
JMLR: Workshop and Conference Proceedings 45:349–361, 2015 ACML 2015

Statistical Unfolded Logic Learning

Wang-Zhou Dai daiwz@lamda.nju.edu.cn

Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210046, China

Editor: Geoffrey Holmes and Tie-Yan Liu

Abstract

During the past decade, Statistical Relational Learning (SRL) and Probabilistic Inductive
Logic Programming (PILP), owing to their strength in capturing structure information,
have attracted much attention for learning relational models such as weighted logic rules.
Typically, a generative model is assumed for the structured joint distribution, and the
learning process is accomplished in an enormous relational space. In this paper, we propose
a new framework, i.e., Statistical Unfolded Logic (SUL) learning. In contrast to learning
rules in the relational space directly, SUL propositionalizes the structure information into
an attribute-value data set, and thus, statistical discriminative learning which is much more
efficient than generative relational learning can be executed. In addition to achieving better
generalization performance, SUL is able to conduct predicate invention that is hard to be
realized by traditional SRL and PILP approaches. Experiments on real tasks show that
our proposed approach is superior to state-of-the-art weighted rules learning approaches.

Keywords: Relational Learning, Weighted Logic Rules, Structure Learning

1. Introduction

In many tasks, it is often crucial to capture and exploit structure information of the data.
Thus, the induction of probabilistic relational knowledge in the form of weighted logic rules
has attracted much attention. The task can be described as: Given a relational dataset
consisting of two sets of ground facts, i.e., examples and background knowledge, to generate
a series of weighted logic rules consistent with examples in terms of evidence relations in
background knowledge.

A natural idea is to learn a structured probabilistic model to represent the joint distri-
bution of the domain, by Statistical Relational Learning (SRL) Getoor and Taskar (2007)
or Probabilistic Inductive Logic Programming (PILP) De Raedt and Kersting (2008). This
problem, however, is a combinatorial optimization problem that requires repeatedly enumer-
ating rule structures and estimating corresponding parameters. The enormous combinations
of relations and arguments make the task notoriously difficult. Thus, SRL and PILP sys-
tems have tried different ways for the optimization. By assuming the independence between
ground facts, Kok and Domingos (2005) employed pseudo-likelihood to speedup parame-
ter estimation; this approach has been facilitated with various search techniques for rule
structure space reduction Mihalkova and Mooney (2007); Kok and Domingos (2009, 2010);
Bellodi and Riguzzi (2012, 2013). One representative of this approach, RDN-Boost Natara-
jan et al. (2012), transforms the pseudo-likelihood estimation into a regression task solved

c© 2015 W.-Z. Dai & Z.-H. Zhou.

Dai Zhou

by functional gradient boosting, leading to the state-of-the-art performance. Another ap-
proach, e.g. ALEPH++-MLN Huynh and Mooney (2008), is to use first-order logic rule
learners to produce a set of candidate rules, and then generate weighted logic rules based on
the candidate set, though the optimal solution is not guaranteed to exist in the hypothesis
space reduced by the first-order logic rule learners.

In this paper, we propose the Statistical Unfolded Logic (SUL) learning framework. We
search for a relational feature set F to extract an attribute-value dataset from relational
space, such that existing statistical learning approaches can be applied, and then translate
the learned statistical model back into weighted logic rules. This framework is realized by
the SUL-Path approach. There is no independence assumption about ground facts during
the process of attribute-value data extraction and weighted logic rule translation. Moreover,
our approach searches for F based on relational pathfinding Richards and Mooney (1992),
and this feature space is guaranteed to be complete for learning definitive weighted logic
rules. Furthermore, the efficiency of our approach enables predicate invention that is difficult
to be realized by traditional SRL and PILP approaches. Experimental results show that
our approach is superior to state-of-the-art rule learners in performance.

The rest of this paper is organized as follows. Section 2 presents some preliminaries.
Section 3 proposes the SUL framework. Section 4 develops the SUL-Path approach, followed
by experimental results in Section 5. Finally, Section 6 concludes.

2. Preliminaries

In this paper, relations are defined with First-order logic (FOL), a first-order alphabet
contains constants, variables, functions and predicates. Constants represent objects in
domain, e.g. 1, anna. Variables range over the constants, e.g. X, Person. Functions represent
mappings from tuples of objects to objects, e.g. s(X) is identical to X + 1. Predicates
represent relations among objects or attributes of objects, e.g. friends/2 means “friends”
relation is applied on 2 objects, the number behind the slash is called arity. A term is a
constant, a variable or a function symbol immediately followed by a bracketed n-tuple of
terms, e.g. bob, X and s(s(s(0))). An atom is a predicate symbol applied to a tuple of
terms, e.g. greater than(X,s(s(0))). A ground term is a term containing no variables. A
ground atom is an atom whose arguments are ground terms. A definite clause is a formula of
the form “A:-B1,. . .,Bn”, where A and Bi represents the atoms that form the rule’s head and
body respectively, the variables appear in the head must appears in the body. A possible
world or Herbrand interpretation assigns a truth value to each possible ground atom in
domain. A clause is satisfiable only if there is an assignment of truth values to ground
atoms that make the clause true. An atom A is provable from an hypothesis H only if there
exists a proof from H to A, which is denoted as H ` A.

The joint distribution of a relational domain is defined on possible worlds of the domain.
A probabilistic atom is written as p::A representing the probability of A being true is p. The
joint distribution is structured by weighted logic rules, which are parameterized definitive
clauses written as “w::A:-B1,. . .,Bn”, where w is called the weight of rule.

350

Statistical Unfolded Logic Learning

3. The SUL Framework

Formally, our task is to learn a set of weighted logic rules R to define a target concept
t/n. The training data consists of two sets of ground atoms as background knowledge
B and training examples E . Positive and negative examples are denoted as E+ and E−
respectively.

Suppose the ground truth rule set is R∗, the ultimate target of weighted rule learning
is to recover R∗ or at least reconstruct the equivalence class of R∗ to model P (T|R,B),
where T = (t1, . . . , tn) stands for all possible ground atoms of the target concept t/n.

Ideally, the search for weighted logic rules should be directly guided by the goal of
maximizing their contribution to the predictive accuracy. It is a well-known fact that
statistical learning is very efficient for such kind of tasks. Thus we wish to formulate
the weighted rules learning task as a statistical learning problem to exploit the benefits.
A straightforward idea to accomplish this target is extracting an attribute-value dataset D
from the original relational dataset, then existing statistical learning method can be directly
executed. The training examples of D should be identical to the original E , but the feature
space F is difficult to be determined. Observing that structure of a rule is of the form
“A:-B1,. . .,Bn”, naturally, we can use first-order logic relations Bi as features.

Thus, if we limit the size of F , then we can instantly narrow down the hypothesis space
for learning rule structures. Some of traditional Inductive Logic Programming algorithms
use similar techniques to learn first-order rules Fürnkranz et al. (2012), however, they are
impractical for SRL problem. The reduction of hypothesis may result in the risk of losing
optimal solution R∗ and its equivalence class. Lets define MB(T) as the Markov Blanket of
T, then P (T|MB(T)) = P (T|R,B) Koller and Friedman (2009). Hence, once a relational
feature set F that satisfies F ⊃ MB(T) is obtained, it is guaranteed that the extracted
dataset D is able to produce the optimal solution.

Unfortunately, we can never know the structure of R∗ in advance, and thus it might be
very difficult to find an optimal Markov Blanket MB(T). To solve this problem, we can
find a way to structure the space of possible features, then search for F according to prior
domain knowledge.

Here we formally propose the Statistical Unfolded Logic learning (SUL) framework, it is
divided into 3 stages:

1. Unfolding. SUL first searches for a set of relational features F that may be useful for
learning the target concept t/n according to particular prior knowledge. In relational
domain, the quantity of positive examples is usually much lesser than that of false
examples. To ensure that F contains enough knowledge for defining t/n, F should at
least be complete for the input positive examples E+, which means ∀e+ ∈ E+, ∃F ∈ F
s.t. F,B ` e+. Notice that, if the target relational domain holds the closed world
assumption, i.e. the non-existent facts are assumed to be false, SUL can extract the
ground atoms {e|e /∈ E , ∃F ∈ F s.t. F,B ` e} as additional negative examples to
enhance the original E .

2. Learning. In this stage, F serves as a feature space to generate feature vectors.
For each example e ∈ E , SUL queries a Prolog engine for e’s satisfaction situation of
∀F ∈ F . The satisfaction results are recorded as attribute values of feature vectors.

351

Dai Zhou

(a) Relational dataset.

e

a
c

b

dneighbors

colleagues

friends

(b) Hypergraph of the data.

Figure 1: Example of friends dataset (symmetric atoms omitted).

After the dataset construction, SUL uses statistical learning to learn a statistical
model.

3. Folding. In order to interpret the learned statistical model in the original relational
domain, SUL finally translates the learned statistical model back into weighted logic
rules. After the folding step, the weights of rules are the scores given by the statistical
discriminative models. For example for decision trees, the weights of each rule is the
purity of the leaf that standing for the rule.

Seeing this problem from the perspective of first-order rule learning, the relational fea-
tures F act as definitions of candidate invented predicates. Owing to the efficiency of statis-
tical learning, SUL can quickly identify which predicates are truly beneficial for describing
the hidden structure of the target domain. As a consequence, SUL naturally supports
predicate invention.

4. The SUL-Path approach

Apparently, the choice of relational features F is crucial to the performance of SUL algo-
rithms. In this section, we propose the SUL-Path approach based on the “relational path”
assumption Richards and Mooney (1992) as an implementation of the SUL framework.
The outline of SUL-Path algorithm is presented in algorithm 1, we describe the details of
SUL-Path in the following sections.

4.1. Rule Learning

In order to describe the proposed approach more clearly, we first define a hypergraph of
a relational domain as follow:

Definition 1 (Relational hypergraph): Given a relational dataset, its hypergraph is
G = (V,L), where each vertex v ∈ V is a constant in domain, each hyperedge l ∈ L is a
ground atom in domain.

An example of relational hypergraph generation is illustrated with Figure 1.
The relational path assumption suggests that there usually exist fixed-length paths of

relations linking the set of terms that satisfy a target concept Richards and Mooney (1992).
According to this assumption, we define the first kind of SUL-Path feature as follow:

352

Statistical Unfolded Logic Learning

Algorithm 1 SUL-Path(B, E)

Input: Background knowledge B, Examples E = E+ ∪ E−
Output: weighted rule set R
Start:
Initialize hypergraph G with B.
F = φ
for positive example e+ ∈ E+ do

Search for ground paths of e+ in G
Generalize the ground paths to path features P
Search for local paths and branch features P ′ of pi ∈ P
add {P ∪ P ′} to F

end for
Initialize an |F|-dimensional attribute-value dataset D = φ
for each example ek ∈ E do

Count its satisfaction for F as the feature vector fk
Label fk according to E and add it to the attribute-value dataset D

end for
Use Weka to learn a model h for D
Translate h into weighted rules R
Return: R.

Definition 2 (Path feature): Given a hypergraph G = (V,L) and an example of tar-
get concept t(v1,. . .,vn), a ground path for the example is a set of sequential hyperedges
(l1, . . . , lk) that links {v1,. . .,vn}. A path feature for example t(v1,. . .,v2) is a generaliza-
tion of the ground path linking {v1,. . .,vn}, i.e. substitute the constants of the ground path
with unique variables.

For the example illustrated with Figure 1, consider the positive example friends(c,e), a
ground path of it is colleagues(c,e), which can be generalized to a path feature colleagues(X,Y).

Based on path features, we define the second kind of SUL-Path feature to enhance the
feature space as follow:

Definition 3 (Local path feature): Given a path (feature) L = (l1, . . . , lk), the vertices
that pl has crossed are Vl = v1, . . . , vm, a local path feature is a path feature that connects
any subset of Vl.

For example, the local paths are very common in the Cora dataset. The background knowl-
edge are binary predicates describing authors, titles and venues of published papers, the
target concepts are binary predicates to duplicate those fields of a bibliography. A path
feature of one of the target concept sameAuthor/2 could be:

p(X1,X2,X3,X4,X5):-author(X3,X1),title(X3,X4),title(X5,X4),author(X5,X2).

then “venue(X3,X6),venue(X5,X6)” forms a local path that connects the vertices X3 and X5

on the path feature. Intuitively, local paths contain additional information about a path
feature, they may be helpful to describe the hidden relational structure of the domain as
well.

353

Dai Zhou

Some structural informations about attributes of objects can not form paths. For the
friends example, if we know some single-arity facts like male(X) or female(X) in background
knowledge, they might be also useful for learning the target concept. Thus, we define the
last kind of SUL-Path feature:

Definition 4 (Branch feature): Given a set of vertices V , a branch feature is a path L,
which has crossed a set of vertices VL , s.t. |V ∩ VL| = 1, and the only intersected vertex is
an end vertex of L.

This kind of feature is called “branch feature” because on path features, they look like
branches that spread out but never come back.

As to the structure of a weighted logic rule, it is easy to see that:

Proposition 1 Structure of any definitive logic rule that defines the target concept t/n can
be represented by a set of branch features plus a set of connected hypergraphs (the sets could
be empty).

This proposition can be proved directly from the definition of definitive clauses.
We can show that, with the three kinds of features defined above, SUL-Path is able to

learn all forms of definitive logic rule structure.

Theorem 1 (Completeness of SUL-Path features): SUL-Path is able to learn any
structure of rules with path feature, local path feature and branch feature.

Proof From proposition 1 we can learn that any form of definitive rule can be represented
by a set of branch features and connected hypergraphs. Apparently, SUL-Path is able to
learn branch features with branch feature, therefore we only have to prove that the 3 types
of relational features are able to express any connected hypergraph.

Without loss of generality, we assume that a connected sub-hypergraph G′ for a rule
contains 2 arguments from its head as its end vertices, then we can find at least 1 path
feature p on this sub-hypergraph. For each vertex v on the path feature, we can traverse
start from v and stop at any end vertices v′ on G′. If v′ is on p, then the trajectory vv′ is
a local path feature, otherwise vv′ is either a branch feature started from v or a path that
composed by local path features and a path feature.

Although the 3 kinds of relational features are complete for weighted rules learning, the
size of F grows exponentially with the maximum length of the different kind of paths.
According to Richards and Mooney (1992), SUL-Path assumes that the optimal hypothesis
is restricted in a feature space formed by short paths. Our results in the experiments proved
this assumption empirically.

In summary, at the unfolding stage, SUL-Path builds a hypergraph and searches for
a set of features of positive examples as F . During the learning stage, for each e ∈ E ,
SUL-Path counts the number of satisfaction of ∀F ∈ F to construct their feature vectors.
When an attribute-value dataset is ready, SUL-Path learns decision tree models by Weka-
3.6 Hall et al. (2009). In the unfolding stage, SUL-Path translates the tree models back
into weighted rules like RPT Neville et al. (2003).

354

Statistical Unfolded Logic Learning

4.2. Predicate Invention

Candidate predicates generation of SUL-Path is accomplished by the relational feature
construction in its unfolding stage. After the learning stage, useful predicates from F are
naturally selected by the learned decision trees.

Both feature construction and predicate invention can be considered to be constructive
induction Kramer (1995). Generally speaking, the goal of constructive induction is an
increase in accuracy and a decrease in complexity of a hypothesis Wnek and Michalski
(1994). Different from learning in an existed feature space, constructive induction requires
more domain knowledge. For SUL-Path, the short relational path assumption acts as such
kind of domain knowledge.

Normally, the number of candidate predicates could be potentially very large because the
predicate invention problem is also a combinatorial optimization problem in relational space.
Even for SUL-Path, the short relational path assumption results in a candidate set that
exponentially grows with the maximum path length. Thus, preserving all of the candidates
is apparently unrealistic. Owing to the efficiency of decision tree learning, SUL-Path is able
to keep the truly functional predicates in a feasible time.

5. Experiments

We now present the experimental results of SUL-Path. The experiments are conducted on
5 target concepts from 2 benchmark real world datasets.

5.1. Datasets

Cora. This dataset is a collection of citations to computer science papers, processed into 5
folds for the task of duplicating the citations Poon and Domingos (2007). This domain has 5
types of 3079 constants, 10 predicates and 687422 atoms. Evidence predicates are relations
like author(Bib,Author),title(Bib,Title), venue(Bib,Venue), and so on. Target concepts
to be learned are sameAuthor/2, sameBib/2, sameTitle/2 and sameVenue/2 that duplicates
the corresponding 4 types of constants. For simplicity, we denote the tasks as author, bib,
venue and title in the following section.

UW-CSE. This dataset was prepared by Domingos and Lowd (2009), describing re-
lationships in an academic department. It is divided into 5 independent folds. This do-
main has 9 types of 929 constants, 12 of predicates and 260254 atoms. The evidence
predicates define students, faculty, and describe their relationships. The target concept
advisedBy(Person, Person) judges whether a person is advised by another person, this task
is referred as advisedby in the following part of this section. We omitted 9 equality predicates
following Natarajan et al. (2012).

Among the two datasets, UW-CSE is smaller but it has a more complex structure, Cora
has more ground atoms but has a simpler structure. Both the datasets satisfy closed world
assumption, but negative examples are incomplete, specifically, UW-CSE does not contain
any negative example.

5.2. Compared Methods

We compared 4 algorithms on all the tasks:

355

Dai Zhou

RDN-Boost Natarajan et al. (2012). This algorithm learns transforms the weighted
rules learning problem into regressions that estimates pseudo-likelihoods. We used the
parameters in Natarajan et al. (2012) for our experiments. RDN-Boost also requires a
predefined “mode” as background knowledge to reduce the search space of rule structure.
In the experiments we enumerated all possible schemes and achieved the best performance
(on some tasks our results are even better than the result reported in Natarajan et al.
(2012)). It also needs a set of negative examples, since the negative examples provided by
Cora and UW-CSE are incomplete, we ran RDN-Boost with both the original and a complete
negative training set, the two methods are denoted as RDN-Boost-org and RDN-Boost-total
respectively.

Alchemy Domingos and Lowd (2009). This is a widely used Statistical Relational
Learning toolbox. In the experiments, we are using Alchemy 2.0 version. We ran Alchemy’s
learnstruct and learnweight programs with its default settings.

ALEPH++-MLN Huynh and Mooney (2008). This is an algorithm that learns
Markov Logic Networks (MLN) discriminatively. It uses ALEPH Srinivasan, an Inductive
Logic Programming algorithm, to discriminatively learn first-order logic rules as candidate
MLN structures. Then it uses exact inferences with L1 regularization to estimate the pa-
rameters and select the structures. The ALEPH program also needs a predefined mode
setting, we used the same modes as to RDN-Boost, the parameter setting is same as Huynh
and Mooney (2008) suggests.

SUL-Path. This is the algorithm proposed by this work. Because the two datasets
satisfy the closed world assumption, SUL-Path can unfold additional negative examples by
itself. The maximum lengths of the path features is set at 4, 4, 4, 4 and 2 for the 5 tasks
respectively. We tested SUL-Path with different statistical learners, including J48, Ad-
aboostM1 with 50 3-layers REPTrees as base learner and Random Forest with 300 4-layers
random trees. They are denoted as SUL-Path-J48, SUL-Path-Boost and SUL-Path-RF
in the following section. Because the number of positive examples is far more less than
the number of negative examples, we use Weka’s CostsensitiveClassifier to train all the
models above. The cost of a false negative is set as twice of the cost of a false positive.
Parameters of Weka algorithms are chosen by 5-fold cross validation on training data.

5.3. Performance Comparison

To evaluate the models learned by the algorithms under the global distribution, our test data
contain all possible ground atoms of the target concepts. For the five tasks: author, bib, title,
venue, advisedby, our test data in each fold have 952, 67144, 2287, 8587 and 3343 examples
respectively on average. Because in relational domains, the number of positive examples is
far more less than the number of negative examples, following Kok and Domingos (2010)
and Natarajan et al. (2012), we used AUC value instead of precision and F-measure as
evaluation criteria to reduce the class imbalance problem.

Table 1 presents the average AUC value of all algorithms on each task. Because UW-
CSE dataset does not contain negative training example, for RDN-Boost methods only
RDN-Boost-total was applied. In bib and venue task, the Alchemy algorithm did not finish
in 100 hours. The ILP procedure ALEPH Srinivasan in ALEPH++-MLN crashes on the 4
Cora tasks due to out of memory of Prolog, so no results were obtained.

356

Statistical Unfolded Logic Learning

Table 1: Average AUC values of each approach on 5 tasks.

AUC author bib title venue advisedby

SUL-Path-J48 0.994± 0.004 0.926± 0.025 0.921± 0.031 0.839± 0.046 0.633± 0.071

SUL-Path-Boost 0.998± 0.002 0.998± 0.001 0.987± 0.011 0.977± 0.011 0.975± 0.015

SUL-Path-RF 0.998± 0.002 0.989± 0.009 0.982± 0.017 0.946± 0.023 0.992± 0.006

RDN-Boost-org 0.985± 0.014 0.916± 0.021 0.706± 0.121 0.589± 0.040 -

RDN-Boost-total 0.986± 0.012 0.949± 0.016 0.729± 0.126 0.590± 0.038 0.983± 0.014

Alchemy 0.597± 0.152 - 0.604± 0.216 - 0.393± 0.103

ALEPH++-MLN - - - - 0.127± 0.032

On average, SUL-Path-Boost performed best in 4 tasks. In both author and ad-
visedby task, there was no significant difference between SUL-Path and RDN-Boost ac-
cording to t-test; in other tasks, SUL-Path outperforms other compared methods signifi-
cantly. ALEPH++-MLN performed worst in all 5 tasks because the initial rules obtained
by ALEPH are learned in a non-probabilistic setting, its performance in our experiments is
consistent with Kok and Domingos (2005).

The reason why SUL-Path-J48 performed worse than other SUL-Path algorithms is
very simple. After examined the datasets, we found that the positive examples are usu-
ally covered by separate rules, especially in the advisedby task. When other methods are
learning multiple models, SUL-Path-J48 only kept one model and ignored other potentially
informative rules.

Training times of all algorithms are shown in Table 2. All the experiments were carried
on a cluster node with a 2.53 GHz × 12 cores CPU. We can see that the discriminative
learning methods, including SUL-Path and ALEPH++-MLN, are much more efficient than
generative learning methods. ALEPH++-MLN is the quickest one because the ILP pro-
cedure ALEPH only learned 4-8 non-recursive candidate rules each fold for MLN weight
estimation. Comparing to the training time, the unfolding stage of SUL-Path is time con-
suming. The unfolding times (including relational feature searching and attribute value
calculation) and the unfolded data size of SUL-Path are shown in Table 3. The unfold-
ing time on several tasks were worse than RDN-Boost, but they could be improved if the
implementation of pathfinding is optimized.

We also studied the influence of the maximum path length on SUL-Path’s performance.
Because the performance of SUL-Path-Boost and SUL-Path-RF are close to optimal, we
ran the experiments with SUL-Path-J48, the results are displayed with Figure 2. Because
size of feature set and unfolding time grow exponentially with the maximum path length,
the unfolding of advisedby task did not stop after one hour when the maximum path length
exceeds 4. We can see that on both tasks the performance grows with the maximum path
length, but the rate of growth decreases after a certain threshold is reached. This results
showed that when the maximum path length is large enough, the best solution of SUL-
Path-J48 is contained in the hypothesis space. The results also empirically verified that the
short relational path assumption is correct on typical relational domains.

357

Dai Zhou

Maximum path length
2 3 4 5 6

A
U

C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) title

Maximum path length
2 3 4 5 6

A
U

C

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(b) advisedby

Figure 2: Influence of maximum path length on performance of SUL-Path-J48.

5.4. Predicate Invention

Output of SUL-Path is a Prolog file which can be directly consulted with an ISO Prolog
engine, it contains both invented predicates and weighted rules. For example in the author
task, one weighted rule in the output file of SUL-Path-Boost is:

tree 0 score(X1,X2,S0):-

ct path 0 0(X1,X2,N1),N1>0.0,S0 is 1.0,!.
The predicate tree i score(X1,X2,S) is a scoring predicate for sameAuthor(X1,X2), where
S0=1.0 is the weight of this rule; predicate ct path * counts the satisfactions of feature
path *; path 0 0 is an invented predicate, whose name indicates that this predicate is the
0-th “local path” of the 0-th feature path 0. The two invented predicates are:

path 0(X1,X2,X3,X4,X5):-

author(X3,X1),title(X3,X4),title(X5,X4),author(X5,X2).
path 0 0(X1,X2,X3,X4,X5):-

path 0(X1,X2,X3,X4,X5),

haswordauthor(X1,X6),haswordauthor(X2,X6).
Meanings of the two rules are straightforward: path 0’s means the authors X1 and X2 wrote

Table 2: Average training time of each algorithm.

Time author bib title venue advisedby

SUL-J48 0.2s 87.2s 0.5s 1.5s 0.4s

SUL-Boost 1.1s 302.6s 2.2s 9.5s 1.1s

SUL-RF 1.6s 471.0s 4.6s 19.7s 1.6s

RDN-Boost 25.6s 947.8s 278.6s 204.1s 15.6s

Alchemy 87.2h - 98.3h - 91.3h

ALEPH++-MLN - - - - 0.07s

358

Statistical Unfolded Logic Learning

Table 3: Average unfolding time and unfolded data size of each task

Time & size Feature construction Attribute value calculation feature size data size

author 5.7s 13.9s 36 2428

bib 47.0s 1475.5s 64 457782

title 20.6s 80.8s 34 16396

venue 55.4s 491.6s 33 73354

advisedby 11.5s 22.7s 452 10625

paper X3 and X5 respectively, and the two papers have a same title X4. Predicate path 0 0

says the two authors from path 0 also have a same word in their name.

6. Conclusions

In this work, we presented a novel approach for weighted logic rule learning. It searches
for a relational feature set to extract an attribute-value dataset from relational space, such
that existing statistical learning approaches can be executed, and then translate the learned
statistical model back into weighted logic rules. In contrast to assuming independent ground
facts or using first-order logic rule learners to reduce the hypothesis space, our approach
does not assume independence of ground facts and has the guarantee that the optimal
solution exists in the transformed hypothesis space. Furthermore, our approach can invent
new predicates, which is difficult to be realized by traditional SRL approaches. Experiments
exhibit the advantages of our approach. In future work it will be interesting to theoretically
study how to ensure the optimal solution is contained in the reduced hypothesis space that
formed by the relational features.

7. Acknowledgment

This research was supported by the National Key Basic Research Program of China (2014CB340501)
and the National Science Foundation of China (61333014, 61321491).

References

Elena Bellodi and Fabrizio Riguzzi. Learning the structure of probabilistic logic programs.
In Proceedings of the 22nd International Conference on Inductive Logic Programming,
pages 61–75, Dubrovnik, Croatia, September 2012.

Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic programs by
searching the clause space. CoRR/arXiv:1309.2080, 2013.

Luc De Raedt and Kristian Kersting. Probabilistic Inductive Logic Programming. Springer,
New York, NY, 2008.

Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial Intel-
ligence. Morgan & Claypool Publishers, San Rafael, CA, 2009.

359

Dai Zhou

Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrac. Foundations of Rule Learning.
Springer, New York, NY, 2012.

Lise Getoor and Ben Taskar. Introduction to statistical relational learning. MIT press,
Cambridge, MA, 2007.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, June 2009.

Tuyen N. Huynh and Raymond J. Mooney. Discriminative structure and parameter learning
for markov logic networks. In Proceedings of the 25th International Conference of Machine
Learning, pages 416–423, Helsinki, Finland, June 2008.

Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks. In
Proceedings of the 22nd International Conference on Machine Learning, pages 441–448,
Bonn, Germany, August 2005.

Stanley Kok and Pedro Domingos. Learning markov logic network structure via hypergraph
lifting. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 217–224, Montreal, Canada, June 2009.

Stanley Kok and Pedro Domingos. Learning markov logic networks using structural motifs.
In Proceedings of the 27th International Conference on Machine Learning, pages 551–558,
Haifa, Israel, June 2010.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge, MA, 2009.

Stefan Kramer. Predicate invention: A comprehensive view. Technical Report 95-32, Aus-
trian Research Institute for Artificial Intelligence, Vienna, Austria, 1995.

Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of markov logic network
structure. In Proceedings of the 24th International Conference on Machine Learning,
pages 625–632, Corvallis, OR, June 2007.

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude W. Shavlik.
Gradient-based boosting for statistical relational learning: The relational dependency
network case. Machine Learning, 86(1):25–56, January 2012.

Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay. Learning relational proba-
bility trees. In Proceedings of the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 625–630, Washington, DC, August 2003.

Hoifung Poon and Pedro Domingos. Joint inference in information extraction. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence, pages 913–918, Vancouver,
Canada, July 2007.

Bradley L. Richards and Raymond J. Mooney. Learning relations by pathfinding. In
Proceedings of the 10th National Conference on Artificial Intelligence, pages 50–55, San
Jose, CA, July 1992.

360

Statistical Unfolded Logic Learning

Ashwin Srinivasan. ALEPH. http://www.cs.ox.ac.uk/activities/machlearn/Aleph/

aleph.html.

Janusz Wnek and RyszardS. Michalski. Hypothesis-driven constructive induction in AQ17-
HCI: A method and experiments. Machine Learning, 14(2):139–168, February 1994.

361

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

	Introduction
	Preliminaries
	The SUL Framework
	The SUL-Path approach
	Rule Learning
	Predicate Invention

	Experiments
	Datasets
	Compared Methods
	Performance Comparison
	Predicate Invention

	Conclusions
	Acknowledgment

