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Abstract
Bayesian nonparametric models are theoretically suitable to learn streaming data due to
their complexity relaxation to the volume of observed data. However, most of the existing
variational inference algorithms are not applicable to streaming applications since they re-
quire truncation on variational distributions. In this paper, we present two truncation-free
variational algorithms, one for mix-membership inference called TFVB (truncation-free
variational Bayes), and the other for hard clustering inference called TFME (truncation-
free maximization expectation). With these algorithms, we further developed a streaming
learning framework for the popular Dirichlet process mixture (DPM) models. Our ex-
periments demonstrate the usefulness of our framework in both synthetic and real-world
data.

1. Introduction

We are at the dawn of a new revolution in the Information Age: data. “Every animate and
inanimate object on Earth will soon be generating data” (Smolan and Erwitt, 2013). While
we collectively are tweeting 8000 messages around the world every second, our homes, cars,
cities and even our bodies are also constantly generating terabytes of signals. A common
setting is that these data are collected sequentially in time and our modern machine learning
tools need algorithms to learn from data stream without the need to revisit past data. More
importantly, not only data are getting bigger in size, but also are their growing complexity,
structure, and geometry. Hence, dealing with streaming data require flexible models that
can expand with data size and complexity. Bayesian nonparametric (BNP) models naturally
fit this purpose since their complexity, e.g., the number of mixture components, can grow
as new data appear. One challenge, however, for Bayesian models in general and Bayesian
nonparametric models in particular is that it lacks efficient inference methods to deal with
large scale and streaming data.

Two main inference approaches for BNP models are simulation methods such as Markov
Chain Mote Carlo (MCMC) and deterministic variational methods. To deal with streaming
data, sequential MCMC and particle MCMC were developed. However, MCMC algorithms
are often unable to cope with large-scale data sets due to its slow convergence and un-
predictable convergence diagnosis. On the other pillar, deterministic variational inference
is preferred in large-scale settings. Significant efforts on scalable variational learning with
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nonparametric Bayesian models have been made recent years (Hoffman et al., 2013; Blei
and Jordan, 2006; Kurihara et al., 2006, 2007; Tank et al., 2015). Following this trend, in
this paper we seek a variational method which can handle streaming data.

The first variational inference for a fundamental building block in Bayesian nonpara-
metric models, the Dirichlet process mixture (DPM), was developed by Blei et al. (Blei
and Jordan, 2006). Later works by Kurihara et al. (Kurihara et al., 2007) attempted to
develop collapsed variational version for the DPM models. However, these works employed
variational distribution with truncation technique which limited the number of clusters to
be fixed . By using truncation, these techniques possess a technical limitation in growing
model capacity with data – a key feature of nonparametric modelling – and hence can not
be applied to a streaming setting.

To circumvent the problem of truncation, Kurihara et al. (Kurihara et al., 2006) sug-
gested to compute the evidence lower bound (ELBO)1 of variational approximation as
criteria to increase the number of clusters. This strategy usually induces excessive compu-
tational burden. More recent works tried to avoid truncation by using simulation in each
variational iteration (Wang and Blei, 2012) and heuristic (Lin, 2013). In this paper, we used
a different strategy to circumvent truncation with lightweight computational cost. Further-
more, by using maximization expectation scheme proposed by Welling et al. (Welling and
Kurihara, 2006), the truncation problem can effectively solved.

In terms of streaming algorithms for nonparametric models, a recent work by Tank
at al. (Tank et al., 2015) is based on expectation propagation (EP) approximation in
which instead of minimizing KL divergence from variational distribution q to posterior
distribution p, KL (q | p), it optimizes the reserve KL divergence KL (p | q). However, it is
noticed by Broderick et al. (Broderick et al., 2013) that EP-based optimization is extremely
computational demand, hence much less efficient. Works by Sudderth et al. (Bryant and
Sudderth, 2012; Hughes and Sudderth, 2013) introduced an online learning algorithm for
Bayesian nonparametric models based on stochastic variational inference framework which
inherits limitation in terms of defining number of data points in advance. In this paper, for
streaming algorithm, we adapt the recent framework from (Broderick et al., 2013) and use
proposed truncation-free variational inference to introduce a new streaming algorithm for
Dirichlet process mixture models.

Our main contributions in the paper include: (1) truncation-free variational frame-
work for learning with Bayesian nonparametric models, particularly Dirichlet process mix-
ture models with exponential family derivation solutions; (2) streaming learning algorithms
which can leverage the “expanding complexity with data” nature of for Bayesian nonpara-
metric models; (3) an application of image analysis which can be learned on the fly with
streaming data.

2. Background

Now we review exponential family distributions, Dirichlet process mixture models (DPM)
and variational Bayes inference scheme which are background for our algorithms in the
section 3.

1. Some authors, including Kurihara, call this term as free energy.
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2.1. Exponential family

Let x be a random variable taking value in the domain X . Let T be a vector valued function
T : X → Rd so that T (x) is d-dimension vector. Let θ, also in Rd, denote the parameter
and 〈x, y〉 be the inner product between two vectors x, y in Rd. The random variable x
follows exponential family if the probability density function has the following form:

p(x | θ) = exp {〈θ, T (x)〉 −A (θ) + ln h (x)} , (1)

where A (θ), called log-partition function, is simply a normalization term to make p(x | θ)
sum up to one and h (x) is called base measure. The first order partial derivative of log-
partition function is the expectation of sufficient statistic T (x), i.e.

∂A (θ)
∂θ

= E [T (x)]p(x|θ) (2)

This property is useful when working with variational Bayes and we use it to derive our
results in subsequent development.

The conjugate prior p(θ | η) can be expressed in an exponential family form with the
sufficient statistics {θ,−A (θ)} as follows

p(θ | η) = exp {〈ηc, θ〉 − ησA (θ)−B (η)} , (3)

where η = {ηc, ησ} is the hyperparameters. Note that ηc ∈ Rd, ησ is a scalar, and thus
η ∈ Rd+1.

2.2. Dirichlet process mixture

A Dirichlet process DP (α,H) is a distribution of a random probability measure G over the
measurable space (Θ,B) where H is a base probability measure and α > 0 is the concentra-
tion parameter. It is defined such that, for any finite measurable partition (Ak : k = 1, . . . ,K)
of Θ, the resultant random vector (G (A1) , . . . , G (Ak)) is distributed according to a Dirich-
let distribution with parameters (H (A1) , . . . ,H (Ak)). In 1994, Sethuraman (Sethuraman,
1994) provided an alternative constructive definition which makes the discreteness prop-
erty of a Dirichlet process explicitly via a stick breaking construction. This is useful while
dealing with infinite parameter space and defined as

G =
∞∑
k=1

βkδθk where θk
iid∼ H, k = 1, . . . ,∞ (4)

β = (βk)∞k=1 , βk = vk
∏
s<k

(1− vs) with vk
iid∼ Beta (1, α)

It can be shown that
∑∞
k=1 βk = 1 with probability one, and as a convention in (Pitman,

2002), we hereafter write β ∼ GEM(α).
Due to its discreteness, the Dirichlet process is often not applied directly to model

data (e.g., it is unable to model continuous data) instead it can be effectively used as a
nonparametric prior on the mixture components θ, which in turn serves as the parameters
within another likelihood function F to generate data - a model which is known as Dirichlet

239



Huynh Phung Venkatesh

process mixture model (DPM) (Antoniak, 1974; Escobar and West, 1995). To be precise,
under a DPM formalism an observation xn is generated from a two-step process: xn ∼
F (xn | θn) where θn ∼ G. Using the stick-breaking representation in Equation (4), it is not
hard to see that DPM yields an infinite mixture model representation:

p (x | α,H) =
∞∑
k=1

βkf (x | θk) , (5)

where f denotes the density function for F . Dirichlet process mixture models have been
embraced with a great success and enthusiasm recently (Gelfand et al., 2005; Neal, 2000).
The crucial advantage is its ability to naturally address the problem of model selection - a
major obstacle encountered in several parametric mixture modeling, such as the Gaussian
mixture models of which number of mixtures cannot be specified a priori in a principal way.

Given the DPM model as described in Equation (4) and (5) and there exist K clusters
with nk elements in k-th cluster after observing n data point x1, . . . , xn generated from the
model. The posterior distribution of stick breaking β = (β1, . . . , βK , βnew) is

(β1, . . . , βK , βnew) ∼ Dir (n1, . . . , nK , α) (6)

There is a nice property of Dirichlet distribution called aggregation which justifies our
algorithm in the next section. If β = (β1, . . . , βK , βnew) follows Equation (6) thenβ1, . . . , βL,

K∑
l=L+1

βl + βnew

 ∼ Dir

n1, . . . , nL,
K∑

l=L+1
nl + α

 for any 1≤L ≤ K (7)

2.3. Variational inference

Let consider generative model with n observed i.d.d variables x1, . . . , xn which are supposed
to be generated from n latent variables z1, . . . , zn and parameters θ. Latent variables zi’s
are assumed to be continuous (when they are discrete, the integration will be replaced by
the summation). In Bayesian settings, we suppose that parameters θ are distributed with
prior distributions p (θ | η). Our objective in Bayesian inference is to compute the posterior
p (z, θ | x, η). In variational inference scheme, instead of computing p (z, θ | x, η) directly,
we use approximation distribution q (z, θ) , usually called variational distribution. Let con-
sider KL divergence between approximation distribution q (z, θ) and target distribution
p (z, θ | x, η), denoted KL (q | p), now our goal is to find q (z, θ) that minimize

KL (q | p) = −
ˆ
q (z, θ) ln p (z, θ | x, η)

q (z, θ) dzdθ

= −
ˆ
q (z, θ) ln p (x, z, θ | η)

q (z, θ) p (x | η)dzdθ

= −F (q (z, θ) , p (x, z, θ | η)) + p (x | η) .

In above equation, the term p (x | η) is constant with respect to q. Therefore, maximization
F (q (z, θ) , p (x, z, θ | η)) means KL (q | p) minimization.
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Mean-field approximation for mixture models

If our model are mixture models with K components θ1:K and we assume the mean-field
independence

q (z, θ) =
n∏
i=1

qzi(z)
K∏
k=1

qθk (θ) ,

then

F (q (z, θ) , p (x, z, θ | η)) =
ˆ
q (z, θ) ln p (x, z, θ | η)

q (z, θ) dzdθ

= −KL (qzi (z) , p̃ (x, zi | η))

where ln p̃ (x, zi) = E [ln p (x, z, θ | η)]qθ1:K qz−i
.

Here, in order to reduce the clutter, we denote

qθ1:K , qθ1 (θ) · · · qθK (θ) and q−zi , qz1 (z) · · · qzi−1 (z) qzi+1 (z) · · · qzn (z)

This term is maximized with respect to qzi (z) when

qzi (z) = p̃ (x, zi | η) = exp
(
E [ln p (x, z, θ | η)]qθ1:K q−zi

)
(8)

Similarly, keeping other variables fixed, except qθk (θ), F (q (z) , q (θ)) is maximized when

qθk (θ) ∝ p (θ | η) exp
(
E [ln p (xi | θk)]qz1:n

)
Maximization expectation approximation

Using the maximization expectation framework in (Welling and Kurihara, 2006), let’s con-
sider a special case when qzi (z) = δ

(
zi − zMAP

)
, it means that we choose the point esti-

mation for zi. The Equation (8) becomes

zi = argmax
z

E [ln p (x, z−i, θ | η)]qθ1:K
,

while approximation for θ’s is remained the same.

3. Proposed inference framework

In this section, we describe two variational inference algorithms for Dirichlet process mixture
models in which no truncation is needed. One algorithm is developed by using mean field
approximation while the other follows maximization expectation approximation. In order
to develop streaming algorithm for DPM, we follow the framework in (Broderick et al.,
2013) which was developed for parametric models. Since our derivation for algorithms is
for mixture of exponential family, we also describe results for case studies of mixture of
Multinomial and multivariate isotrophic Gaussian distributions.
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Algorithm 1: Truncation-free Variational Bayes for DPM
Input: x1, . . . , xn
Output: {qzi(z)}

n
i=1 , {qθk(θ)}Kk=1

K ← 1 and initialize {q(zi)}ni=1 with dimension K + 1;
repeat

for k ← 1 to K + 1 do
Estimate qθk(θ) using Equation (9) ;

end
for i← 1 to n do

for k ← 1 to K + 1 do
Compute E [nk] using Equation (14) ;
Compute qzi (z) using Equation (11);

end
end
if E [nK+1] > 1 then

K = K + 1;
Increase dimension for qzi (z) and set qzi (K + 1) = 0;

end
until Convergence;
Normalize {qzi(z)}

n
i=1 with K dimensions

3.1. Truncation-free variational inference

3.1.1. Mean field approximation

Let consider DPM model as in Equation (5). Suppose we have n observations x1, . . . , xn
from exponential family f (x | θ), each xi is associated with a latent indicator zi which gets
value from 1 to K where K is some value between 1 and n. The variables to be inferred
are zi’s, θk’s. The mean field approximate distribution is assumed to take the form:

q (z1:n, θ1:K) =
K∏
k=1

qθk (θ | η)
n∏
i=1

qzi (z) ,

where qθk (θ | η) is also an exponential family which is a conjugate prior for the likelihood
f (x | θ) and K is the optimized number of clusters.

Following a standard procedure for variational inference we have the expectation for
parameter variables

qθk (θ) ∝ p (θ | η) exp
(

n∑
i=1

qzi (k) ln p (xi | θk)
)
, (9)

which has closed form if we use a conjugate distribution in the exponential family:

qθk (θ) ∝ exp
(〈
θ, η̃kc

〉
− η̃kσA (θ)−B (η)

)
,

where η̃kc = ηc +
∑n
i=1 qzi (k)T (xi) and η̃kσ = ησ +

∑n
i=1 qzi (k).
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For qzi (z), we compute as follows

qzi (z) ∝ exp
(
E [ln p (z | z−i, x1:n, θ1:K+1)]qθ1:K+1qz−i

)
(10)

Here qzi (z) has its support from 1 toK+1. The value qzi (z = K + 1) means probability
that data point xi belong to some cluster(s) which might express more about current data
point. We note that we do not actually know the value of K but we can estimate it during
optimization process (e.g., we start with K=1 and let it grow). In each iteration we consider
to increase the value of K by comparing E (nK+1) > 1, i.e. the number of data points in
new cluster are greater than one. The justification for choosing E (nK+1) as a criteria to
change the value of K is given in the supplementary document.

The expectation for hidden variables, qzi (z), can be computed as follows. First, we have

ln p (z | z−i, x1:n, θ1:K) = ln p (xi | z, z−i, x−i, θ1:K) + ln p (z | z−i, x−i, θ1:K) + const
= ln f (xi | θz) + ln p (z | z−i) + const

Therefore,

exp
(
E [ln p (z | z−i, x1:n, θ1:K)]qθ1:K q−zi

)
= exp

(
E [ln f (xi | θz) + ln p (z | z−i) + const]qθ1:K q−zi

)
∝ exp

(
E [ln f (xi | θz)]qθz + E [ln p (z | z−i)]q−zi

)
(11)

The first term in Equation (11) can be computed as follows (for k = 1, . . . ,K , we use
qθk estimated in previous steps, otherwise we use prior qθk (θ) = q (θ))

Eqθk {ln f (xi | θ)} = Eqθk {〈θ, T (xi)〉 −A (θ)}

=
〈
T (xi) ,Eqθk {θ}

〉
− Eqθk {A (θ)}

=
〈
T (xi) ,

∂B (η)
∂ηc

〉
− ∂B (η)

∂ησ
. (12)

The last equation is obtained by using property of exponential family in Equation 2
with distribution qθk (θ | η).

To compute the second term in Equation (11), we first estimate p (zi = k | z−i). Using
Chinese restaurant process, i.e., π in the stick-breaking representation in Equation (6) is
marginalized out, we have

p (z | z−i) =


n−i
k

n−1+α if z = 1, . . . ,K
α

n−1+α z > K.
(13)

The second term inside Equation (11) can be represented as

E [ln p (z | z−i)]q−zi =
∑
z−i

∏
j 6=i

q (zj) ln p (zi = k | z−i) .
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Since this term could be too slow to compute due to exponentially complication of zi’s,
using approximation technique in (Kurihara et al., 2007), we can compute the above equa-
tion as follows. Let consider nk as a random variable which sums over Bernoulli variables
nk =

∑n
i=1 1 (zi = k). Under the central limit theorem, this sum is expected to be closely

approximated by a Gaussian distribution with mean and variance given by

E [nk] =
n∑
i=1

qzi (z = k) (14)

Var [nk] =
n∑
i=1

qzi (z = k) (1− qzi (z = k)) k = 1, . . . ,K + 1

Using the following second order Taylor expansion for the moments of functions of
random variables with f (nk) = ln p (z−i) at the value E

[
n−ik

]
, i.e.

f
′′ (nk) =


− 1

(n−ik )2 if k ≤ K

− 1
(n−iK+1+α)2 k = K + 1,

Finally, the second term (11) can be approximated as follows:

E [ln p (z | z−i)] =

ln E[n−ik ]
n−1+α −

1
2

Var[n−ik ]
(E[n−ik ])2 if k ≤ K

ln α
n−1+α k = K + 1.

(15)

We can summarize inference routine as in algorithm 1.

3.1.2. Maximization expectation approximation

Now we derive an inference algorithm with Maximization Expectation framework for DPM
inference. The procedure is similar to VB case, except that Equation (10) now becomes

zi =argmax
k

E [ln p (z = k | z−i, x1:n, θ1:K)]qθ1:K q−zi
(16)

=argmax
k

(
E [ln f (xi | θk)]qθk + E [ln p (z = k | z−i)]q−zi

)
where E [ln f (xi | θk)]qθk is computed in Equation (12) and

E [ln p (z = k | z−i)]q−zi ∝
{

lnnk if k ≤ K
lnα k = K + 1,

while the Equation (9) can be manipulated to:

qθk (θ) ∝ p (θ | η) p
(
{x}k | θ

)
, (17)

where {x}k = {xi | zi = k}.
Algorithm 2 summarizes our Maximization Expectation inference algorithm for DPM.

244



Streaming Variational Inference for Dirichlet Process Mixtures

Algorithm 2: Truncation-free Maximization Expectation for DPM
Input: x1, . . . , xn
Output: {qzi(z)}

n
i=1 , {qθk(θ)}Kk=1

K ← 1 and initialize zi = 1 for all i = 1, . . . , n;
repeat

for k ← 1 to K do
Estimate qθk(θ) using Equation (17) ;

end
for i← 1 to n do

Compute zi using quation (16);
if zi = K + 1 then

K = K + 1;
Intialize a new qθK+1(θ) = p(θ);

end
end

until Convergence;
Normalize {qzi(z)}

n
i=1 with K dimensions

3.2. Streaming learning with DPM

We use the framework proposed by Broderick (Broderick et al., 2013) to develop streaming
variational inference and maximization expectation algorithms for DPM.

Consider i.i.d. data stream x1, x2, . . . generated from (infinite) mixture models p (x | z, θ)
with prior p (z, θ) and C1 , {x1, x2, . . . , xS1} be the first batch of data. Suppose that we
have seen and processed b−1 batches of data from which we obtained posterior distribution
p (z, θ | C1, . . . , Cb−1), denoted as p(b−1) (z, θ). We can compute the posterior after the b-th
batch as

p (z, θ | C1, . . . , Cb) ∝ p (Cb | z, θ) p (z, θ | C1, . . . , Cb−1)
= p (Cb | z, θ) p(b−1) (z, θ) .

This means that we treat the posterior after observing b− 1 batches as a new prior for
incoming b-th batch of data. In our model, we approximate p (z, θ | C) by an approximation
q (z, θ) using variational Bayes in or ME. Therefore the posterior p(b) (z, θ) can be recursively
calculated as follows 2

p(b) (z, θ) ≈ q(b) (z, θ) = A
(
Cb, q

(b−1) (z, θ)
)
,

where A
(
C, qprior

)
is the algorithm to approximate the posterior qpost with prior qprior

which can be Algorithm 1 or 2 and q(1) (z, θ) = A (C1, p (z, θ)). We summarize this inference
algorithm in the Algorithm 3.

2. Here we re-use the notation in (Broderick et al., 2013).
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Algorithm 3: Streaming inference for DPM
Input: C1, . . . , CB, . . . where Cb: one batch (S data points) in stream data {xi}Si=1
Output: {zi}ni=1 or {qzi(z)}

n
i=1 , {qθk(θ)}Kk=1

b = 1;
Approximate q(b) (z, θ) using Algorithm 1 or 2 with prior p (z, θ) = q(b−1) (z, θ);
while there is more data do

b = b+ 1 and collect new data batch Cb;
Approximate q(b) (z, θ) using Algorithm 1 or 2 with prior p (z, θ) = q(b−1) (z, θ);

end

3.3. Case study: mixture model of Multinomial and isotropic Gaussian

Mixture model of Multinomial

Suppose that f (xi | θ) follows a d-dimension Multinomial distribution with parameter θ =
(ln θ1, . . . , ln θd) in exponential family, T (xi) = (xi1, . . . , xid) and A (θ) = 0. The parameter
θ follows a conjugate prior Dirichlet distribution which is also exponential family with
hyperparameter ηc = [η1 − 1, . . . , ηd − 1] and B (η) =

∑d
i=1 Γ (ηi)− Γ

(∑d
i=1 ηi

)
3.

p (θ | η) = exp
(
〈ηc, θ〉 −

(
d∑
i=1

ln Γ (ηi)− ln Γ
(

d∑
i=1

ηi

)))

The posterior estimation for ηk of component k is

η̃kc =
[
η1 − 1 +

n∑
i=1

q
ik
xi1, . . . , ηd − 1 +

n∑
i=1

q
ik
xid

]

B
(
η̃k
)

=
d∑
i=1

ln Γ (η̃ci)− ln Γ
(

d∑
i=1

η̃ci

)

where qik = qzi (k), i.e.

qθk (θ) ∝ exp
(〈
η̃kc , θ

〉
−B

(
η̃c
k
))
.

Therefore,

Eqθk {ln f (xi | θ)} =Eqθk {〈T (xi) , θ〉 −A (θ)}+ ln h (xi)

=
〈
T (xi) ,

∂B (η̃)
∂η̃

〉
+ ln h (xi)

= 〈T (xi) ,m (η̃)〉+ ln h (xi) (18)

where

m (η̃) = [m (η̃1) , . . . ,m (η̃d)] s.t. m (η̃i) = ψ (η̃i)− ψ (η̃)

3. ησ can be any value since A (θ) = 0
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and

ln h (xi) = ln Γ
(

d∑
i=1

xi + 1
)
−

d∑
i=1

ln Γ (xi + 1) .

Here, ψ (·) is digamma function.

Mixture model of multivariate isotropic Gaussian

Now we consider the case that f (xi | θ) is multivariate isotropic Gaussian, which can be
represented in exponential family as follows (here τ = σ−1 is unknown precision parameter
and I is identity matrix of size d).

p

(
x | µ, 1

τ
I

)
= 1

(2π)d/2 |σI|d/2 exp
{
−1

2(x− µ)T(σI)−1(x− µ)
}

= exp
{
τµTx− τ

2x
Tx−

(
τ

2µ
Tµ− d

2 ln τ + d

2 ln 2π
)}

= exp (〈θ, T (x)〉 −A (θ))

where θ =
[
τµT,− τ

2

]T
, A (θ) = τ

2µ
Tµ − d

2 ln τ + d
2 ln 2π and T (x) =

[
x, xTx

]T
. The

parameter θ follows a conjugate prior multivariate Gaussian-Gamma distribution as follows

q (θ | α, β, µ0, λ) = N
(
µ | µ0, (λτ)−1 I

)
.Gamma (τ | α, β) ,

which can be represent in exponential form with natural parameters

q (θ | η) = exp
{〈
η,
[
ln τ, τ, τµ, τµTµ

]〉
−B (η)

}
where η = [η1, η2, η3, η4]T is a vector with d+ 3 dimensions with

η1 = α− 1 + d

2 η2 = −β − λµT
0 µ0
2 η3 = λµ0 η4 = −λ2 ,

and

B (η) = ln Γ
(
η1 + 1− d

2

)
−
(
η1 + 1− d

2

)
ln
(
−η2 + ηT

3 η3
4η4

)
− d

2 ln (−2η4) + d

2 ln 2π

Now we have

q (θ | α, β, µ0, λ) = exp
{〈
η,
[
ln τ, τ, τµ, τµTµ

]〉
−B (η)

}
Therefore, using property from Equation 2, we have

Eqθk [ln τ ] = ∂B (η)
∂η1

= ψ (α)− ln β Eqθk [τ ] = ∂B (η)
∂η2

= α

β

Eqθk [τµ] = ∂B (η)
∂η3

= α

β
µ0 Eqθk

[
τµTµ

]
= ∂B (η)

∂η4
= αµT

0 µ0
β

+ d

λ
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and

Eqθk {A (θ)} = 1
2

(
αµT

0 µ0
β

+ d

λ
− (ψ (α)− ln β) d+ d ln 2π

)

Therefore,

Eqθk {ln f (xi | θ)} = Eqθk {〈T (xi) , θ〉 −A (θ)}
= 〈T (xi) ,m (θ)〉 − Eqθk {A (θ)} (19)

where m (θ) =
[
Eqθk [τµ] ,−

Eqθk [τ ]
2

]
=
[
α
βµ0,− α

2β

]
, T (xi) =

[
xi, x

T
i xi

]
and

Now we can compute qzi (z) as follows

qzi (k) = exp (E {ln f (xi | θ)}+ E [ln p (zi = k | z−i)])∑K+1
k′=1 exp (E {ln f (xi | θ)}+ E [ln p (zi = k′ | z−i)])

where Eqθk {ln f (xi | θ)} computed using Equation (18) and E [ln p (zi = k | z−i)] computed
using Equation (15) .

4. Experiments

In this experiment we demonstrate our algorithms in two settings: dataset in batch mode
and streaming (mini-batch). The datasets include synthetic bar topics and real-world data
set MNIST4. For the base-line methods, we choose two variational methods developed for
DPM: non-collapsed in (Blei and Jordan, 2006) and collapsed symmetric Dirichlet priors
in (Kurihara et al., 2007)5, denoted as BJV and FSD, respectively. Two our methods in
Algorithms 1 and 2 are denoted as TFVB and TFME.

In the batch setting, we will compare inference performance of our algorithms with
base-line methods validation. In streaming setting, we will illustrate the capability of our
algorithms for learning on the fly with incremental data in which the complexity of models
will be learning automatically. All models are implemented using Matlab and ran on Intel
i7-3.4GHz machine with installed Windows 7..

4.1. Data sets and experimental settings

Our inference scheme is developed for class of exponential which includes many popular
probability distributions. We will demonstrate experiments with two most popular expo-
nential distributions, Multinomial and multivariate Gaussian.

Synthetic bar topics. We sampled 1000 data points from ten 25-dimension bar topics
which is shown in top row of Figure 3. Each data point is a sample from 25-dimension
Multinomial distribution. We chose 80% of these as training set, the rest was considered
as held-out data for testing. We ran each algorithm for 100 iterations. For BJV and FSD

4. http://yann.lecun.com/exdb/mnist
5. In this paper, authors described two methods called TSB and FSD, however, they showed that there is

very little difference TSB and FSD.
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Figure 1: Perplexity with different algorithms.

methods, we set different truncation levels at T = 10, 12, 15, 20, 25, 30 and choose the
best truncation level.

MNIST. We used a subset of 25.000 digits images of this data set. Similar to synthetic
data, we also split 80/20% of training-testing data. Each image with 764 (28× 28) dimen-
sions was reduced to 50 using PCA. We applied all four algorithms on this data set. We
fitted models in which the mixture component is isotropic Gaussian with mean µ and covari-
ance matrix τI. The base measure H and variational distribution q (µ, τ) were conjugate
priors N

(
0, (5τ)−1 I

)
×Gamma (4, 2).

For two data sets, we ran in two different settings: batch mode setting in which we ran 4
algorithms and compute perplexity on testing data6; streaming setting in which we divided
into multiple batches

4.2. Experimental results

Dataset in batch mode
Figure 1(a) shows the results on synthetic bar topics. The perplexity (lower is better) of

TFVB is lowest among four methods however, it is converge slower. At the beginning, we
usually set the number of cluster as a small number and let it be increased which will take
more time to reach the true number of components in compared with truncation methods.
In TFME case, we choose point estimation(hard clustering) for each data point which can
easier lead to local minimum. The predictive performance of base-line methods depends on
truncation level which is difficult to set in advance with “never ending” data from streaming
applications.

The mean digit images of the discovered clusters from MNIST data are shown in Figure
2. Figure 1(b) depicts perplexity (in log scale) running on MNIST data with 4 methods.
Similar to bar topic data, TFME and TFVB also have competitive performance to base-line
methods.

6. We explain our methods for computing perplexity with variational inference in supplementary document.
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Figure 2: Digit clustering results with MNIST data of TFME algorithm.

Figure 3: Topics discovered by streaming algorithms with bar topics. The top row is ground
truth topics. The second, third and fourth rows are topics discovered when new
data comes with new topics in each following batch. The last row depicts topics
discovered when observing new data but from old topics.

Streaming setting
For bar topics, we generated data as follows. In the first batch, 1000 data points were

generated from only six out of ten topics. In next 3 following batches, data were generated
from 8, 10 and 10 topics correspondingly. Our streaming algorithm 3 using TFME and
TFVB could discover correctly the number of topics as shown in Figure 3 without defining
number of clusters.

For MNIST data, using the same experimental setting with synthetic data, we divided
our digit data into 8 batches: 4000 digit images from 0 to 2, further each mini-batches of
3000 images with digit ground truth from 0 to 4,. . . 0 to 9 (7 more mini-batches). All these
batches were run with TFVB and TFME to check clustering results. As shown in Figure 4,
with data from the first batch, our algorithm found 7 clusters of six digits. With new data
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mini-batch 1

mini-batch 2

mini-batch 3

Figure 4: Topics discovered by streaming algorithms with MNIST data set. Mini-batch 1
with 4000 digit images from 0 to 2 with 7 clusters discovered while mini-batch 2
with more 3000 images of 0 to 3 digits and mini-batch 3 with more 3000 images
of 5 digits includes more clusters found by our algorithms.

coming from 8 then 10 digits, the algorithms incrementally discovered more clusters without
revisiting old data from previous batches. We demonstrate other mini-batches results in
supplementary material.

5. Conclusion

We have developed truncation-free variational inference algorithms for the Dirichlet process
mixture models and demonstrated its applicability to multi-dimensional data from expo-
nential family distributions. Based on these truncation-free algorithms, we have introduced
a streaming framework which can learn on the fly in the true streaming setting where
data are never-ending collected. We have demonstrated the advantages of our algorithm
in comparison with other methods including collapsed (FSD) and non-collapsed variational
(BJV) in terms of automatically learning number of clusters. Incremental learning with our
streaming algorithms which leverage the natural property of nonparametric models makes
these models more practical. Though our methods are developed for Dirichlet mixture
models, extensions to other BNP models, such as Pitman-Yor process (Pitman and Yor,
1997), Hierarchical Dirichlet process (Teh et al., 2006) are straightforward by using Chinese
restaurant process representation (Aldous, 1985).
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