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Abstract

We consider optimization of generalized performance metrics for binary classification by
means of surrogate loss. We focus on a class of metrics, which are linear-fractional functions
of the false positive and false negative rates (examples of which include Fjg-measure, Jaccard
similarity coefficient, AM measure, and many others). Our analysis concerns the following
two-step procedure. First, a real-valued function f is learned by minimizing a surrogate
loss for binary classification on the training sample. It is assumed that the surrogate
loss is a strongly proper composite loss function (examples of which include logistic loss,
squared-error loss, exponential loss, etc.). Then, given f, a threshold 0 is tuned on a
separate validation sample, by direct optimization of the target performance measure. We
show that the regret of the resulting classifier (obtained from thresholding f on é) measured
with respect to the target metric is upperbounded by the regret of f measured with respect
to the surrogate loss. Our finding is further analyzed in a computational study on both
synthetic and real data sets.

Keywords: Generalized performance metric, regret bound, surrogate loss function, binary
classification, F-measure, Jaccard similarity, AM measure.

1. Introduction

In binary classification, misclassification error is not necessarily an adequate evaluation
metric, and one often resorts to more complex metrics, better suited for the problem. For
instance, when the classes are imbalanced, Fjg-measure (Lewis, 1995; Jansche, 2005; Nan
et al., 2012) and AM measure (balanced eror rate) (Menon et al., 2013) are frequently
used. Optimizing such generalized performance metrics poses computational and statistical
challenges, as they cannot be decomposed into losses on individual observations.

In this paper, we consider optimization of generalized performance metrics by means of
surrogate loss. We restrict our attention to a family of performance metrics which are ratios
of linear functions of false positives (FP) and false negatives (FN). Such functions are called
linear-fractional, and include the aforementioned Fg and AM measures, as well as Jaccard
similarity coefficient, weighted accuracy, and many others. We focus on the most popular
approach to optimizing generalized performance metrics in practice, based on the following
two-step procedure. First, a real-valued function f is learned by minimizing a surrogate
loss for binary classification on the training sample. Then, given f, a threshold 6 is tuned
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on a separate validation sample, by direct optimization of the target performance measure
with respect to a classifier obtained from f by thresholding at 0. This approach can be
motivated by the asymptotic analysis: minimization of appropriate surrogate loss results in
estimation of conditional (“posterior”) class probabilities, and many performance metrics
are maximized by a classifier which predicts by thresholding on the scale of conditional
probabilities (Nan et al., 2012; Zhao et al., 2013; Koyejo et al., 2014). However, it is unclear
what can be said about the behavior of this procedure on finite samples.

In this paper, we are interested in theoretical analysis and justification of this approach
for any sample size, and for any, not necessarily perfect, classification function. To this end,
we use the notion of regret with respect to some evaluation metric, which is a difference
between the performance of a given classifier and the performance of the optimal classifier
with respect to this metric. We show that the regret of the resulting classifier (obtained from
thresholding f on é) measured with respect to the target measure is upperbounded by the
regret of f measured with respect to the surrogate loss. Our result holds for any surrogate
loss function, which is strongly proper composite loss function (Agarwal, 2014), examples
of which include logistic loss, squared-error loss, exponential loss, etc. Interestingly, the
proof of our result goes by an intermediate bound of the regret with respect to the target
measure by a cost-sensitive classification regret. As a byproduct, we get a bound on the
cost-sensitive classification regret by a surrogate regret of a real-valued function which holds
stmultaneously for all misclassification costs: the misclassification costs only influence the
threshold, but not: the function, the surrogate loss, or the regret bound. Our finding is
further analyzed in a computational study on both synthetic and real data sets.

We note that the goal of this paper is not to propose a new learning algorithm, but
rather to provide a deeper statistical understanding of an existing method. The two-stage
procedure is commonly used in the binary classification with generalized performance met-
rics, but this is exactly the reason why we think it is important to study this method in
more depth from a theoretical point of view.

Related work. Existing theoretical work on generalized performance metrics is mainly
concerned with statistical consistency also known as calibration, which determines whether
convergence to the minimizer of a surrogate loss implies convergence to the minimizer of
the task performance measure as sample size goes to infinity (Nan et al., 2012; Zhao et al.,
2013; Narasimhan et al., 2014; Koyejo et al., 2014). Here we give a stronger result which
bounds the regret with respect to the performance metric by the regret with respect to the
surrogate loss. Our result is valid for all finite sample sizes and informs about the rates of
convergence.

Parambath et al. (2014) present an alternative approach to maximizing linear-fractional
measures by learning a sequence of binary classification problems with varying misclassifica-
tion costs. While we were inspired by their theoretical analysis, their approach is, however,
more complicated than the two-step approach analyzed here, which requires solving an or-
dinary binary classification problem only once. Moreover, as part of our proof, we show
that by minimizing a strongly proper composite loss, we are implicitly minimizing cost-
sensitive classification error for any misclassification costs without any overhead. Hence,
the costs need not be known during learning, and can only be determined later on a separate
validation sample by optimizing the threshold.
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Outline. The paper is organized as follows. In Section 2 we introduce basic concepts,
definitions and notation. The main result is presented in Section 3 and proved in Section 4.
The theoretical contribution of the paper is complemented by computational experiments
in Section 5, prior to concluding with a summary in Section 6.

2. Problem setting

Binary classifier. In binary classification, the goal is, given an input (feature vector)
x € X, to accurately predict the output (label) y € {—1,1}. We assume input-output pairs
(z,y) are generated i.i.d. according to Pr(z,y). A classifier is a mapping h: X — {—1,1}.
Given h, we define the following four quantities:

which are known as true positives, false positives, true negatives and false negatives, respec-
tively. Note that for any h, FP(h) + TN(h) = Pr(y = —1) and TP(h) + FN(h) = Pr(y = 1),
so out of the four quantities above, only two are independent. In this paper, we use the
convention to parameterize all measures by means of FP(h) and FN(h).

Generalized classification performance metrics. We call a two-argument function
U = U(FP,FN) a (generalized) classification performance metric. Given a classifier h,
we define ¥(h) = W(FP(h),FN(h)). Throughout the paper we assume that ¥(FP,FN) is
linear-fractional, i.e. is a ratio of linear functions:

ag + a1 FP + asFN (1)
by + b1FP 4+ boFN '’

U(FP,FN) =

where we allow coefficients a;, b; to depend on the distribution Pr(x,y).! We also assume
U (FP,FN) is non-increasing in FP and non-increasing in FN, a property that is possessed
by virtually all performance measures used in practice. Table 1 lists three popular examples
of linear-fractional performance metrics.

Let hj, be the maximizer of W(h) over all classifiers:?

hy = argmax U(h).
he{—-1,1}X

Given any classifier h, we define its W-regret as a distance of h from the optimal Ay measured
by means of W:
Regy (h) = ¥(hy) — ¥(h).

1. Note that U(FP,FN) can be reparameterized to be a function of (FP, TN), (TP,FN), or (TP, TN), and
will remain linear-fractional in all these parameterizations.
2. If hy is not unique, take any maximizer.
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metric expression

_ _(14B*)(P-FN)
Fs = aypp-r~erp

Fjg-measure

Jaccard similarity J = %
AM measure AM = 2P(=P)-(1-P)FN_PFP

2P(1—P)

Table 1: Some popular linear-fractional performance measures expressed as functions of FN
and FP. P abbreviates Pr(y = 1). See (Koyejo et al., 2014) for a more detailed
description.

Strongly proper composite losses. Here we briefly outline the theory of strongly
proper composite loss functions. See (Agarwal, 2014) for a more detailed description.

Define a binary class probability estimation (CPE) loss function (Reid and Williamson,
2010, 2011) as a function c¢: {—1,1} x[0, 1] — Ry, where ¢(y, 7)) assigns penalty to prediction
7, when the observed label is y. Define the conditional c-risk as:?

riske(n,77) = ne(1,7) + (1 = n)e(=1,1),

the expected loss of prediction 77 when the label is drawn from a distribution with Pr(y =
1) = n. We say CPE loss is proper if for any 1 € [0, 1], n € arg mingcq ] riskc(n, 7). In other
words, proper losses are minimized by taking the true class probability distribution as a
prediction; hence 7 can be interpreted as probability estimate of 7. Define the conditional

c-regret as:
vege(1, 1) = riske (1, 7) — inf riske(n, M)

= riske(n, n) — risk.(n, n),

the difference between the conditional c-risk of 77 and the optimal c-risk. We say a CPE
loss ¢ is A-strongly proper if for any n,n:

(n—1)?
i.e. the conditional c-regret is everywhere lowerbounded by a squared difference of its
arguments. It can be shown (Agarwal, 2014) that under mild regularity assumption a
proper CPE loss ¢ is A-strongly proper if and only if the function H.(n) := risk.(n,n) is
A-strongly concave. This fact lets us easily verify whether a given loss function is A-strongly
proper.

It is often more convenient to reparameterize the loss function from 77 € [0,1] to a
real-valued f € R through a strictly increasing (and therefore invertible) link function
P:[0,1] = R:

reg.(n,n) >

DN >

Uy, f) =c(y, v~ (f)).

3. Throughout the paper, we follow the convention that all conditional quantities are lowercase (regret,
risk), while all unconditional quantities are uppercase (Regret, Risk).
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If ¢ is A-strongly proper, we call function ¢: {—1,1} x R — Ry A-strongly proper composite
loss function. The notions of conditional ¢-risk risky(n, f) and conditional ¢-regret reg,(n, f)
extend naturally to the case of composite losses:

riske(n, f) =nl(1, f) + (1 —n)l(-1, f)
regy(n, f) = riske(n, f) — ot risk, (1, f)
= risky(n, f) — riske(n, ¥ (n)).

and the strong properness of underlying CPE loss implies:

regy(n. ) > 2 (n— (1) )

As an example, consider a logarithmic scoring rule*: c(y,n) = —[y = 1]logh — [y =
—1] log(1 — 7). Its conditional risk is given by:

A
)

risk.(n, 1) = —nlogn — (1 — n) log(1 —7)

the cross-entropy between n and 7). The conditional c-regret is the binary Kullback-Leibler
divergence between n and 7:

~ n L=
=nlog = 1—-n)l .
reg..(n,1) = nlog 5t (1—m)log — 5
Note that since H(n) = risk.(n,n) is the binary entropy function, and |‘§n§ ‘ = ﬁ > 1

¢ is 4-strongly proper loss. Using the logit link function ¢ (7) = log %, we end up with the
logistic loss function:

Uy, f) = log (1 + e*yf) ,

which is 4-strongly proper composite from the definition.

Table 2 presents some of the commonly used losses which are strongly proper composite.
Note that the hinge loss £(y, f) = (1 — yf)+, used e.g. in support vector machines (Hastie
et al., 2009), is not strongly proper composite (even not proper composite).

3. Main result

Given a real-valued function f: X — R, and a A-strongly proper composite loss ¢(y, f),
define the ¢-risk of f as the expected loss of f(x) with respect to the data distribution:

Risk,(f) = E(zy) [y, f(x))]
= E, [riske(n(z), f())],

where n(z) = Pr(y = 1|z). Let f; be the minimizer Risk,(f) over all functions, f; =
arg min s Risk,(f). Since £ is proper composite:

fi (@) = (n(x)).

4. [Q] is the indicator function, equal to 1 if @ holds, and to 0 otherwise.

305



KOTLOWSKI DEMBCZYNSKI

loss function | squared-error logistic exponential
((y, f) (y—f)?  log (1 " e#y) -
oL@ | A0-A —legd =
o(=1,7) 4n? —log(1 — 7)) 2
¥(®) 2 —1 log - 1log 1L
A 8 4 4

Table 2: Three popular strongly proper composite losses: squared-error, logistic and expo-
nential losses. Shown are the formula £(y, f), the underlying CPE loss ¢(y, 77) with
the link function (), as well as the strong properness constant A\. See (Agarwal,
2014) for more details and examples.

Define the f-regret of f as:

Regy(f) = Riske(f) — Riske(f;)
— E, [riske(n(2), f(2)) — riske(n(), f7 (2))] -

Any real-valued function f: X — R can be turned into a classifier hyg: X — {—1,1},
by thresholding at some value 6:

hyo(z) =sgn(f(z) —0).

The purpose of this paper is to address the following problem: given a function f with
(-regret Regy(f), and a threshold 6, what can we say about W-regret of hyy? For instance,
can we bound Regy (hyg) in terms of Reg,(f)? We give a positive answer to this question,
which is based on the following regret bound:

Lemma 1 Let W(FP,FN) be a linear-fractional function of the form (1), which is non-
increasing in FP and FN. Assume that there exists v > 0, such that for any classifier
h: X = {-1,1}:

bo + b1FP(h) + boFN(h) > 7,

i.e. the denominator of V is positive and bounded away from zero. Let £ be a A-strongly
proper composite loss function. Then, there exists a threshold 0%, such that for any real-
valued function f: X — R,

Regy (hfe+) < C\/f\/ Reg,(f),

where C' = 1 (U(h%) (b1 + b2) — (a1 + az)) > 0.

1
5
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metric v C
Fg-measure B2P 1/;563;
Jaccard similarity P %
AM measure 2P(1—P) ﬁ

Table 3: Constants which appear in the bound of Lemma 1 for several performance metrics.

The proof is quite long and hence is postponed to Section 4. Interestingly, the proof goes
by an intermediate bound of the W-regret by a cost-sensitive classification regret. We note
that the bound in Lemma 1 is in general unimprovable, in the sense that it is easy to find
f, ¥, ¢, and distribution Pr(z,y), for which the bound holds with equality (see proof for
details). We split the constant in front of the bound into C' and A, because C' depends only
on V¥, while A depends only on £. Table 3 lists these constants for some popular metrics.

Lemma 1 has the following interpretation. If we are able to find a function f with
small /-regret, we are guaranteed that there exists a threshold 6* such that hy g+ has small
W-regret. Note that the same threshold 6* will work for any f, and the right hand side of
the bound is independent of 6*. Hence, to minimize the right hand side we only need to
minimize ¢-regret, and we can deal with the threshold afterwards.

Lemma 1 also reveals the form of the optimal classifier hy,: take f = f; in the lemma
and note that Reg,(f;) = 0, so that Regy(hs; 9+) = 0, which means that hyy g« is the
minimizer of W:

hy(x) = sgn(f7 (x) — 07) = sgn(n(z) — v~ (67)),
where the second equality is due to f; = (1) and strict monotonicity of ). Hence, hy, is a

threshold function on 7. The proof of Lemma 1 (see Section 4) actually specifies the exact
value of the threshold 6*:

\I/(hf&,)bl — ai
(Rg) (b1 +b2) — (a1 + az)’

which is in agreement with the result obtained by Koyejo et al. (2014).5

To make Lemma 1 easier to grasp, consider a special case when ¥ = FP + FN is the
classification accuracy. In this case, (3) gives ¥~1(6*) = 1/2. Hence, we obtained the
well-known result that the classifier maximizing the accuracy is a threshold function on 7
at 1/2. Then, Lemma 1 states that given a real-valued f, we should take a classifier Ay g«
which thresholds f at 6* = 1(1/2) (one can verify that §* = 0 for logistic, squared-error
and exponential losses). The bounds from the lemma are in this case identical (up to a
multiplicative constant) to the bounds by Bartlett et al. (2006).

Unfortunately, in general the optimal threshold 6* is unknown, as (3) contains an un-
known quantity W(hy,). The solution in this case is to, given f, directly search for a threshold
which maximizes W(hyg). This is the main result of the paper:

v = 5 3)

5. Koyejo et al. (2014) required some continuity assumptions to prove (3). Our analysis shows that these
assumptions are not necessary.
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Theorem 2 Given a real-valued function f, let 6 = argmaxy V(hyrg). Then, under the
assumptions and notation from Lemma 1:

Regy(h, ) < C\E\/WN)-

Proof The result follows immediately from Lemma 1: Solving maxg W(hyg) is equivalent
to solving ming Regy (hysg), and ming Regy (hyrp) < Regg(hysg+), where 8* is the threshold
given by Lemma 1. |

Theorem 2 motivates the following procedure for maximization of W:

1. Find f with small /-regret, e.g. by using a learning algorithm minimizing f-risk on
the training sample.

2. Given f, solve § = arg max, U(hysg).

Theorem 2 states that the W-regret of the classifier obtained by this procedure is upper-
bounded by the f-regret of the underlying real-valued function.

We now shortly discuss how to approach step 2 of the procedure in practice. In principle,
this step requires maximizing ¥ defined through FP and FN, which are expectations over
an unknown distribution Pr(z,y). However, as long as ¥ does not change too rapidly (e.g.
U has bounded derivatives), it is sufficient to optimize 6 on the empirical counterpart of ¥
calculated on a separate validation sample. Step 2 involves optimization within a class of
threshold functions (since f is fixed), which has VC-dimension equal to 2 (Devroye et al.,
1996). If ¥ has bounded derivatives, there exist constants G1, G5 such that:

¥(FP,FN) — U(FP,FN) < G,|FP — FP| + G5|FN — FN|, (4)

where FP and FN are empirical counterparts of FP and FN for any given threshold 6. By
VC theory, the deviations of FP from FP, and of FN from FN can be upperbounded with
high probability uniformly over the class of all threshold functions by O(1/y/m), where m
is the validation sample size. This and (4) imply the same uniform bound on the deviation
of \II(F/‘T’, F/’N) from W(FP,FN), which in turn implies that the empirical maximizer of ¥ is
O(1/y/m) close to maxgy ¥(h¢y). Hence, step 2 can be performed within O(1/,/m) accuracy
on a validation sample independent from the training sample.

4. Proof of Lemma 1

The proof can be skipped without affecting the flow of later sections. The proof consists of
two steps. First, we bound the W-regret of any classifier h by its cost-sensitive classification
regret (introduced below). Next, we show that there exists a threshold 6*, such that for
any f, the cost-sensitive classification regret of hy g+ is upperbounded by the ¢-regret of f.
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Bounding ¥-regret by cost-sensitive regret. Given a real number a € [0, 1], define
a cost-sensitive classification loss £q: {—1,1} x {—=1,1} — R, as:

la(y,y) = afy = 1]y = 1] + (1 — o)y = 1][y = —1].
The cost-sensitive loss assigns different costs of misclassification for positive and negative
labels. Given classifier h, the cost-sensitive risk of h is:

Riske(h) = E(yy) [a(y, h())]
= aFP(h) + (1 — a)FN(h),
and the cost-sensitive regret is:
Reg, (h) = Risky(h) — Riska(R},),
where h}, = argminy, Risk,(h). We now show that there exists « such that for any h,
Regy (h) < CReg,(h), (5)

where C' is defined as in the content of Lemma 1. For the sake of clarity, we use a shorthand
notation ¥ = W(h), ¥* = ¥(hy), FP = FP(h), FN = FN(h), A = ap + a1FP + a»FN,
B = by + b1FP + byFN for the numerator and denominator of ¥(h), and analogously FP*,
FN*, A* and B* for W(h},). In this notation:

B
_ (b1 — ) (FP — FP*) + (Wb — ay) (FN — FN")
B
< (\I’*bl — al) (FP — FP*) : (\I’*bg — ag) (FN — FN*)7 (6)

where the last inequality follows from B > « (assumption) and the fact that Regy(h) > 0

for any h. Since ¥ is non-increasing in TP and FP, we have
ov* alB* — blA* a] — bl\IJ*

= = <
JFP* (B*)? g =0

and similarly aaF‘I{\;* = aQ_é’f‘I’* < 0. This and the assumption B* > ~ implies that both

U*hy — a1 and U*by — ao are non-negative, so can be interpreted as misclassification costs.
If we normalize the costs by defining:

\I/*bl —ai

CT Wby £ by) — (a1 + az)’

(7)
then (6) implies:

(Riskq(h) — Riska(hy))
(Riskq(h) — Riskq(h},)) = CReg, (h).
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Bounding cost-sensitive regret by /-regret. We will show that there exists threshold

0* such that:
2
Rog, (hro-) < |/ 2 Rega(F). 0

This, along with (5) implies Lemma 1. A part of the proof follows the steps of Lemma 4 and
Theorem 5 in (Menon et al., 2013), and Theorem 13 in (Agarwal, 2014). First, we will show
that (8) holds conditionally for every x. To this end, we fix z and deal with h(z) € {—1,1},
f(z) € R and n(z) € [0, 1], using a shorthand notation h, f,n.

Given n € [0,1] and h € {—1, 1}, define the conditional cost-sensitive risk as:

riska (n, h) = a(l —n)[h =1] + (1 — a)n[h = —1].
Let hY = argminy, risky (7, h). It can be easily verified that:
he = sgn(n — a). (9)
Define the conditional cost-sensitive regret as
reg,, (n, h) = risky(n, h) — risky (0, hL).
Note that if h = h},, then reg,(n, h) = 0. Otherwise, reg,(n, h) = |n — «|, so that:
reg, (1, h) = [h # ho]ln — al.

Now assume h = sgn() — «) for some 7, i.e. h is of the same form as h}, in (9), with 5
replaced by 7. We show that for such h,

rega(na h) < |77 - ﬁ| (10)
This statement trivially holds when h = h}. If h # h},, then n and 7 are on the opposite
sides of v (i.e. either n > cvand < @ or n < v and 7 > «), hence |n — a| < |n — 7], which
proves (10).
Now, we set the threshold to 6* = 1(«), so that given f € R,

hyo- = sgu(f —0°) = sgu(f — (@) = sgn(y " (f) — a),
due to strict monotonicity of 1. Using (10) with h = hsg« and 7 = ¥~ (f) gives:

reg, (1, hyo-) < [n—v " (f)| = (n— = 1(f))?

< |2 rmn D), (1)

and the last inequality follows from strong properness (2).
To prove the unconditional statement (8), we take expectation with respect to z on both
sides of (11):

Rega (777 hf,@*) = E:E [rega (777 hf,@* (x))]

ty 1) <2 [Veer ) 7))
< 2B eadn(a). 1)
= \/E\/ Reg(f),
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where the second inequality is from Jensen’s inequality applied to the concave function
x — +/z. Note that the proof actually specifies the exact value of the universal threshold,
0* = (), where « is given by (7).

The bound in Lemma 1 is unimprovable in a sense that there exist f, ¥, £, and distri-
bution Pr(zx,y) for which the bound is tight. To see this, take, for instance, squared error
loss £(y, f) = (y — f)? and classification accuracy metric ¥(FP,FN) = 1 — FP — FN. The
constants in Lemma 1 are equal toy = 1, C' =2, and A = 8 (see Table 1), while the optimal
threshold is #* = 0. The bound then simplifies to

RegO/l(Sgn(f)) < \/ Regsqr(f)7

which is known to be tight (Bartlett et al., 2006).

5. Empirical results

We perform experiments on synthetic and benchmark data to empirically study the two-
step procedure analyzed in the previous sections. We use logistic loss in this procedure as
a surrogate loss. Recall that logistic loss is 4-strongly proper composite (see Table 2). We
compare its performance with hinge loss, which is even not a proper composite function.
As our task performance metrics, we take the F-measure (Fg-measure with 5 = 1) and the
AM measure. We could also use the Jaccard similarity coefficient; it turns out, however,
that the threshold optimized for the F-measure coincides with the optimal threshold for
the Jaccard similarity coefficient, so the latter measure does not give anything substantially
different than the F-measure.

The purpose of this study is not about comparing the two-step approach with alternative
methods; this has already been done in the previous work on the subject, see, e.g., (Nan
et al., 2012; Parambath et al., 2014). We also note that similar experiments have been
performed in the cited papers on the statistical consistency of generalized performance
metrics (Koyejo et al., 2014; Narasimhan et al., 2014; Parambath et al., 2014). Therefore,
we unavoidably repeat some of the results obtained therein, but the main novelty of the
experiments reported here is that we emphasize the difference between proper composite
losses and non-proper losses.

5.1. Synthetic data

We performed two experiments on synthetic data. The first experiment deals with a discrete
domain in which we learn within a class of all possible classifiers. The second experiment
concerns continuous domain in which we learn within a restricted class of linear functions.

First experiment. We let the input domain X to be a finite set, X = {1,2,...,25}, and
take Pr(z) to be uniform over X. For each = € X, we randomly draw a value of n(z) from
the uniform distribution on the interval [0, 1]. In the first step, we take an algorithm which
minimizes a given surrogate loss ¢ within the class of all function. Hence, given the training
data of size n, the algorithm computes the empirical minimizer of loss £ independently for
each x. As surrogate losses, we use logistic and hinge loss. In the second step, we tune the
threshold 6 on a separate validation set, also of size n. For each n, we repeat the procedure
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Figure 1: Regret (averaged over 100,000 repetitions) on the discrete synthetic model as a
function of the number of training examples. Left panel: logistic loss is used as a
surrogate loss. Right panel: hinge loss is used as surrogate loss.

100,000 times, averaging over samples and over models (different random choices of n(x)).
We start with n = 100 and increase the number of training examples up to n = 10, 000.
The f-regret and W-regret can be easily computed, as the distribution is known and X is
discrete.

The results are given in Fig. 1. The f-regret goes down to zero for both surrogate
losses, which is expected, since this is the objective function minimized by the algorithm.
Minimization of logistic loss (left plot) gives vanishing W-regret for both the F-measure and
the AM measure, as predicted by Theorem 2. In contrast, minimization of the hinge loss
(right plot) is suboptimal for both task metrics and gives non-zero W-regret even in the limit
n — oo. This behavior can easily be explained by the fact that hinge loss is not a proper
(composite) loss: the risk minimizer for hinge loss is given by f;(x) = sgn(n(z) — 1/2)
(Bartlett et al., 2006). Hence, the hinge loss minimizer is already a threshold function on
n(z), with the threshold value set to 1/2. If, for a given performance metric ¥, the optimal
threshold #* is different than 1/2, the hinge loss minimizer will necessarily have suboptimal
W-risk. This is clearly visible for the F-measure. The better result on the AM measure
is explained by the fact that the average optimal threshold over all models is 0.5 for this
measure, so the minimizer of hinge loss is not that far from the minimizer of AM measure.

Second experiment. We take X = R? and generate € X from a standard Gaussian
distribution. We use a logistic model of the form n(x) = m. The weights
a = (a1,a2) and ap are also drawn from a standard Gaussian. For a given model (set of
weights), we take training sets of increasing size from n = 100 up to n = 3000, using 20
different sets for each n. We also generate one test set of size 100,000. For each n, we use 2/3
of the training data to learn a linear model f(z) = wo + w 'z, using either support vector
machines (SVM, with linear kernel) or logistic regression (LR). We use implementation of
these algorithms from the LibLinear package Fan et al. (2008).° The remaining 1/3 of the
training data is used for tuning the threshold. We average the results over 20 different

models.

6. Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear
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Figure 2: Regret (averaged over 20 x 20 = 400 repetitions) on the logistic model as a
function of the number of training examples. Left panel: regret with respect to
the F-measure and surrogate losses. Right panel: regret with respect to the AM
measure and surrogate losses.

The results are given in Fig. 2. The results obtained for LR (logistic loss minimizer) agree
with our theoretical analysis: the f-regret and W-regret with respect to both F-measure and
AM measure go to zero. This is expected, as the data generating model is a linear logistic
model, and thus coincides with a class of functions over which we optimize. The situation
is different for SVM (hinge loss minimizer). Firstly, the ¢-regret for hinge loss does not
converge to zero. This is because the risk minimizer for hinge loss is a threshold function
sgn(n(z) — 1/2), and it is not possible to approximate such a function with linear model
f(x) = wo+w"z. Hence, even when n — oo, the empirical hinge loss minimizer (SVM) does
not converge to the risk minimizer. This behavior, however, can be advantageous for SVM
in terms of the task performance measures. This is because the risk minimizer for hinge loss,
a threshold function on n(x) with the threshold value 1/2, will perform poorly, for example,
in terms of the F-measure and AM measure, for which the optimal threshold 6* is usually
very different from 1/2. In turn, the linear model constraint will prevent convergence to
the risk minimizer, and the resulting linear function f(x) = wo +w '« will often be close to
some reversible function of n(z); hence after tuning the threshold, we will often end up close
to the minimizer of a given task performance measure. This is seen for the F-measure on
the left panel in Fig. 2. In this case, the F-regret of SVM gets quite close to zero, but is still
worse than LR. The non-vanishing regret is mainly caused by the fact that for some models
with imbalanced class priors, SVM reduce weights w to zero and sets the intercept wqg to 1
or —1, predicting the same value for all x € X (this is not caused by a software problem, it
is how the empirical loss minimizer behaves). Interestingly, the F-measure is only slightly
affected by this pathological behavior of empirical hinge loss minimizer. In turn, the AM
measure, for which the plots are drawn in the right panel in Fig. 2, is not robust against
this failure of SVM and the model gets the highest possible regret in this case.
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Figure 3: Average test set performance on benchmark data sets. Left panel: covtype
dataset. Right panel: the gisette dataset. The top plots show logistic and
hinge loss, the center plots show the F-measure, the bottom plots show the AM
measure.

dataset #examples #features
covtype.binary 581,012 54
gisette 7,000 5,000

Table 4: Basic statistics for benchmark datasets

5.2. Benchmark data

We also performed a similar experiment on two binary benchmark datasets,” described in
Table 5.2. We randomly take out a test set of size 181,012 for covtype, and of size 3,000

7. Datasets taken from LibSVM repository: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets
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for gisette. We use the remaining examples for training. As before, we incrementally
increase the size of the training set. We use 2/3 of training examples for learning linear
model with SVM or LR, and the rest for tuning the threshold. We repeat the experiment
(random train/validation/test split) 20 times. The results are plotted in Fig 3. Since the
data distribution is unknown, we are unable to compute the risk minimizers, hence we plot
the average loss/metric on the test set rather than the regret. The results show that SVM
perform better on the covtype dataset, while LR performs better on the gisette dataset.
However, there is very little difference in performance of SVM and LR in terms of the F-
measure and the AM measure on these data sets. We suspect this is due to the fact that
n(z) function is very different from linear for these problems, so that neither LR nor SVM
converge to the f-risk minimizer, and Theorem 2 does not apply. Further studies would be
required to understand the behavior of surrogate losses in this case.

6. Summary

We presented a theoretical analysis of a two-step approach to optimize classification perfor-
mance metrics, which first learns a real-valued function f on a training sample by minimizing
a surrogate loss, and then tunes the threshold on f by optimizing the target performance
metric on a separate validation sample. We showed that if the metric is a linear-fractional
function, and the surrogate loss is strongly proper composite, then the regret of the re-
sulting classifier (obtained from thresholding real-valued f) measured with respect to the
target metric is upperbounded by the regret of f measured with respect to the surrogate
loss. The proof of our result goes by an intermediate bound of the regret with respect to the
target measure by a cost-sensitive classification regret. As a byproduct, we get a bound on
the cost-sensitive classification regret by a surrogate regret of a real-valued function which
holds simultaneously for all misclassification costs. Our finding is back in a computational
study on both synthetic and real data sets.

A natural question is whether our results can be generalized to other classification
performance metrics, not necessarily of the linear-fractional form (1).
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