show that given a certain estimated complaining likelihood returned by logistic
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Figure 7: The impact of available resource on the expected number of positives in Experiment 3.

regression, what the real complaining rate is. On both the training data and test data, the
larger the estimated complaining likelihood is, the higher the real complaining rate will be.
The diagonal lines with angle 45° illustrate that the estimated complaining likelihood is a
good match with the real complaining probability. The fluctuations on the left part of the
lines are due to the smaller number of samples in that region.

In testing, each 500 users are grouped into a cell and the available bandwidth in each
cell is assumed to be the same. Due to normalization, a user on average has throughput of 1,
which means a cell has 500 units of throughput on average. Figure 7 shows how the expected
number of complaints can be reduced by allocating a certain amount of resource to each
cell. The resource amount is normalized by 500, which is the existing throughput consumed
by a cell on average. The Water Filling algorithm (and thus the meta heuristic) achieves
the same performance as the optimal algorithm. This is because, all of the users have
very low probabilities to complain, i.e. C; > 0 for ¢ = 1,2,..., M in Eq. (9), which makes
the optimization problem (P-2) to be convex. This figure shows the optimal algorithm
can reduce the expected number of complaints by 30% when 100% of additional resource
is available. In comparison, to achieve the same goal, the baseline algorithm needs 240%
additional resource. When the normalized resource is less than 10%, the Sweep algorithm
reduces more than four times positives compared with the baseline algorithm.

The summary of reduced number of positives in the 3 experiments are given in Table 3.
In experiment 2 and 3, the resource is normalized by the existing bandwidth in the video
system/a cell. The table shows given insufficient amount of resource, the Sweep algorithm
allocates the resources much more efficiently compared with the baseline.
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Table 3: Reduced number of positives in the 3 experiments.

Experiment 1. Resource 1 10 100 398 1000 2510 3980 10000
The Sweep Algorithm 0.0775 0.759 6.755 21.0 42.2 81.3 99.2 100
Baseline 0.00842 0.0849 0.913 4.45 14.7 57.8 89.4 95.4
Experiment 2. Normalized Resource 0.000737 0.00293 0.0117 0.0465 0.185 0.737 1.17 2.93
The Sweep Algorithm 0.495 1.95 7.69 29.8 106 265 277 278
Baseline 0.245 0.980 3.98 17.1 84.5 237 240 241
Experiment 3. Normalized Resource 0.002 0.0112 0.0632 0.356 1.12 2 20 200
The Sweep Algorithm 2.32 12.1 49.0 141 246 314 611 654
Baseline 0.231 1.30 7.25 39.6 116 190 562 573

6. Discussion

There are several limitations of our work. First, the logistic regression model, while widely
used, could be too simplified as it cannot depict a complex structure if there is. Second, we
try to modify the label of an instance by allocating resource to alter its features, which is
only effective to a subset of problems. Third, the current work assumes resource allocation
modifies feature values linearly. While it works for a set of application scenarios, we hope
to generalize the model to incorporate more sophisticated scenarios, for example, nonlinear
or correlated models between resource allocation and feature values.

In the work, we target to reduce the total number of positives, which is a key per-
formance indicator of service providers. However, this objective doesn’t guarantee fairness
among users. For example, with limited amount of resource, resource allocation gives higher
priority to the users with medium service quality, and cannot improve service for users with
the worst quality. Our future work will consider more complex model involving fairness.

7. Conclusion

This work studies how learning a classification model and allocating resource can be in-
tegrated coherently to maximize the expected number of satisfied users efficiently. This
framework first trains a classifier based on the training data, and then applies this clas-
sifier as the objective function to guide resource allocation on the test data. Based on
logistic regression, an optimal resource allocation algorithm and algorithms with low com-
plexity are designed. Finally, the algorithms are applied to reduce unsatisfied viewers in a
video transmission system and customer complaints in a cellular network. Compared with
the baseline, the optimal algorithm we proposed can reduce customer complaints by more
than four times. Future work includes extending the framework of learning and resource
allocation to more classification models and more general resource allocation models.
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Appendix A. Proof of the Optimality

In order to prove Proposition 2, KKT conditions are derived to capture the characteristics
of this optimization problem first, and Lemma 3 and Lemma 4 finish the proof. Lemma 3
shows for the instances with resource allocation, there is going to be a water level. Lemma
4 argues that one optimal solution allocates resource only to a contiguous subset of C}-s.
The Sweep algorithm tests all contiguous subset of C-s and allocates resource with water
filling. Therefore, it can find one of the optimal solutions definitely.

The Lagrangian of (P-2) is

M M M M M
L(S7 )\, ’U) :Zizlm _21‘:1/\1'571_7}(‘9 — Zi:l Si) :Zizlm_Sv+zi:1(v_)\i)5i(15)

Since the constraints are linear and the objective function is smooth, the optimal solu-
tions have to meet the KKT conditions as follows:

O oy X =0, =12, M; (16)
M s =5; (17)

Nisi =0, i=12 ..M, (18)

v 2> 0; (19)

X\ >0 for i=1,2,..., M. (20)

Constraints (18) and (16) show when \; = 0, there is % = v; otherwise s; = 0.
Lemma 3 There is one optimal solution that satisfies either 1) s; =0, or 2) C; + s; is a constant
independent of i.

Proof Denote H%p(w) by n(x), and its derivative is

n(z) = % <0. (21)
As shown by Fig. 8, n/(x) is symmetric on the vertical line = 0. n(z) is concave when
x < 0 and convex when x > 0. When s units of resource is allocated to point 1, it can be
moved to point 3. The area above the curve staring from point 1 and ending at point 3
corresponds to the reduction of the objective function.

Denote the set of indices with resource allocation by I, i.e. s; > 0 for ¢ € I,. We have
7 (Ci + s;) = —v, i.e, C; + s, = £log(—1 4+ % + Y 12;4“) for i € I,. Next, we are going to
prove s; + C; = log(—1 4+ 5- + @) Ifv=1, Ci+s; =0 for i€ I,, the proof is done.
Otherwise, assume C;+s; < 0fori € I}, and C;+s; > 0fori € I, [UIL, = I,, NI, = 0.

We first prove there is at most one point in I;. Assume there are at least two points
in I;, and their indices are 4,1 and 4;2. With a small value A, assign s; = Sy, A

1,1

and s}, , = s;,, —A. Then, s;  and s}  will achieve a decrease in the objective function,

because n(x) is concave when x < 0. Therefore, the left set I; includes at most one point.
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Figure 8: An example showing the resource allocation.

Denote the index of the only point in I; by 4;, we are going to prove when the re-
source s;, allocated to 4; is given to the right set I, the objective function cannot in-
crease. For any point in the I, denote its index by i,. Since C;, + s;, = — (Cy, + 84,.),
7 (Csy + s — B) = 0'(Cy. + 84, + ) for 0 < B < ;. Moving the resource s;, from i,
and giving it to 7, will keep the objective function unchanged. Moreover, it is easy to
prove that when s;, is given to more than one points in I, the objective function will de-
crease. Therefore, there is one optimal solution where the left set I; is empty and Vi € I,
si+Ci =log(—1+ o + Y10, |

Lemma 4 There is one optimal solution, whose indices in CJ-s with s; > 0 are contiguous. Here
C?-s is the list obtained by sorting C;-s in ascending order.

Proof Assume for one of the optimal solutions that meets Lemma 3, i-s are not contiguous.
There are a left subset, a right subset and at least one point in the middle. Only the left
subset and right subset are allocated resource and C* is the water level after resource
allocation, i.e., C; +s; = C* =log(—1+ o + ¥ 12;4“) > 0 for ¢ in the left subset and the
right subset. Denote the index of a point in the left subset by I;, the index of a point in
the middle by I,,, and the index of a point in the right subset by I,. Resource of C* — Cf,
is consumed to move point I; to the level C*. The same amount of resource can move I,
to Cr,, +C* = Cf,.

Since A;,, > 0, according to (16) we have 7/(Cr,,) = n'(=Cyr,,) > —v = 1/ (C*). If
Cp, > 0, we have Cy, > C*, since n’(z) is an increasing function when 2 > 0. However,
this contradicts the assumption that Cj,, < Cr,. + s;. = C*. Therefore, we have C;,, <0
and —Cp,, > C*.

Since Cy, < Cr,, < 0,C* >0, Cp,, +C* < 0 and n(z+e)—n(x) is an increasing function
of x when z > 0, for any e > 0, we have n(C*+(Cr,, —Cr,)) —n(C*) < n(—-Cr,) —n(—Cfr,,)-
Since n(x1) — n(x2) = n(—x2) — n(—z1), then we have n(Cy, + (C* — Cp,)) — n(C*) <
n(Cr,,) —n(Cy,), ie., n(Cr,, + (C* — Cp,)) +n(Cr,) < n(C*) +n(Cr,,). This means allo-
cating C* — C', units of resource to I,,, leads to a decrease of the objective function, which
contradicts with the assumption that the original solution is one of the optimal solutions. B

Fig. 8 gives an example for this proof. Point 3 is the water level C*. Point 1 and point
2 are I} and I,,, respectively. To move the point 1 to the point 3, s units of resource are
needed. The same amount of resource can move point 2 to point 4, and meanwhile s — As
units of resource are consumed by moving point 2 to point 3. When As units of resource
are used to move 3 to 4, it has more reduction on the objective function compared with
using As to move point 2’ to point 1’. Here point 1’ and point 1 are symmetric to y-axis
and the same goes for point 2’ and point 2. Therefore, allocating s units of resource to
point 2 is better than allocating them to point 1.

Since resource has to be allocated to a contiguous indices on C-s, the Sweep algorithm
tests all possibilities and can find one of the optimal solutions definitely.
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