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Abstract

It is well known that in general, the nearest neighbour rule (NN) has sample complexity
that is exponential in the input space dimension d when only smoothness is assumed on the
label posterior function. Here we consider NN on randomly projected data, and we show
that, if the input domain has a small ”metric size”, then the sample complexity becomes
exponential in the metric entropy integral of the set of normalised chords of the input
domain. This metric entropy integral measures the complexity of the input domain, and
can be much smaller than d – for instance in cases when the data lies in a linear or a smooth
nonlinear subspace of the ambient space, or when it has a sparse representation. We then
show that the guarantees we obtain for the compressive NN also hold for the dataspace NN
in bounded domains; thus the random projection takes the role of an analytic tool to identify
benign structures under which NN learning is possible from a small sample size. Numerical
simulations on data designed to have intrinsically low complexity confirm our theoretical
findings, and display a striking agreement in the empirical performances of compressive
NN and dataspace NN. This suggests that high dimensional data sets that have a low
complexity underlying structure are well suited for computationally cheap compressive NN
learning.
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1. Introduction

A fundamental question in machine learning is the following: What makes it possible to
generalise from few training points? Here we consider this question for nearest neighbour
learning – that is, general learning of an unrestricted function class. To this end we will
study the compressive version of this learning method where we make use of a result of
Klartag & Mendelson Klartag & Mendelson (2005) that established a connection between
random projection and empirical process theory. This connection brings us some notions of
metric complexity that we use to progress our understanding of what kinds of data domains
permit good generalisation from fewer training points in the case of nearest neighbour
learning.

The setting of general unrestricted learning is of importance for several reasons. The
nearest neighbour (NN) rule is extremely simple and intuitive, and widely used. Obtain-
ing results on its sample complexity is of broad interest. While the study of complexity-
constrained function classes was studied extensively in statistical machine learning theory,
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nearest neighbour type methods are of much recent interest Gottlieb et al. (2014); Chaud-
huri & Dasgupta (2014).

As we shall see, the lack of constraints on the function class will allow us to quantify
the impact of complexity properties of the data domain on the generalisation of NN. In
particular, a look at its compressive version reveals a connection between compressed sensing
and compressed learning that completely puzzled previous attempts. Indeed, with the
impressive advances in compressed sensing it has been tempting to work on the premise
that data that has sparse representation must be easier to learn from – so tools taken from
compressed sensing such as the restricted isometry property could be used. It then became
clear that sparse representation of the data was irrelevant for tasks like linear or convex
classification Bandeira et al. (2014); Durrant & Kabán (2013) as long as most points
have a large margin. Sparsity was also found unnecessary for compressive linear regression
Kabán (2014).

In this paper we show that for nearest neighbour learning, contrary to learning of certain
restricted parametric function classes studied before, a sparse representation does make
learning easier i.e. makes it possible to generalise from fewer training points. Moreover,
sparse representation is just one example of a much wider characterisation of ”metric size”
that governs the sample complexity of nearest neighbour learning.

2. Preliminaries and Tools

Definition 1 (Packing number) Let (T, ‖ · ‖) be a totally bounded pseudo metric space.
Let α > 0. We say that T is α-separated if ∀a, b ∈ T, a 6= b, we have ‖a, b‖ ≥ α.
The α-packing number of T is defined as the maximum cardinality of the α-separated subsets
of T , i.e. N‖·‖(α, T ) = max{|T ′| : T ′ is α-separable, T ′ ⊂ T}. When the pseudometric is
clear from the context we can omit the subscript.

Definition 2 (α-entropy number) The α-entropy number of T is defined as the log of
the packing number, H(α, T ) = logN(α, T ).

Definition 3 (Metric entropy) The function H(·, T ) is called the metric entropy of T .

Theorem 4 [Klartag & Mendelson Klartag & Mendelson (2005)]1

Let X ⊂ Rd. Let R be a k × d, k < d random projection matrix with i.i.d. Gaussian or
Rademacher entries with mean 0 and variance σ2. Consider the set of all normalised chords

between point pairs of X : T =
{

a−b
‖a−b‖ : a, b ∈ X

}
, with ‖ · ‖ being the Euclidean distance,

and define the metric entropy integral

γ(T ) =

∫ 1

0

√
H(α, T )dα (1)

where H(α, T ) is the α-entropy number of T w.r.t. the Euclidean distance.

1. In fact, this is a simplified version cf. Boucheron et al. (2013) (Thm 13.15), with γ(T ) being a more
user-friendly upper bound on the γ2 functional that upper bounds the supremum of a stochastic process
with subgaussian increments. The result in Klartag & Mendelson (2005) allows R with i.i.d. entries
from any subgaussian distribution.
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Then, ∃c absolute constant s.t. ∀ζ, δ ∈ (0, 1), if

k ≥ cζ−2(γ2(T ) + log(2/δ)) (2)

then R is an ζ-isometry on X with high probability, i.e. with probability at least 1 − δ we
have:

(1− ζ)kσ2‖x− x′‖2 ≤ ‖Rx−Rx′‖2 ≤ (1 + ζ)kσ2‖x− x′‖2, ∀x, x′ ∈ X (3)

This uniform bound represents a great generalisation of the Johnson-Lindenstrauss
lemma (JLL) and allows the set of points X to be infinite as long as γ(T ) is finite.

In the special case when X is a finite set of N points then γ2(T ) ∈ Ω(log(N)), as implied
by the JLL. It also recovers the Restricted Isometry Property as a special case, since for
s-sparse vectors γ2(T ) ≤ 2s log(d/(2s)) Boucheron et al. (2013). Other low complexity
structures covered by this result include certain smooth manifolds, and metric spaces with
finite doubling dimension. The latter was exploited in Indyk & Naor (2007) for approximate
nearest neighbour search to reduce the computational complexity.

Rather curiously the result of Klartag & Mendelson in its full generality has not yet
been introduced to statistical machine learning theory. However, there are several works in
the literature that generalised JLL specifically for subspace embeddings Sarlós (2006) and
for manifold embeddings Baraniuk & Wakin (2007); Clarkson (2007); Verma (2011) that
have implications for unsupervised learning of smooth manifolds from compressive data.

In turn, here we are interested in capturing more generally the low complexity input
space structures that allow a reduction in sample complexity for supervised classification
by nearest neighbours. This complements recent interest and progress in exploiting some
appropriate notion of intrinsic dimension for analysing supervised learning tasks. For
example, the doubling dimension was used for analysing tree-based regression in Verma
et al. (2009) and Kpotufe & Dasgupta (2012). Since nearest neighbours is an unrestricted
nonparametric method, the generality of Theorem 4 will be beneficial.

3. Generalisation and sample complexity of compressive
nearest-neighbour classification

Let S = {(x1, y1), . . . , (xN , yN )} be a training set drawn i.i.d. from some unknown distri-
bution D over the input-output domain X × Y where Y = {0, 1} for classification prob-
lems, and we take X = [−1, 1]d. DX will denote the marginal distribution over the inputs
X . Further, denote by η : Rd → R the true conditional probability of the labels, i.e.
η(x) = Pr(Y = 1|X = x). Since we consider unconstrained general learning of an uncon-
strained function class, some form of Lipschitz-like assumption is known to be needed on
η(·) for learnability Shalev-Shwartz & Ben-David (2014).

3.1. Nearest Neighbour

Consider the nearest neighbour classifier of S, which will be denoted as hS . This is a
nonparametric method that, given an input point x ∈ X it looks up its nearest neighbour,
denoted N(x) ∈ S and returns its label, hS(x) = YN(x). The generalisation error of hS is
defined as err(hS) = E(x,y)∼D[hS(x) 6= y], where (x, y) is a query point drawn independently
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from and identically distributed as the training points. The Bayes-optimal classifier will be
denoted as h∗.

It is well known Cover & Hart (1967) that the nearest neighbour (NN) classifier con-
verges to at most twice the Bayes error as the number of training points grows to infinity.
Non-asymptotic (finite sample) analyses of NN are more recent Shalev-Shwartz & Ben-David
(2014); Gottlieb et al. (2014); Chaudhuri & Dasgupta (2014).

The recent work of Chaudhuri & Dasgupta (2014) obtained finite sample bounds for
K-NN under weaker assumptions than previous studies, which subsume Hölder-continuity
(hence also Lipschitzness) as a special case. Under the Tsybakov noise condition their rates
match the optimal rates known for nonparametric classification. The associated sample
complexity is still exponential in the data dimension d.

In turn, our interest is in this work is to identify input domains for which the O(exp(d))
sample complexity of NN can be reduced. This is somewhat in the spirit of the work in
Gottlieb et al. (2013), where the authors show for regularised linear function classes that
improved error bounds are achievable when the data lines close to a low dimensional linear
subspace, and furthermore, in general metric spaces, for classifiers realised by Lipschitz
functions they give improved error bounds that scale with the doubling dimension of the
space.

In this work we will take the ambient space to be Euclidean, but the intrinsic structure
can be non-Euclidean. The use of random projections will allow us to preserve and uncover
benign intrinsic structures for (compressive) NN learning that characterise the generalisa-
tion, sample complexity and convergence rates of (compressive) nearest neighbour.

As a first attempt at doing this, we will make the standard Lipschitz continuity assump-
tion on the label posterior function, and will work on bounded input domains. A particularly
simple and insightful approach is in Shalev-Shwartz & Ben-David (2014) under the assump-
tion that η is Lipschitz with constant L, which we will build on here. While we reckon that
these conditions are considerably stronger than those in Chaudhuri & Dasgupta (2014), it
makes the technical work needed to obtain new insights more straightforward. In particular,
under these conditions we can show that we can replace d with metric entropy integral. We
are also able to relax the Lipschitz assumption to the relatively recently proposed ‘proba-
bilistic Lipschitzness’ condition at the expense of an extra additive term in the excess risk.
This condition is particularly well suited for various extension to semi-supervised settings
where a condition of more generative flavour is appropriate. Whether it would be possible
to obtain our results under weaker or different assumptions, e.g. those in Chaudhuri &
Dasgupta (2014) remains for further research.

To keep the exposition simple, and keep the focus on our new findings, for the purposes
of this work we will limit ourself to NN, although KNN can be analysed in the same way e.g.
following Shalev-Shwartz & Ben-David (2014). Non-asymptotic analysis has the advantage
of giving generalisation guarantees for any finite sample size N . In particular, for the above
setting, the following was obtained in Shalev-Shwartz & Ben-David (2014):

Theorem 5 (Shalev-Shwartz & Ben-David (2014): Theorem 19.3) Let X = [0, 1]d,Y =
{0, 1}, and D a distribution over X × Y for which the conditional probability function is
L-Lipschitz. Let hS denote the nearest neighbour rule applied to the training set S ∼ DN .
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Then,

ES [err(hS)] ≤ 2err(h∗) + 4L
√
dN−

1
d+1 (4)

which implies the sample complexity

N ≥

(
4L
√
d

ε

)d+1

∈ Ω̃(exp(d)) (5)

to guarantee ES [err(hS)] ≤ 2err(h∗) + ε.
From this result, taken together with the No Free Lunch theorem, it was concluded

Shalev-Shwartz & Ben-David (2014); Urner (2013) that the exponential sample complexity
of NN with the input dimension d is essential, and not just a byproduct of the proof
technique used.

3.2. Compressive Nearest Neighbour

Let R be a k×d, k < d matrix with i.i.d. entries drawn from a subgaussian distribution such
as a Gaussian or a Rademacher distribution. We will create and work with the compressed
training set SR = {(Rx1, y1), . . . , (RxN , yN ))}.

Denote by NR(x) the training point x′ ∈ S such that Rx′ is the nearest neighbour of Rx
after random projection. Of course, this is not the same as N(x) in general. Rather it may
be thought of as an approximate nearest neighbour – indeed, Indyk & Naor (2007) has
shown that it is an (1 + ε)-nearest neighbour, provided that k is chosen to be of the order of
the metric entropy of the input space. While their motivation was to create an approximate
nearest neighbour algorithm to reduce the computation time and has not considered the
sample complexity, our purpose in the sequel is the latter.

The nearest neighbour classifier in the compressive space receives SR, and will be de-
noted by hRSR

. We are interested in the distribution of its expected generalisation error,

ES∼DN [err(hRSR
)] = ES [E(x,y)∼D[hRSR

(Rx) 6= y]], as a random function of R.

3.3. Main Result

Theorem 6 Let X = [−1, 1]d,Y = {0, 1}, and D a distribution over X × Y for which the
conditional probability function is L-Lipschitz. Let R be a k × d random matrix, k < d,
with i.i.d. Gaussian or Rademacher entries with mean 0 and variance σ2. Let hRSR

denote

the nearest neighbour rule applied to the randomly projected training set SR where S ∼ DN .
Then ∀δ, ζ ∈ (0, 1), with probability at least 1− δ over the random draws of R, the expected
generalisation error of compressive nearest neighbour is upper bounded as:

ES [err(hRSR
)] ≤ 2err(h∗) + 2

√
2

(
L
√
d

√
1 + ζ

1− ζ

) k
k+1

(eN)−
1

k+1

√
k (6)

provided that k ∈ Ω(ζ−2(γ2(T ) + log(2/δ))).
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It may be useful to point out that the
√
d factor is not essential: As it will be apparent

from the proof shortly, in our bounds the dependence on d came in only because the input
space in the original data space was taken as X = [−1, 1]d so the maximal length of any
point is 2

√
d. If instead we take X = B(0, ρ), the ball of radius ρ, then

√
d would get

replaced by ρ and so the error becomes independent of the ambient dimension d. We give
this as a corollary.

Corollary 7 Let X = B(0, ρ) ∈ Rd,Y = {0, 1}, and all conditions identical to those in
Theorem 6. Then ∀δ, ζ ∈ (0, 1), with probability at least 1− δ over the random draws of R,
the expected generalisation error of compressive nearest neighbour is upper bounded as:

ES [err(hRSR
)] ≤ 2err(h∗) + 2

√
2

(
Lρ

√
1 + ζ

1− ζ

) k
k+1

(eN)−
1

k+1

√
k (7)

provided that k ∈ Ω(ζ−2(γ2(T ) + log(2/δ))).

The sample complexity of compressive nearest neighbour is an immediate corollary:

Corollary 8 The following sample size guarantees that ES [err(hRSR
)] ≤ 2err(h∗) + ε w.p.

1− δ:

N ≥ 1

e

(
2
√

2
√
k

ε

)k+1(
Lρ

√
1 + ζ

1− ζ

)k

= Ω̃(exp(γ(T ))) (8)

provided that k ∈ Ω(ζ−2(γ2(T ) + log(2/δ))).

Proof [of Theorem 6]

ES [err(hRSR
)] = ES∼DN [Pr(x,y)∼D(YNR(x) 6= y)] (9)

= ESEx,y[1(y = 1)1(YNR(x) = 0) + 1(y = 0)1(YNR(x) = 1)] (10)

= ESEx[Ey|x[1(y = 1)1(YNR(x) = 0) + 1(y = 0)1(YNR(x) = 1)]] (11)

= ES,x[η(x)1(YNR(x) = 0) + (1− η(x))1(YNR(x) = 1)] (12)

since Ey|x[1(u = 1)] = η(x) by definition, and using the linearity of expectation. Here, 1(·)
is 1 if its argument is true and 0 otherwise.

Likewise for the point (NR(x), YNR(x)) ∈ S we use that E[YNR(x)|NR(x)] = η(NR(x)),
and write (12) further as the following:

ES [err(hRSR
)] = ESEx[η(x)(1− η(NR(x))) + (1− η(x))η(NR(x))] (13)

= ESEx[(η(x)− η(NR(x)))(2η(x)− 1) + 2η(x)(1− η(x))] (14)

≤ ESEx[|η(x)− η(NR(x))| · |2η(x)− 1|+ 2η(x)(1− η(x))] (15)

where the re-writing in eq. (14) is easy to verify, and eq. (15) use the Cauchy-Schwarz
inequality. Noting that |2η(x)− 1| ≤ 1, this is further bounded by the following:

ES [err(hRSR
)] ≤ ESEx[|η(x)− η(NR(x))|]︸ ︷︷ ︸

T1

+2Ex[η(x)(1− η(x))]

≤ T1 + 2err(h∗) (16)
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In eq. (16) used that, as in Shalev-Shwartz & Ben-David (2014) (Lemma 19.1), Ex[η(x)(1−
η(x))] ≤ min{η(x), 1− η(x)} is upper bounded by twice the Bayes error, 2err(h∗).

It remains to further bound the first term, denoted by T1. Define the ‘good’ set of
random projection matrices:

G := {R : ∀x, x′ ∈ X ,
√

1− ζ
√
kσ‖x− x′‖ ≤ ‖Rx−Rx′‖ ≤

√
1 + ζ

√
kσ‖x− x′‖} (17)

Klartag and Mendelson Klartag & Mendelson (2005), cf Theorem 4 guarantees that

Pr(R /∈ G) < δ (18)

provided that k scales with the ”metric size” of the set of normalised chords of the input
space, i.e. it satisfies eq. (2). So, w.p. 1− δ,

T1 = ESEx[|η(x)− η(NR(x))| |R ∈ G] (19)

and bound this further. We will use the Lipschitz property of η – that will bound |η(x)−
η(NR(x))| ≤ L ·‖|x−NR(x)‖. The latter is a distance in the d-dimensional space X , and we
can use the Klartag-Mendelson theorem to bound this with a distance in the k-dimensional
random projection space. We then use an approach of covering with mutually disjoint
boxes, similar to the analysis of nearest neighbour in Shalev-Shwartz & Ben-David (2014)
(Theorem 19.3) – but this time it will be the smaller, k-dimensional projected input space
to be covered instead of X ∈ Rd. Thinking ahead to this end, it is convenient to rewrite T1

using the mentioned covering before even using the Lipschitz property of the function η(·).
This way one of the resulting terms will turn out easier to bound.

Denote the input space after random projection by [−bR, bR]k, where we will determine
bR later. We cover this set with r disjoint boxes of side length s each. A number of

r =
(

2bR
s

)k
boxes are sufficient for this. We leave s unspecified for now, and will choose

it later to optimise the resulting error bound. The diameter of each of these rectangles is
s
√
k.
Denote by CR(x) the box that contains Rx. Denote SR|X = {Rx1, . . . , RxN} the re-

striction of SR to the inputs. The box either contains no points from SR|X , or it contains
the point RNR(x). We use the law of total expectation to split T1 into these two cases:

T1 = ESEx[|η(x)− η(NR(x))| |R ∈ G,CR(x) ∩ SR|X = ∅] · Pr(CR(x) ∩ SR|X = ∅)
+ ESEx[|η(x)− η(NR(x))| |R ∈ G,CR(x) ∩ SR|X 6= ∅] · Pr(CR(x) ∩ SR|X 6= ∅)

Now, by Lemma 19.2 in Shalev-Shwartz & Ben-David (2014), we have:

Pr(CR(x) ∩ SR|X = ∅) ≤ r

eN
(20)

and we use the following trivial bounds as well:

ESEx[|η(x)− η(NR(x))| |R ∈ G,CR(x) ∩ SR|X = ∅] ≤ 1

Pr(CR(x) ∩ SR|X 6= ∅) ≤ 1

where the former holds because η(·) takes values in [0, 1]. Using these,

T1 ≤
r

eN
+ ESEx[|η(x)− η(NR(x)| |R ∈ G,CR(x) ∩ SR|X 6= ∅]
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Finally, by using the Lipschitz property of η(·), and then the fact that R ∈ G, we get:

T1 ≤ r

eN
+ L · ESEx[‖x−NR(x)‖ |R ∈ G,CR(x) ∩ SR|X 6= ∅]

≤ r

eN
+ L · ESEx

[
‖Rx−RNR(x)‖
√

1− ζ
√
kσ

]
|R ∈ G,CR(x) ∩ SR|X 6= ∅]

≤ r

eN
+

Ls
√
k√

(1− ζ)kσ
(21)

In the last line we used that the diameter of CR(x) is s
√
k.

We will now optimise this bound w.r.t. the side-length of the covering boxes, s – noting
that the r.h.s. of eq. (21) are the only ones that depend on s.

For convenience, introduce the shorthand

LR =
L√

(1− ζ)kσ
(22)

Also, recall that r is a function of s, so we plug in that r =
(

2bR
s

)k
. Then we can write the

r.h.s. of rq. (21) as the following. Define

1

eN

(
2bR
s

)k

+ LRs
√
k =: f(s) (23)

This is a function to be minimised in s.
Compute the derivative and equate it to zero (after checking that this will give us a

minimum):

f ′(s) = −k (2bR)k

eN
s−(k+1) + LR

√
k = 0 (24)

Solving we get the optimal s:

sopt = (2bR)
k

k+1 (eLRN)−
1

k+1

√
k

1
k+1 (25)

We note in passing that should we have chosen to use the Lipschitz property of η(·) directly
at eq. (19) before the step of covering with boxes, the ensuing optimisation might have
turned out to have no analytic solution, causing some technical inconvenience.

Plugging back, after a few lines of algebra, we get:

f(sopt) = (2bRLR)
k

k+1 (eN)−
1

k+1

√
k

(√
k
− 2k+1

k+1 +
√
k

1
k+1

)
(26)

Now, one can show that the sequence

ak := 2
k

k+1

(√
k
− 2k+1

k+1 +
√
k

1
k+1

)
(27)

is decreasing and its first term is a1 = 2
√

2. Therefore,

f(sopt) < 2
√

2(bRLR)
k

k+1 (eN)−
1

k+1

√
k (28)
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Hence, T1 is upper bounded by this simpler expression.
We now need an estimate of bR. This is straightforward using that R ∈ G: Since the

input domain was originally X = [−1, 1]d we have ‖x‖ ≤
√
d, so bR is bounded as:

bR ≤ ‖Rx‖ ≤ ‖x‖σ
√
k
√

1 + ζ (29)

≤
√
d
√
kσ
√

1 + ζ (30)

Plugging this back into eq. (28), and replacing the expression of LR from eq. (22), we
obtain:

T1 ≤ 2
√

2(bRLR)
k

k+1 (eN)−
1

k+1

√
k (31)

≤ 2
√

2

(
√
d

√
1 + ζ

1− ζ
L

) k
k+1

(eN)−
1

k+1

√
k (32)

Note, as one intuitively expected indeed, the parameter of the entries of R, i.e. σ2 has
cancelled out.

Finally, combining eqs (16), (19) and (32) completes the proof. �

Proof [of Corollary 8]. Eq. (32) is the error above the inevitable 2err(h∗)in the random
projection space. We require this to be less than some ε. Solving for N we get the sample
complexity

N ≥ 1

e

(
2
√

2
√
k

ε

)k+1(
Lρ

√
1 + ζ

1− ζ

)k

(33)

which is independent of the original data dimension d, and exponential in k. Plugging in
the required order of k completes the proof. �

3.3.1. Relaxing the Lipschitz assumption

The standard Lipschitz assumption we have used so far can be relaxed. One fairly recent and
easily tractable alternative is the condition of ‘probabilistic Lipshitzness’ (PL), introduced
in Urner (2013). It allows a controlled fraction of training points to have non-Lipschitz
label posterior functions.

Definition [Probabilistic Lipschitzness (Urner , 2013)] Let φ : R+ → [0, 1] be an in-
creasing function. A function η : X → [0, 1] is PL wrt. Dx if ∀L > 0,

Prx∼Dx

[
Prx′∼Dx [|η(x)− η(x′)| > L‖x− x′‖]

]
≤ φ(1/L) (34)

Swapping this for the standard Lipschitzness we obtain:

Corollary 9 Let X = B(0, ρ) ∈ Rd,Y = {0, 1}, and D a distribution over X ×Y for which
the conditional probability function is probabilistically L-Lipschitz. Let R be a k×d random
matrix, k < d, with i.i.d. Gaussian or Rademacher entries with mean 0 and variance σ2.
Let hRSR

denote the nearest neighbour rule applied to the randomly projected training set SR
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where S ∼ DN . Then ∀δ, ζ ∈ (0, 1), with probability at least 1− δ over the random draws of
R, the expected generalisation error of compressive nearest neighbour is upper bounded as:

ES [err(hRSR
)] ≤ err(h∗) + φ(1/L) + 2

√
2

(
Lρ

√
1 + ζ

1− ζ

) k
k+1

(eN)−
1

k+1

√
k (35)

provided that k ∈ Ω̃(ζ−2(γ2(T ) + log(2/δ))).

3.4. Implication for dataspace Nearest Neighbour

The exponential sample complexity of NN has never been questioned, and, as we already
mentioned, the No Free Lunch theorems (see e.g. Shalev-Shwartz & Ben-David (2014))
indeed imply that this cannot be improved in general. It is now of interest to know if the
low metric complexity input structures seen in the previous section would also be fortuitous
for NN in the original data space? It turns out that the answer is positive. The proof
presented for compressive NN can easily be modified such that the random projection only
serves as an analytic tool while the NN rule runs in the original d-dimensional space.

Theorem 10 Let X = B(0, ρ) ∈ Rd,Y = {0, 1}, and D a distribution over X ×Y for which
the conditional probability function is probabilistically L-Lipschitz. hS denote the nearest
neighbour rule, where S ∼ DN . For any δ, ζ ∈ (0, 1), the expected generalisation error of
hS upper bounded as

ES [err(hS)] ≤ 2err(h∗) + φ(1/L) + 2
√

2

(
Lρ

√
1 + ζ

1− ζ

) k
k+1

(eN)−
1

k+1

√
k (36)

with confidence 1− δ, where k ∈ Ω(ζ−2(γ2(T ) + log(2/δ))), and γ(T ) is the metric entropy
integral as defined in eq. (1).

The new sample complexity that we obtain from this, given below, recovers the known
exponential scaling in d when the input space fills the domain X . However, for low complex-
ity input spaces γ2(T ) will be less than d and therefore the sample complexity is improved.

Corollary 11 The sample size required to guarantee
ES [err(hS)] ≤ 2err(h∗) + φ1/Lε w.p. 1− δ is

N ≥ 1

e

(
2
√

2
√
k

ε

)k+1(
Lρ

√
1 + ζ

1− ζ

)k

= Ω̃(exp(γ(T ))) (37)

Proof [of Theorem 10].
The reasoning is very similar to what we have seen before in the proof of Theorem 6, so a
sketch will be sufficient.

ES [err(hS)] = ES [Pr(x,y)∼D(YN(x) 6= y)] (38)

≤ ESEx[|η(x)− η(N(x))|]︸ ︷︷ ︸
T1

+2Ex[η(x)(1− η(x))]

≤ T1 + 2err(h∗) (39)
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We define the good set of random projection matrices R as before in eq. (17).
Using the same steps as before, we arrive at

T1 ≤ ESEx[|η(x)− η(N(x))| |R ∈ G] (40)

w.p. 1− δ, and denoting by SX = {x1, . . . , xN} the training inputs,

T1 ≤ r

eN
+ ESEx[|η(x)− η(N(x)| |R ∈ G,CR(x) ∩ SX 6= ∅]

≤ r

eN
+ L · ESEx[‖x−N(x)‖ |R ∈ G,CR(x) ∩ SX 6= ∅] (41)

having used the Lipschitz property of η(·). Recall that N(x) is the nearest neighbour in the
original training set S.

Next, we move to the compressive space to do the covering by boxes. Notice that,

‖x−N(x)‖ ≤ ‖x−NR(x)‖ (42)

This follows trivially from the definition of nearest neighbour, and it allows us to work with
the nearest neighbour in the compressive space rather than that in the original space.

The remainder of the proof is now identical to that of the previous section from eq. (21)
onwards, with ρ replacing

√
d. �

Discussion We should point out that the above implicit analysis of dataspace NN with no
explicit random projection is aimed to provide new insight into nearest neighbour learning,
without the ambition of tightness. That is, we replaced the exponential dependence on
the data dimension d to exponential in k. The exponential dependence on k is essential,
for the same reasons as in the original analysis of NN. The point is that, for a constant
ζ, we need k ∈ Ω̃(γ2(T )), and γ2(T ) gets smaller than d in many cases when the input
space does not fill the entire d-dimensional space. For example, if the data has a sparse
representation on the full domain X then the sample complexity of NN is exponential in
the number of non-zeros in that representation and only polynomial in d and in ρ. This is
because γ2(T ) = Ω(s log(d/s)). Also we should point out that the use of NN does not need
to have any a-priori knowledge about the existence of such structures – it will just take less
training points to generalise well. The role of the theory presented here is to understand
why that is.

On the downside, the bound is dependent on the failure probability δ and distortion
parameter ζ of a random projection, but there is no explicit random projection happening
in the algorithm – this, of course, is an artifact of the analysis. Nevertheless, the obtained
result qualitatively agrees with recent findings in the direction of bounding the performance
of nonparametric learning in terms of a notion of intrinsic dimension such as the doubling
dimension e.g. in Kpotufe & Dasgupta (2012); Verma et al. (2009). In turn, contrary from
those works, here a simple RP was used to uncover such benign structures. In particular, our
analysis suggests that the benign input structures for compressive NN are also benign for
dataspace NN. This will be verified experimentally and demonstrated to uphold in practice
in the next section.

In addition, a further attractive aspect of the random projection based analysis, from
the practical point of view is that in the presence of benign structures in the data set one
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can in fact carry out the learning task in the compressive space without noticeable loss in
performance, which gives us great computational savings. This point will be experimentally
illustrated for NN vs. compressive NN in the next section.

4. Empirical illustration

To illustrate the theory for compressive NN, and to verify that NN in the data space benefits
from the low complexity input structures in the same way as its compressive counterpart,
we generated some example data sets that exhibit low metric size. We use these to train
and empirically test the classifiers when the training set size varies from N = 5 to N = 200.
All data sets used in these experiments are d = 100 dimensional, so these sample sizes are
rather small. We will also use a couple of 3-dimensional examples (instead of 100) for visual
illustration purposes only.
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Figure 1: Empirical estimates of test error for Nearest Neighbour (NN) and Compressive
NN on 100-dimensional data sets where the data lies in a 2D linear subspace,
versus when in addition the data has a sparse representation in the subspace.
The compressive dimension is 4 (twice the dimension of the subspace containing
the data). The class labelling is such that the Bayes error is 0. The plots in
the upper row illustrate 3-dimensional versions of the data sets, with the two
markers / colours indicating class labels; the plots on the lower row shows the
error estimates. We see that: (i) NN and Compressive NN have very similar error
behaviour; (ii) Sparse representation of the input data lowers the error.

First, we generated ten d = 100 dimensional data sets so that the input points that lie on
a 2-dimensional linear subspace. Hence for these data, γ2(T ) coincides with the dimension
of the subspace that contains the data, which is 2. An example with the ambient dimension

76



A New Look at Nearest Neighbours

−0.5

0

0.5

1 −1

−0.5

0

0.5

1−0.5
0

0.5

(a) Nonlinear sub-
space

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Nonlin. sub-
space & Sparse

50 100 150 200
0

10

20

30

40

Sample size (N)

E
rr

or
 (

%
)

NN

 

 
Manifold 2D
Manifold 2D + sparse 1D

(c) Performance of NN

50 100 150 200

5

10

15

20

25

30

35

40

Sample size (N)

E
rr

or
 (

%
)

Compressive NN

 

 
Manifold 2D
Manifold 2D + sparse 1D

(d) Performance of Com-
pressive NN

Figure 2: Empirical estimates of test error for Nearest Neighbour (NN) and Compressive
NN on 100-dimensional data sets where the data lies in a 2D nonlinear subspace
(manifold), versus when in addition the data has a sparse representation. The
compressive dimension is 4 (twice the dimension of the manifold containing the
data). The class labelling is such that the Bayes error is 0. The plots in the
upper row illustrate 3-dimensional versions of the data sets, with the two mark-
ers /colours indicating class labels; the plots on the lower row shows the error
estimates. Again we see that: (i) NN and Compressive NN have very similar
error behaviour; (ii) Sparse representation of the input data lowers the error.

being d = 3 is shown on Figure 1 (a). In order to test the effect of sparse representation,
we further created another ten data sets where again the input points lie in a 2D linear
subspace and in addition they have a sparse representation – that is, there is a linear basis in
the 2D subspace containing the data, such that in that basis only one coordinate is nonzero
for each point. Again, a 3-dimensional example is shown in Figure 1 (b). We labelled all
data sets such that the Bayes error is zero, for reference.

For each data set, we feed N points to the classifier, and each time we test the perfor-
mance on 500 held out test points. For each value of training set size N tested, we record
the mean and the standard error of the percentage of test errors, over the ten data sets
of the same type. These are plotted in Figure 1 (c) and (d) for the dataspace NN and
the compressive NN classifiers respectively. The error bars represent one standard error
w.r.t. the random draw of the training set fed to the classifier, as estimated from the ten
independently drawn data sets for each experiment. For the experiments with compressive
NN, we set the compressed dimension as suggested by the theory, to a multiple of γ2(T ) –
in this case to twice the dimension of the subspace containing the data, that is k = 4.
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The results nicely confirm the expectations suggested by the theory. Note the low
error rates achieved with only less the 50 points on these 100-dimensional data. This is
of course because the data lies in a 2D subspace, which is a very low complexity domain.
Also, it is most apparent that data with a sparse representation makes both compressive
and dataspace nearest neighbour learning easier, since the error rates are lower. Moreover,
both compressive NN and dataspace NN have very similar error profile, and comparable
performance. Even their error bars are comparable. The latter observation may seem a bit
surprising, however recall that k does not go below the intrinsic dimension of the data –
hence effectively we see no performance degradation, and the gain in computation speed
comes essentially for free.

Next, we did an analogous set of experiments with data generated to lie in a nonlinear
subspace of the d = 100 dimensional ambient space. We generated ten data sets where the
input points lie on a 2D swiss roll embedded in d dimensions, and an example with d = 3
is shown in Figure 2 (a). As before, we then created another ten data sets where again the
input points lie of the 2D swiss roll, and in addition they have a sparse representation –
see Figure 2 (b). With training and testing set sizes as previously, we recorded the error of
NN and compressive NN on Figures 2 (c) and (d). For the latter, we have again set k = 4.
We see the results are again in accordance with the theory. Both dataspace NN and its
compressive counterpart behave in the same way, and in particular, sparse representation
makes learning easier for both. This setting of k is appropriate for the particular low
complexity data set, and no performance degradation is apparent for learning NN in the
compressive space.

Finally, we demonstrate a set of experiments to see the effect of sparse representation.
That is, the data lies on a union of linear subspaces of dimension equal to the number
of nonzeros in the sparse representation. In comparison, we also show the corresponding
performances when the data is contained by a single linear subspace.

In the former case, the input data is in the full 100-dimensional space but it has a
sparse representation. We vary the level of sparsity (s), i.e. the number of nonzeros per
input point. In the case of compressive NN, we set k = 2s log(d/(2s)), which is an upper
bound on γ2(T ) for sparse data Boucheron et al. (2013), which comes from the fact that
sparse data with s non-zeroes in each point may be viewed as data that lies in a union on
s-dimensional subspaces. Figure 3) (a)-(b) gives the average of test error estimates over ten
independent realisations of the data set for each experiment. Most apparently, the error
behaviour of both NN and compressive NN is again in agreement. Though we see that with
small sample sizes small errors can only be achieved when the input data has a very sparse
representation (i.e. very small non-zeroes in each input point), and the error grows close to
random guessing s increases.

The corresponding results with data is in one subspace are seen in Figure 3) (c)-(d).
The dimension of this subspace is set to the same values (s) as the levels of sparsity was
earlier. That is, we have the same number of nonzero entries as before, but this time to
location of these stays the same for each data point. Because of this the metric size, γ2(T ),
is smaller, namely of the order s, and we set k accordingly. We see the empirical errors are
indeed lower and increase slower with s in comparison with the sparse representation case,
under the same sample size conditions. That is, the metric size of the input space is indeed
well predictive of the statistical difficulty of the NN classification task.
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Figure 3: (a)-(b): NN and Compressive NN performance on 100-dimensional data sets that
have a sparse representation, when the degree of sparsity is varied. (c)-(d): NN
and Compressive NN performance on 100-dimensional data sets that lie of a single
linear subspace, when the subspace dimension varies. We see that in the latter is
an easier problem than the former. This is nicely captured by the values of γ(T ).

5. Conclusions

We gave the sample complexity of nearest neighbour classification as a function of the metric
complexity of the input space. This agrees with the previously known exponential sample
complexity in the input dimension when the input domain fills the ambient space, but it
can be less for a number of low-complexity input domains. We used random projections as
an analytic tool to uncover these fortuitous structures. Hence, intrinsically low complexity
data sets can be efficiently learned from in the compressive space. A further implication of
our analysis for theoretical research is the conjecture that the task of determining conditions
that allow for a reduction in the sample complexity of the dataspace classifier, and the task
of determining conditions that allow learning from compressive data may be viewed and
tackled as two sides of the same coin. Further work is needed to test this conjecture in other
learning settings. Further work is also needed to study the effects of a small departures
from the identified fortuitous structures.
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