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Abstract

We provide a non-asymptotic analysis of the generalisation error of compressive Fisher
linear discriminant (FLD) classification that is dimension free under mild assumptions.
Our analysis includes the effects that random projection has on classification performance
under covariance model misspecification, as well as various good and bad effects of random
projections that contribute to the overall performance of compressive FLD. We also give
an asymptotic bound as a corollary of our finite sample result. An important ingredient of
our analysis is to develop new dimension-free bounds on the largest and smallest eigenvalue
of the compressive covariance, which may be of independent interest.

Keywords: bounds on extreme eigenvalues, random projection, effective dimension, Fisher
discriminant classification

1. Introduction

We consider the fundamental problem of 2-class classification, given a training set Ty =
{(zn,yn)}_, sampled i.i.d. from a distribution D over the domain X x ). The input
domain X can be taken as R? with d arbitrarily large (more generally a separable Gaussian
Hilbert space can be taken), and Y = {0, 1}. For a given class of functions, F, the goal is to
learn from 7T the function i € F with the lowest generalisation error in terms of some loss
function £. We will use the (0, 1)-loss, which is the loss of interest in 2-class classification,
so we can write the generalisation error of a classifier h as:

E(zy)~n[Lo,1)(h(2), y)[Tn] = Prey[h(x) # y|TN]

where (z,y) is a query point with unknown label y.

The first classification study is due to Fisher (1936). The method known under the
name of Fisher Linear Discriminant (FLD) is still a widely used successful approach. Its
simplicity made numerous analytical studies feasible, including very recent ones (McLachlan
, 1992; Bian & Tao , 2014; Pourhabib et al. , 2015). There are also extensions of FLD to
functional data spaces (James & Hastie, 2001; Shin , 2008).

We are interested in settings where the original data dimension d is arbitrarily large.
Many machine learning methods are known to scale poorly when the dimension of the data
space grows, and FLD is no exception. An interesting problem raised e.g. in Farahmand
et al. (2007) is to devise algorithms whose performance scales with the hidden intrinsic
dimension rather than the observed ambient dimension of the data.
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Dimensionality reduction attempts to get around the problems of high dimension. Ran-
dom projection is a universal method to do this, in the sense that it is oblivious to the data
and has nice theoretical guarantees. Early work on compressive FLD — that is learning an
FLD from random-projected data — only considered the conditional error when the training
set is fixed, and has shown that in general the bounds, as well as the empirical performance,
get worse with increasing d (Kaban & Durrant , 2013). Furthermore, in order to control
the error of the compressive classifier, the compressive dimension is only required to be of
the order logarithmic in the number of classes (Durrant & Kabén , 2012). In this paper we
will look in more depth at the generalisation error of compressive FLD under such drastic
dimensionality reduction, including the case when the shared covariance model of FLD may
be misspecified.

Let R be a k x d matrix with entries drawn i.i.d. from a standard Gaussian. The
projected training set that we work with has the following form: T, = {(Raxi,v;) : (x4, ;) ~
D}. We seek to bound the probability that a query point (Rz,y) ~ D is misclassified by
the compressive FLD. To this end, we will develop and apply new bounds on the extreme
eigenvalues of the projected covariance that are dimension-free and depend only on the
effective dimension.

Definition 1 (Vershynin , 2011). Let ¥ be a trace class covariance matriz in a separable
Hilbert space, i.e. Tr(X) < oo, and denote by Apmaz(X) its largest eigenvalue. The effective

rank of ¥ is defined as r(X) = /\Z:i?%)

The remainder of the paper is structured in two main sections. The next section develops
some tools that we will need. Section 3 then delves into a detailed and more complete
analysis of the generalisation of compressive Fisher discriminant classification than previous
analyses have done.

2. New Dimension-free Bounds on the Extreme Eigenvalues of a Wishart
Matrix

2.1. Background

It was noted in Dasgupta (1999) that covariances become more spherical after orthogonal
projection to a randomly oriented linear subspace. This fact is also quite intuitive to see: Let
Y be a covariance matrix in R? with Apax(X) and Apin(2) denoting its largest and smallest
eigenvalues respectively, and let R, be a k x d random matrix with orthonormal rows, k < d.
Then the Poincaré inequality (Horn & Johnson, 1985) says that Apax(RoXRL) < Apax(2)
and Apin(RoXRL) > Anin(2).

It is often more convenient to use random matrices with i.i.d. entries in place of R,; let
R be a k x d random matrix with i.i.d. Gaussian or sub-Gaussian entries, k < d. When d is
large enough, due to measure concentration, such a matrix R has almost orthogonal rows
of almost the same length. For instance, if the entries are drawn i.i.d. from N(0,1/d) then
all rows of R have Euclidean norm close to 1. Moreover such random matrix will behave
almost like the orthonormal R,,.

Then we can write

Amax(RERT) < Mnax (2) Amax (RRT), and Apin (RERT) > Apin(Z) Amin(RRT), (1)
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and use the known high probability bounds on the largest and smallest eigenvalues of
RRT. The tightest bounds are known for R having i.i.d. Gaussian entries, and these
match the Bai-Yin law at the limit when d,k — oo and k/d — ¢ € [0,1]. The non-
asymptotic bounds by Davidson & Szarek (2001) (Theorem II.13.) have been obtained
using comparison inequalities for the suprema of Gaussian processes, namely the Slepian
and Gordon inequalities. These results, given also in eq. (2.3) of Vershynin (2011), are the
following:

Lemma 2 (Davidson & Szarek , 2001) Let R be a k x d matriz with entries sampled i.i.d
from N'(0,1). Then for all € > 0 with probability at least 1 — 2 exp(—e2/2) we have:

(Vd = VE — €)% < Anin(RRT) < Apae(RRT) < (Vd + VE + €)% (2)
where the lower estimate requires that k < d.

Now, using these we can bound the extreme eigenvalues of RERT, where R is a k x d
random matrix with k& < d and having i.i.d. entries from A (0, 1), simply as:

d-Amin(2)(1=v/k/d—€/Vd): < Anin(RERT) < Amax (RERT) < d-Amax () (14+V/k/d+¢/Vd)?
(3)
w.p. 1 —2exp(—€2/2), where ()4 = sup(-,0).

The problem occurs in settings when we would like to let d grow without bounds. On
the surface, in eq. (3) the factor of d can be eliminated by choosing the entries of R to
have variance 1/d instead of variance 1. However, if we do this then in return we will have
E[|Rz||?] = E[||Roz|?] = §Hx||2 for any = € R%, so the dependence on d comes back again.

In other words, we cannot let d grow without bounds without either blowing up Apax(RXRT)
or getting all distances shrink to zero after projection. These problems arise for example
when trying to quantify the preservation of a Mahalanobis norm that is estimated from
randomly projected data. In addition, if d grows unbounded and the infinite sequence of
the eigenvalues of 3 converges to 0 while all of its finite eigenvalues are nonzero, then the
lower bound on RY.RT in eq. (3) cannot be used since there is N0 Apin(X). This is the
typical case for trace class covariances, which we will consider in this paper.

In the next subsection we get around both of these problems by deriving dimension-
free bounds on the largest and smallest eigenvalues of RYRT. To this end we will use the
same tools as Davidson & Szarek (2001), i.e. the Slepian and Gordon inequalities, but we
extend their proof to account for 3 # I;. As we shall see, this allows us to make the bound
independent of d. We state our bounds in R? although this can be essentially replaced
with a separable Hilbert space which can be identified with 2, equipped with Gaussian
probability measure over Borel sets similar to (Biau et al., 2008). So d is allowed to be
infinite as long as we require that ¥ is a trace class covariance operator (i.e. Tr(X) < 00).

Before proceeding, the Slepian and Gordon inequalities that we will use (Ledoux &
Talagrand (1991): pp.76-77; Davidson & Szarek (2001): Lemma I1.9.) are given below.

Lemma 3 (Comparison inequalities) . Consider two Gaussian processes (X¢)ier and
(Yy)ter indexed by a bounded set T, with E[X;] = E[Y}].
(a) Slepian inequality. If the expected increments satisfy:

E[(X: — Xp)?] < Bl(Y; = Yp)?), Vi, €T, (4)
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then, ElsupX;] < E[supY}].
teT teT

(b) Gordon inequality. If T' = UsesTs, and the expected increments satisfy:

E(X; — Xv)?]

E(X; — Xv)?]

E(Y; = Y)?| YVt € Tyt € Ty, s # s and (5)

<
> E[(Y; — Yy)?|,Vt,t' € Ty for some s, (6)

then, Elsup inf X ] < E[sup infY4].
seSteTs seSteTs

2.2. New bounds

Lemma 4 (Dimension-free bounds on the extreme eigenvalues of RYRT) Let ¥ be
a covariance matriz in R?, and we denote by Apmaz(-) and Apmin(-) its largest and smallest
eigenvalues. Let R be a k x d random matrix with i.i.d. standard Gaussian entries. For
any € > 0 we have w.p. at least 1 — exp(—€?/2):

Amas( RERT) < <\/T7“(E)+\/k-)\mam(2)+e>2. (7)

If k < LAZ::(T%L%)J then for any € € (0,1) we have with probability at least 1 — exp(—€2/2):

2

Amin(RSRT) > (\/TT(Z)—\/k~)\mM(E)—e>+. (8)

Remark 5 Let us observe that in the case of finite d and X = I;, our bounds recover
exactly the upper and lower estimates of Davidson & Szarek (2001), of which the upper
bound on the largest eigenvalue is known to be sharp. In all other cases our bound in eq.
(7) is tighter than that obtained in eq. (3) by the application of the bound of Davidson &
Szarek (2001), because the effective dimension Tr(X)/Amaz(X) is always no larger than the
ambient dimension d. Furthermore, there are cases when the lower estimate in eq. (8) is
also tighter than the corresponding bound in eq. (3).

Example 1 Figure 1 shows an illustration of these new bounds against the empirical dis-
tributions of the extreme eigenvalue estimates of RERT, in comparison with the simpler
bounds in eq. (3). The d x d covariance matrix ¥ has its first 40 eigenvalues equal to
1 and the remaining eigenvalues decay as the sequence (1/1’2),-:17"_7(1_40. In the numerical
simulation, d = 100, but by construction the trace of ¥ is upper bounded by 40 + 72 /6 for
any arbitrarily large d. The improved tightness is most apparent on these figures.

We should note though that the proof relies on the use of comparison inequalities for the
suprema of Gaussian processes, and this implies that the bounds in Lemma 4, just like those
of Davidson & Szarek (2001), are specific to Gaussian R. It is not clear whether similarly
tight bounds could be obtained for subgaussian R. The largest singular value of a product
of deterministic and random matrix was studied under much more general non-Gaussian R
in Vershynin (2011) by other techniques yielding bounds of similar form but with worse
constants and/or an additional logarithmic term. Those bounds are also independent of d
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Figure 1: Ilustration of the bounds given in Lemma 4. The d X d covariance matrix X
has its first 40 eigenvalues equal to 1 and the remaining eigenvalues decay as the
sequence (1/i%);=1,._4—40. In this simulation, d = 100. The bounds from eq.(3)
that use Davidson & Szarek (2001) are shown for comparison, along with the
empirical distributions of the extreme eigenvalue estimates of RYRT .
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and depend on the rank of ¥ instead.

Proof (Sketch) of Lemma 4, eq. (7).

Without loss of generality we can identify > with the diagonal matrix of its eigenvalues A
by absorbing its eigenvectors into the Gaussian sequences (Rj;)i>1,j = 1,...k. Then write
the largest singular value of AY2RT in the following form:

Smax(AV2RT) = sup u” RAY % (9)

ueSk—1 yesd-1

where 8”71 denotes the unit sphere in R”.
Taking the index set T = S¥~1 x S~ with elements t = (u,v) € T, we define a Gaussian
process as the following;:
Xuw = u" RAV?0. (10)

The supremum of X, is the singular value of our interest.

Now, the strategy is to compute the expected squared increments of X,,, and upper-
bound it with a quantity that coincides with the expected squared increments of another
Gaussian process whose supremum is easy to compute.

It can be verified (details omitted) that the following definition fits the bill for the second
Gaussian process:

Yir = V Amax(2) - uwFg+0'h (11)

where g ~ N(0,1x), and h ~ N(0,A) are independent of each other. Note that h is
well defined even if d is allowed to be infinite because, A is trace-class. So by the Slepian
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inequality, after some working, we can get the following upper bound on the expected largest
singular value of AY/2RT:

Elsmax(AY?RT)] < /Tr(Z) + Vk - Amax (D). (12)

The final step is to bound smax(/\l/ 2R away from its expectation, using the fact that
Smax(+) is 1-Lipschitz w.r.t. the spectral norm (Vershynin (2011): Corollary 5.35). Hence,
invoking the the concentration of Lipschitz functions in Gaussian space we get:

Smax(A2RT) < V/Tr(Z) + VE - Amax () + € (13)
with probability at least 1 — exp(—e?/2). This completes the proof of eq.(7) O

Proof (Sketch) of Lemma 4, eq.(8).

We denote by sins the infimum of a sequence of singular values. We use infimum here
to accommodate the fact that d, and hence the sequence of singular values of AY2RT is
allowed to be infinite.

It is useful to write sins of AY2RT in the following form:

Sinf(A1/2RT)=— sup inf uT RAY 2y, (14)

weSk—1veSI1

Then take the index set T = S*1 x S?! with elements denoted as t = (u,v) € T as
before, and take S = S¥~! with elements u. For each v € S define T,, = {(u,v) : v € S 1}.
It is easy to see that T' = Uy,esTy.

With the same definitions of X,, and Y, as given before in eqs (10) and (11), one
can verify that the two conditions on the Gordon inequality hold. Thus, from the Gordon
inequality we have that the negative of the smallest singular value of our interest, i.e.

E[sup inf X,,] is upper bounded by [Sup mf Ym,] where Yy, is, as in eq. (11) — which
ueSt€Tu ueSte
works out as:

Efsup inf Yyo] = v/ Amax () - E[llgll] — E[[|A]] (15)
ueSteTy
with g ~ N(0, I;;), and h ~ N(0,A) independent of each other.

Now it remains to compute (or upper bound) the expectations in eq.(15), and the
negative of the r.h.s. of eq.(15) (or an upper bound on it) will give us the lower bound on
sinf(AY2RT) of our interest.

The first term is the expectation of a y variable, that is,

Epvtoallall] = VIS o, (16)

The second term does not have a known form, and requires some work. Using recent results
from Pinelis (2015a), and references therein, we can bound this from below with /Asup(X)
times the expectation of a Nakagami distribution as the following:

Bl > v/ A ()2 ( ) /2))/ 2 )
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where r(X) is the effective dimension.
Now, since £ < r(X), we can use, as in Davidson & Szarek (2001): Thm 2.13, that

the sequence <\f — ﬂ%) o is decreasing. Therefore it follows that the r.h.s. of
eq.(15) is bounded as: -

Vunax(E)Elllgl] = ElIR) < vk Amax(D) = VTr(E) (18)

Plugging this back into egs. (15) and (14) we get the statement in eq. (8).

The final step is again to note that si,¢(.) is 1-Lipschitz with respect to the spectral norm
(Vershynin (2011) Corollary 5.35) and use Gaussian concentration of Lipschitz functions
around their expectation. [J

3. Application to bounding the error of compressive Fisher discriminant
classification in terms of the effective dimension

In this section the class of functions F will consist of FLD classifiers. As elsewhere in
the literature (Bian & Tao , 2014; Pourhabib et al. , 2015), we will assume that the two
classes follow multivariate Gaussian distributions — however, we do not assume identical
class covariances in the true data distribution. The only requirement we need is that the
true class covariances have finite trace. We then model this data by an FLD model, that
is, the model covariance that is shared between the two classes. Part of our analysis will
quantify the effects of this covariance misspecification.

The class label of a query point is predicted according to the smallest Mahalanobis
distance from the class centers. Denoting by ¥ the maximum likelihood estimate of the
pooled covariance and by fig and {11 the maximum likelihood estimates of the class means
on the original data, the decision function of compressive FLD, denoted as iLR, for an input
query point z is:

hfi(z) =1 {(ﬂl — fi))'RT(RERT) ™R <x — “0;”“) > 0}

Our interest is the generalisation error (or misclassification error) of h®, which is defined
as Py, [Wf*(Rz) # y|TH]. We will prove the following result.

Theorem 6 [Non-asymptotic generalisation error bound for compressive FLD] Let (z,y) ~
D be a query point with unknown label y and Gaussian class conditionals x|y =i ~ N (u;, X;)
with trace class covariances, i.e. Tr(¥;) < oo,Vi = {0,1}. Let m; = Pr(y = i) be bounded
away from both 0 and 1. Let R be a k X d random matriz with i.i.d. standard Gaussian
entries. Then, Ye € (0,1), the generalisation error is bounded as the following:

Pry,[hT(Rz) # y|Tn] < ...

Tr(B1 50+ 50> Amas(01 Sota0%s
1 . W i — pol? + TR — | fraalifpon )L Ve
m® | — k—e Ri) —
; | b VIr(E:) + VEXmaa(X:) + € 9(Rs) VN B;
+
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w.p. 1 —10exp(—€?/2) — 2exp(—moNe?/3), where ® is the standard Gaussian cumulative
distribution function, ag = mo(1+€), oy = 1—mo(1—e€), Bo = mo(1—€) and /1 = 1—mp(1+e€),
and g(R;) = 1@

In the case when Yo = X1 = X, then for k < (VN — 2 — €)? we have:

- (VN—Q—I—\/E—FG)Q

T (20)

In the case when Yo # X1, then
[(\/ 24+ VE+ )2+ (VNas — 1+ VEk + )2 Mmae(M;) — (VNBZ — 1 — VE — E)iL

(W2 VE - 98+ (VB L= VE — 3 (M) — (VN — T+ VE+ €]
(21)
provided that k and N are such that this is finite. In the above,

~ . - \/Tr(E l)‘i‘\/k Amax( —\Z)+€)
Amaz(Mz) N { \/TT z) \/k')\max i - )3—

. . _ \/T’F 1) \/k; : )\max Ez) )+
)\mm(Mz) = ma { \/Tfr(z Z) n \/k; )\max 5 Z) n G)Q,Amm(zﬁzﬂ)} (23)

where (-)* stands for any choice of generalised inverse.
Furthermore, by letting the sample size N — oo we get the following asymptotic error
bound.

Amaz(zj—z—'z)} (22)

Corollary 7 (Asymptotic generalisation error bound for compressive FLD) . Un-
der the conditions of Theorem 6, and the same g(-), we have:

3 (\/E B G)Hy’l - ILLO” S\maz(Ml)
hjlvnjctlopp’f’r y[ (R(E 7é y|TN ; 7Tz ( \/Tr(zt) n \/k ' )\maw(Ei) e g <S\7HM(MZ) )) (24)

w.p. 1 —4exp(—€2/2), where Amaz(M;) and Apin(M;) are as given in egs. (22)-(23).

Clearly, as expected, eq. (24) is an upper bound on the Bayes error since both the
misspecification of a shared covariance and the random projection introduce biases. However
the distortion is controlled, and the bound has the main characteristics of the FLD error.
In particular, the crucial role of the distance between the class centers is most apparent;
the g() function encodes the price to pay for a misspecification of a shared covariance. If we
divide through both the numerator and the denominator by Apax(2;) we can see that the
denominator scales with the effective dimension 7(%;), and the numerator scales with the
distance between the class centers relative to Amax(2;). The condition number in the g(-)
function in the asymptotic bound evaluates to 1/2 if and only if the true class covariances
are identical, and it is less than 1/2 otherwise, so the error bound increases with the increase
of this condition number.

The finite sample bound in Theorem 6 shares the same main characteristics as above,
but of course it provides finer details since it holds true for any training set of size N.
Its various components and their behaviours will be exemplified in numerical simulations
shortly.
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3.1. Proof (Sketch) of Theorem 6, and interpretation of the bounds

We start by writing the generalisation error conditional on both R and 7Ty, and decomposing
in a similar fashion as in (Durrant & Kabén , 2012). Define the following three terms:

Ai = |[(RSRT) 2R (1 — fio) |
. \/5((RSRT)~1 RS, RT (RSRT)~%)
Z 1+ k((RSRT) "3 RY;RT(RERT) " 2)
Ci = [(RSiRT) 2 R(ui — )]

Using these terms, we can decompose the generalisation as the following:

P, [h"(Rz) # y|Tw, R] = ...
1

S (_1 (i — )" RT(RSRT) R iy + s — 20 ):
2 i

fin — fio)T RT (RERT)=1RY,; RT (RERT) =1 R(ji1 — fio)

i e [ LU= o) RERSRT) R (i — o) = 2 (s — )" RY(RERT) R (i = i) | _
= 2 V(i — j10)TRT(RERT)~ RS, RT (RERT) =\ Rjuy — fuo)
Zm‘b (—[AiB; — Ci]) (25)

i=0

where eq. (25) follows from Kantorovich inequality (Horn & Johnson, 1985) applied to the
first term of the numerator and Cauchy-Schwarz to the second.

In what follows, we will lower-bound A; and B; and upper-bound C;.

Before proceeding, we give the following tail bound that we will make use of.

Lemma 8 (Dimension-free bound on the norm of a (sub)Gaussian vector) Let X ~
N(u,X). For any e € (0,1),

2
Pe{ |11 = VI + TP > v/ Al } < 2exp{€} (26)

2

This follows directly from Gaussian concentration of Lipschitz functions, since ||| is Apax(Z)-
Lipschitz. Interestingly, it also holds more generally for sub-Gaussian X, as a consequence
of the Hanson-Wright inequality (Rudelson & Vershynin , 2013). An elementary proof can
also be found in Lemma 1 of Durrant & Kaban (2012), which, after rearranging terms,
turns out to be identical to Lemma 8 above.

3.2. Lower bound on A4;

The term A; is the distance between the class center estimates in the Mahalanobis met-
ric defined by the true covariance of class i. A larger value for this term implies better
generalisation.
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Using a combination of the Rayleigh quotient inequality, together with Lemma 4, and
Lemma 8 applied twice, we arrive at the following lower bound, w.p. 1 — exp(—¢?/2) —

exp(—e%,i/2) — exp(—€3/2):

[\/E*ﬂh- \/ Yo > o 1
A 2 A/l = poll? + Tr(— + 7)) — €34/ Amax( + )
VTr(Z) + VEy Amax (Zi) + €2, No M No M ( +)
27

One can also verify that a similar strategy for bounding the corresponding A?ataSpace FLD _

||Z;1/ 2(,&1 — f1)]| term of the dataspace FLD would yield exactly the expression in the
bracket of second factor in eq. (27), w.p. 1—exp(—¢€3/2), and so the fraction in the first factor
essentially encodes the impact that random projection has on this term. Unsurprisingly,
this fraction decreases with k, deteriorating the error as k gets smaller. Hence, from the
analysis of A; terms we see that the data distributions that have large relative distance
between their class centers are the ones that allow a more drastic random compression
without causing too much unwanted deterioration of the classification accuracy. Feature
space representations via the kernel trick may yield such data distributions.

Figure 2 illustrates the behaviour of an A; term. For Yy we used the same covariance
matrix as in the earlier simulation, and ¥; was an arbitrary rotation of 3. The true
centeres g, 11 were set to arbitrary locations at Euclidean distance 14.1 of each other. We
see, especially after zooming in, that our lower bound on A; increases with increasing k, in
agreement with the behaviour observed in the empirical data distriburions. However the
bound is much tighter for small values of k than it is for higher k£ values. The corresponding
term A?ataSpace FLD of the dataspace FLD is also plotted for reference.

3.3. Lower bound on B;

Each term B; is a decreasing function of the condition number of a matrix that encodes the
mismatch between the true covariance of the i-th class and the pooled covariance estimate
of the model — this includes contributions from both covariance misestimation from finite
samples, and from misspecification of a shared covariance model. A higher value of this
function is better, the highest achievable being 0.5. As we shall see, the random projection
actually helps reduce this mismatch, and the more we compress the data the smaller the

condition number, so the higher the value of the B; term.
Recall, the true class covariances >; and »_; are trace class. We can show w.p. 1 —
4exp(—€3/2) the following:

k((RERT) 2R, RT(RSRT)™3) < ...
[W\r "o VE+ )+ (VN — T+ VE+ e)Pmax (M) — (VN — T — vV — 64)3} X
[(\/N —2-Vk—e)t+ (VNoi — 1= Vk =€) Anin(M;) — (VNo — 1+ VE+ 64)2}+

where

M; = (R%;RT)"Y2Ry._,RT(R%;RT) 1/ (29)

encodes the mismatch between the two true class-conditional covariances after random
projection. The notations S\maX(Mi) and :\min(Mi) represent upper and lower bounds on
the extreme eigenvalues of M;, given in subsection 3.3.1. The simple special g = 31 (i.e.
the case of correct model specification) is given in subsection 3.3.2.
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Figure 2: Illustration of the lower bound on an A; term. (a) The empirical distributions
are superimposed as obtained from 20 independent realisations of the training
set and the R. The corresponding empirical estimate for the A; term for the
dataspace FLD is also shown for comparison and reference. (b) The same lower
bound on A; zoomed in, along with a lower bound on A?ataSpace FLD derived in
the same way.

3.3.1. BOUNDING THE EXTREME EIGENVALUES OF M;

The extreme eigenvalues of the matrix M, represent the error contribution of FLD’s sim-
plifying model assumption of a shared class-covariance when the true class covariances are
in fact different.

In the finite dimensional case the separation theorem for generalised eigenvalues (Scott
& Styan , 1985) can be used, provided that ¥y and ¥; share the same column space:

Amax(Mi) < )\max(zjgﬁi); )\min(Mz') > Amin(zjzﬁi) (30)

where (-)* stands for any choice of generalised inverse.

Note that the inequalities in eq. (30) imply that this simplifying assumption is less
damaging in the compressive space than in the original data space. In other words, random
projection helps ameliorate the covariance misspecification.

However, the deterministic inequalities in eq. (30) can sometimes be loose in high
dimensions if ZZFEW- has large condition number. An alternative is to use the bounds
developed in the previous section, which yield the following;:

Amax(M;) < Amax (RE-iRT) (\/TT(EW.) + k- Amax(Z-i) + 6)2

T A (RERT) (ﬂr(zi)—ﬁ*max@i)‘e)i

(31)
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2

Amin(RE-;RT) (\/TT(EW-) —VE - Amax(Z-) — e)

)\min(Mi) = -
/\max(RZiRT) (\/TT(Ez) + \/k : /\max(zi) + €>2

+ (32)

The latter bounds may be tighter in some cases, especially when & is small. In Figure 3
we illustrate this, where we used the same covariances as in the previous simulations, with
the second covariance being a random rotation of the first. We then take the minimum and
maximum between the corresponding Apax(M;) and Apin(M;) bounds respectively before
replacing into eq.(28).

We see from the figures that random projection is beneficial for these extreme eigenvalue
terms. This is because random projection diminishes the differences between the two class-
conditional covariances and improves the condition number of M;.

A (M); d=100 Arin(M): 05100
max( i)’ - 09— T T T T T T T T T
T T T T T I T T o g— H.p. lower bound onA . (M)
900 08l Deterministic lower bound on )\mm(M‘) 1
o Empirical distribution of A_ (M)
800 -
071
700 =— H.p. upper bound onA_ (M) o6k
Deterministic upper bound on A, (M) °
6001 o Empirical distribution of A__ (M) osk
500 - °
041 °
400 -
031
300 )
021
200
0.1F
100+
L — |
of o o 4 0 "
! . . . . . . . . . . . . . . . . . . . . .
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22
Reduced dimension (k) Reduced dimension (k)

(a) (b)

Figure 3: Hlustration of the bounds on the extreme eigenvalues of M;. For the largest
eigenvalue smaller values are better; for the smallest eigenvalue larger values are
better. we see that the deterministic bound tends to be loose than the high
probability bound when k is small, and tighter when k is large. We also see that
random projection helps achieve better values for these terms.

3.3.2. THE SPECIAL CASE OF Yy = X

Returning to the task of lower bounding of B; terms, this is much simpler when there is
no model misspecification, so the class-conditional covariances are in fact identical. In this
special case, ¥; = X_; = X, we can get a neater bound on the condition number in B; as
the following:

2
<((RERT)"*RESRT(RERT)3) < ( VN 2+ Vk+ 64) (33)

o VN =2 —Vk — ey
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w.p. 1 —2exp(—e3/2) w.r.t. the random draws of Ty.

This completes the lower bounds on B;. Figure 4 puts all these pieces together and shows
the empirical behaviour of a B; term along with our bounds. In this simulation the true
class-conditional covariances are in fact identical, and we plot both our specialised bound
for this situation, i.e. eq. (33) plugged into the function g(+), and the bound that we derived
for the more general misspecified situation, i.e. eq. (28) plugged into g(-). As expected,
the specialised bound is tighter — in fact, as we can see, it tightly follows the empirical
behaviour. The more general bound also follows the main trend of the empirical behaviour,
albeit it is understandably slightly looser. The empirical behaviour of the corresponding
dataspace FLD B?at%pace FLD term is also shown, and we can see that the compressed
version achieves higher (better) values for this term. This is because the compression acts
as a regularisation by which both covariance misestimation and covariance misspecification
effects are ameliorated.

Bi term; d=100, NO:lOOO Bi term; d=100, k=2

,*__-4—---& i b 05¢ o o o 0_;__;_;_;_4_*_*__*__*_*_4._

[| —@— CFLD: Lower bound on B,
— - CFLD: Lower bound on B, for %=3,

0.341 . CFLD: Empirical distribution of B‘
Dataspace FLD: Empirical distribution of B

=— CFLD: Lower bound on B
— 5 - CFLD: Lower bound on 8 for Z;=3,
. CFLD: Empirical distribution of B,
03t Dataspace FLD: Empirical distribution of &1

. . . " r r "
0 ‘5 1‘0 15 20 25 3‘0 3‘5 40 200 300 400 5%) | 600, N700 800 900 1000
Reduced dimension (k) ample size (N)

(a) (b)

Figure 4: Hlustration of the lower bounds on a B; term. Higher values are better. We see
that random projection has a very beneficial effect on this term. We also see
that both of our lower bounds reflect the empirical behaviour faithfully, and as
expected, the more specialised bound for equal covariances is tighter.

3.4. Bounding C;

The terms C; represent the mean estimation error for the i-th class.
For every instance of R, we have (RY;RT)™2R(ji; — wi) ~ N(0,Ix/N;). Hence, from
Lemma 8 we have the following;:

1 . k 1
I(RS:RT) "2 R(p; — i) < VN T €5y N, (34)

w.p. 1— exp(—egﬂ-/2).
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Figure 5 shows numerical simulations illustrating our upper bound against the empirical
behaviour of the distributions of a C; term, and in comparison with the empirical behaviour
of the corresponding term of dataspace FLD. The tightness of our bound is most apparent
and we also see that random projection helps reduce the estimation errors. This is because
estimation in lower dimensions is easier and needs less data points.

Ci term; d=100, k=12

Ci term; d=100, NO:1OO
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T T
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Figure 5: Hlustration of the upper bounds on a C; term. Lower values are better. We see
that random projection is beneficial. We also notice that our upper bound is tight
and follows the empirical behaviour tightly.
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3.5. Assembling the pieces

In the final step we simply put together the bounds from the previous subsections, and
count up the number of distinct failure probabilities using the union bound, and putting
€1 = €9; = €3 = €4 = €5; =: €. The probability that the bound on A; or A—; fails is bounded
above by 4 exp(—¢2/2), the probability that the bound on B; or B; fails is bounded above
by another 4exp(—e?/2) in the general case (or 2exp(—e?/2) in the special case when
Yo = %), and the probability that the bound on C; or C-; fails is bounded above by a
further 2 exp(—e?/2). Thus, we get w.p. 1 — 10 exp(—e?/2) the following:

Pr%y[ﬁR(Rz) # y|Tn, No) < ...

: [\/Hﬂl — ol? + Tr(NIE(());fVOZI) _ €\/Amax(Tr(]J\\/f;ZEV(l)JrNo21)) Vi
md | — [\/E—e] * (k) —
y; z " VTE(E0) + VEAmax (30) + € VN

where g(&;) = %, with &; = R;(€) given by eq.(28) or by eq.(33).
This is the error for any random draw of the training set of size N where the class
proportion Ny/N is fixed. To include the effects of a random proportion of class member-

ships according to Prly; = 0] = mg,i = 1,...N, we can use a Chernoff bound for Bernoulli
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variables (easily derived from the Bernoulli moment generating function):
Ve € (0,1),Pr[(1 — €)moN < Ny < (14 €)moN] > 1 — 2exp(—moNe?/3) (36)

Now, using the notations for ag, a1, By and 1 defined in the statement of the theorem,
we get w.p. 1 — 2exp(—moNe2/3) that,

NB; < N; < Na. (37)

Plugging back completes the proof. B

4. Conclusions

We derived a non-asymptotic generalisation bound for the compressive Fisher discriminant
classifier which is more complete than previous attempts, and is dimension free under mild
assumptions. By decomposing the generalisation error we were able to disentangle the effects
of random projection on various components of the error, pinpointing beneficial effects on
misestimation and covariance misspecification, and a detrimental effect of reducing the class
separation. We also gave an asymptotic bound as an immediate corollary of our result. A
key technical ingredient in this analysis was to develop sharp dimension-free bounds on
the largest and smallest eigenvalue of the compressive covariance by extending previous
work using comparison inequalities for the suprema of Gaussian processes. In future work
it will be of interest to investigate whether similarly sharp bounds could be derived for
subGaussian random projection matrices.
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