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Abstract

Energy-based deep learning models like Restricted Boltzmann Machines are increasingly
used for real-world applications. However, all these models inherently depend on the Con-
trastive Divergence (CD) method for training and maximization of log likelihood of gener-
ating the given data distribution. CD, which internally uses Gibbs sampling, often does not
perform well due to issues such as biased samples, poor mixing of Markov chains and high-
mass probability modes. Variants of CD such as PCD, Fast PCD and Tempered MCMC
have been proposed to address this issue. In this work, we propose a new approach to CD-
based methods, called Diss-CD, which uses dissimilar data to allow the Markov chain to
explore new modes in the probability space. This method can be used with all variants of
CD (or PCD), and across all energy-based deep learning models. Our experiments on using
this approach on standard datasets including MNIST, Caltech-101 Silhouette and Synthetic
Transformations, demonstrate the promise of this approach, showing fast convergence of
error in learning and also a better approximation of log likelihood of the data.
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1. Introduction

Deep learning is a sub-area of machine learning which has provided methods to learn features
at different layers in a hierarchical manner, inspired by models of the brain. In its early years,
Deep Learning (DL) was not so successful due to the requirement of huge computational
power to address the complexity of deep hierarchical layers. With the recent availability
of large computation power with the advent of GPUs, DL has gained significant traction
over the last few years. The applications of DL can be found in many research areas like
computer vision, signal processing and natural language processing. DL techniques have
achieved state-of-the-art performance on many real-world problems including ImageNet
object classification (Krizhevsky et al., 2012), LFW face detection (Taigman et al., 2014),
as well as natural language processing on the FrameNet and WordNet datasets (Bordes
et al., 2012).

Deep learning models can be broadly classified into energy-based models and non-energy
based models. Energy-based models, which form a subclass of Markov random fields, are
generally used for unsupervised learning, or as parameter initializers for non-energy based
models in supervised learning. For example, the weights of a Restricted Boltzmann Machine,
which is an energy-based model, have been used to initialize weights for an Artificial Neural
Network (ANN) (Hinton et al., 2006), which is an example of non-energy based deep learning
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models. Boltzmann Machines (BMs), Restricted Boltzmann Machine (RBMs) (Fischer and
Igel, 2014), Gated Factored Restricted Boltzmann Machines (GFRBMs) (Memisevic and
Hinton, 2010) and Convolutional Restricted Boltzmann Machines (CRBMs) (Lee et al.,
2009) are all examples of energy- based models. All such energy-based models have two
layers: visible and hidden, with different number of neurons in each layer constituting its
architecture. The visible layer is directly connected to the training data and the hidden layer
is used to capture the dependencies among the visible layer neurons. The visible and hidden
neurons are connected by undirected weights, and there are no intra-layer connections in
either of the layers (except in case of BMs). The architecture of connections differentiates
the variants of energy-based models.

The loss function, also called the energy, of any energy-based model is given as a linear
combination of the activations at the visible and hidden units with their respective weights
(e.g. Equation 2 in Section 2). The energy value corresponding to known data is low, and
the energy value corresponding to unknown data is high. This concept of energy is motivated
from statistical physics, where a material is said to be stable at a lower energy, and unstable
at higher energy. Considering energy-based models are generative, the probability density of
given training data is proportional to the negative exponential of the model energy. Hence,
minimizing the energy of the network in the training phase leads to a model which has
learned the probability distribution that originally generated the training data.

Unfortunately, due to the presence of an intractable normalization constant, it is not
easy to maximize the probability (or equivalently, minimize the energy) using analytical
approaches. To address this issue, Hinton proposed (Hinton, 2002) a method called Con-
trastive Divergence (CD), which uses Gibbs sampling as an approximation to the gradient
of the loss function. The CD method was singularly responsible for making energy-based
learning models tractable, and thus made energy-based deep learning models successful in
real-world applications. Every iteration of the CD method generates samples from the joint
probability distribution of the current model state; and the method unlearns the sample data
generated after a pre-defined number of iterations (this sample data is also called fantasy
particle in literature, and is described further in Section 2). This Gibbs sampling approach
suffers from various problems related to exploration of the distribution space, due to which
variants of CD have been proposed to sample from the model. These variants of CD (dis-
cussed in detail in Section 2.2) include Persistent Contrastive Divergence (PCD) (Tieleman
and Hinton, 2009), Fast Persistent Contrastive Divergence (FPCD) (Tieleman and Hinton,
2009), and Tempered MCMC (T-MCMC) (Desjardins et al., 2010). All the proposed vari-
ants differ only in the way they generate the fantasy particle for unlearning, and thereby,
computation of the gradient approximation.

In this paper, we propose a new approach to improve the performance of CD methods
in energy-based deep learning models through better exploration of the distribution space,
using dissimilar data. We note that the proposed approach is generic and can be used in
conjunction with many variants of CD methods, and is thus relevant to almost all real-
world applications that use CD methods to train deep learning models. Our proposed
approach, which we call Dissimilar CD (Diss-CD) is motivated by the idea to use dissimilar
data (dissimilar w.r.t a given training data point) for fantasy sample generation, and thus
unlearn the artifacts of an antagonistic sample given a training data sample. The concept of
dissimilarity is subjective, and can be varied with respect to a given training data sample.
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Figure 1: Sample architectures of energy-based models

Our proposition is that unlearning dissimilar data leads to better approximation of the
distribution of the training data. We evaluated the proposed approach using different
variants of CD on RBMs (as well as Gated Factored RBMs) on different datasets. The
performance of the method was studied using standard evaluation criteria that have been
used in earlier similar work (Tieleman and Hinton, 2009), (Tieleman and Hinton, 2009),
(Desjardins et al., 2010), i.e. test log likelihood and convergence of reconstruction error.
Our experiments showed high promise for the proposed Diss-CD approach.

2. Background

Energy-based learning models have historically been based on the Boltzmann Machine (BM)
architecture. However, considering the challenges of training the BM architecture, which
has intra-layer connections, Restricted Boltzmann Machines (RBMs) - which restrict intra-
layer connections - have emerged as the fundamental building blocks for energy-based deep
learning models. Hence, we present the details of the RBM model in this section, and show
how this can be extended to secondary architectures such as Gated Factored RBMs.

2.1. Energy-based Deep Learning Models

An RBM (Fischer and Igel, 2014), shown in Figure 1(a), is a two-layer undirected bipartite
Markov random field with m visible units vj , j ∈ {1, ..,m} which are mapped to training
data, and n hidden units hi, i ∈ {1, .., n} which capture the dependencies among the visible
units. wij is the weight connecting vj and hi units, bj is the bias associated with jth visible
unit, and ci is the bias associated with the ith hidden unit. The architecture of RBM makes
hidden units conditionally independent given the visible layer inputs, and vice-versa.

Let us consider the case of a Binary-Binary RBM, where v ∈ {0, 1}m and h ∈ {0, 1}n.
The joint probability distribution of RBM is defined as:

p(v,h) =
e−E(v,h)

Z
(1)
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Equation 1 is also called the Gibbs distribution, where E is the energy function of RBM,
and Z is the normalization constant. The energy E is defined as:

E = −
n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑
i=1

cihi (2)

The objective function in an RBM seeks to maximize the log likelihood of Equation 1.
Since units in each layer are conditionally independent given the other layer, the hidden
unit activations can be calculated simultaneously using:

p(hi|v) = sigm(ci +
∑

j∈visible
wijvj) (3)

where sigm is the sigmoid activation function. Similarly, the visible layer activations can
be calculated as:

p(vj |h) = sigm(bj +
∑

i∈hidden
wijhj) (4)

Finding the gradient of Eq 1 to maximize the log likelihood is intractable due to the presence
of the normalization constant Z. A method called Contrastive Divergence (CD) (Tieleman,
2008) is used to approximate the gradient of log likelihood and is given as:

4wij = η(〈hivj〉data − 〈hivj〉∞) (5)

The term 〈hivj〉data signifies the expectation of unit hi and vj being simultaneously active
together. The term 〈〉∞ is obtained by using Gibbs sampling for infinite iterations. The
given input is first clamped to the visible units; the hidden unit activations are obtained by
using Equation 3 followed by stochastic binarization using a Bernoulli distribution; and the
expected value of hivj for all pairs of visible and hidden units are subsequently calculated
(called 〈hivj〉data indicating that it is calculated with respect to data). The same steps
are repeated to then compute the visible unit activations from the hidden unit activations
(reverse direction). These visible unit activations are called one-step reconstructions, and
this chain is continued by updating the visible and hidden unit activations iteratively. If
this chain is repeated for a very long time, the visible and hidden unit activations converge
to the term 〈hivj〉∞ and the system is said to be in thermal equilibrium at this step (the vj
at this step is called the fantasy particle). The term 〈〉data, also called the learning phase,
specifies the expectation calculated using the given data, and 〈〉∞, also called the unlearning
phase, denotes the expectation calculated when the network is allowed to run freely using
Gibbs sampling.

Few extensions of RBMs have also been proposed over the years. Gated Factored RBM
(GFRBM) (Memisevic and Hinton, 2010) is a two-layer energy-based model, where the input
layer takes two data points as input as shown in Figure 1(b). The objective of the GFRBM
is to learn the conditional probability distribution of the two inputs through the three-
dimensional weights. The three-dimensional weights learn the transformations between two
input data points. Please refer (Memisevic and Hinton, 2010) for more details. In addition
to the aforementioned, other models like Convolutional RBMs (Lee et al., 2009), Auto-
Encoders (Baldi, 2012), and Deep Belief Nets (Hinton et al., 2006) have been proposed,
which use RBMs as basic building blocks.
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2.2. Fantasy Sample Generation Methods

All the architectures discussed above use Gibbs sampling for generating the fantasy sample
which is then used in the unlearning phase. The problem with Gibbs sampling is that it
needs to be run for a long time. Hinton proposed (Hinton, 2002) a simplification and stated
that even if we run the chain for 1 step (called CD-1), i.e. the fantasy sample is selected
after one iteration of Gibbs sampling, the learning still works. The learning rule (what was
Equation 5) now becomes:

4wij = η(〈hivj〉0 − 〈hivj〉1) (6)

where 〈hivj〉0 is the same as 〈hivj〉data in Equation 5, and is used hereafter for convenience
of understanding.

As can be seen from Equation 6, the second term i.e 〈hivj〉1, or the fantasy sample,
plays a crucial role for effective learning. The generation of fantasy samples is prone to
problems such as biased samples (leading to biased estimates of gradient), getting stuck in
high-mass probability modes, and poor mixing of the Markov chain. Persistent Contrastive
Divergence (PCD) (Tieleman and Hinton, 2009) was proposed as an improvement of CD for
better mixing of the modes by using a persistent Markov chain to generate negative samples
from model distribution. Instead of starting a new Markov chain for every training data
sample, PCD persists the model state from the previous iteration of gradient calculation,
and hence the name PCD. Considering that PCD has replaced CD in practical use, we have
used PCD as the basis for the rest of this paper.

Another variant of PCD called Fast PCD (FPCD) (Tieleman and Hinton, 2009) was
later proposed as an improvement to PCD. FPCD uses two sets of weights: θ regular and
θ fast, where θ fast is specified using large learning rates leading to fast mixing of the
Markov chain. The FPCD is equal to PCD when θ fast equals zero. A large weight decay
is used so that the θ fast converges to zero very soon. It was shown that such weight
updates force the Markov chain to mix faster. A potential disadvantage with FPCD is that
the negative samples that are generated could diverge from the invariant model distribution.

Tempered MCMC (Desjardins et al., 2010) was another method that was proposed for
better sampling from RBMs. This method belongs to a class of methods called Extended
Ensemble Monte Carlo methods which aim to overcome the inability of mixing in multi-
modal distributions by Markov chains. Unlike a single persistent Markov chain (as in PCD
or FPCD), multiple PCD chains are run in parallel, with each chain initialized at differ-
ent parameters (or temperatures). Samples are drawn from distributions with different
temperatures to promote mixing between multiple modes. Each Markov chain generates
a fantasy particle. The swapping of the samples between consecutive chains are carried
out using probabilities as computed using Equation 9 (details given in Algorithm 3). The
visible-hidden sample pair obtained at the lowest temperature is used for weight update.

In this work, we propose a new fantasy sample generation method called Dissimilar
Contrastive Divergence(Diss-CD). The proposed Diss-CD method uses dissimilar data for
fantasy sample generation, with the premise that using fantasy samples from the true input
distribution may be better than generating them using Gibbs sampling. We now describe
our approach.
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Figure 2: Fantasy particles generated from different training images using CD-1 in the first epoch
of RBM training on digit 0 from the MNIST dataset. Almost all images just appear to be noisy
versions of the ”0” image, motivating us to use dissimilar data for fantasy sample generation.

3. Similarity-based Contrastive Divergence (Diss-CD)

The proposed Diss-CD method obtains its inspiration from the following problem with the
CD method. When a Markov chain is initialized with the given training data, the chain
eventually settles at an equilibrium, which is influenced by the randomly chosen initial
weights of the model. As mentioned earlier, the sample generated at this equilibrium state
is called the fantasy sample, and the CD method attempts to lower the probability of
generating this fantasy sample (which is also called reconstructed data, since it is obtained
from the original data after Gibbs sampling), and increase the probability of generating the
original training data.

However, as proposed by Hinton in (Hinton, 2002), the∞-step CD is generally replaced
by a 1-step CD (also called CD-1), as mentioned earlier in Section 2. This implicitly
causes the reconstructed data sample (fantasy) to lie in the immediate neighborhood of the
training data as shown in Figure 2, where the reconstructions are generally noisy versions of
training data. If we now carry out the weight updates, it is very likely that the probability
distribution is not modelled effectively across the complete space due to poor mixing of
the Markov chain. The mixing is poor because CD using Gibbs sampling will increase
the unnormalized probability of generating the training data, and decrease or unlearn the
probability of generating the data which, in turn, is also near the training data in the
probability space. Thus, fantasy samples that actually exist far away from the current data
sample are not captured by the model. Any variant of CD, including the ones discussed in
Section 2.2, attempts to address this ‘poor mixing’ issue. While this issue is mitigated in
case of CD-k to an extent, the issue still exists since k is often a small number in practice.

In this work, we propose a new idea to improve mixing in CD-based methods. Given
a training data sample, our Diss-CD method breaks the Markov chain for fantasy sample
generation by proposing dissimilar data samples as potential start points for fantasy sample
generation, and continuing the Markov chain from these new start points. Figure 3 describes
the proposed Diss-CD method, where the fantasy generation is initialized from dissimilar
data. To illustrate further, Figure 2 shows that the fantasy particles generated using the
standard CD, which are subsequently used for unlearning, are often just noisy versions of the
data itself. Instead of unlearning the noisy samples generated by the invariant distribution
of the corresponding Markov chain, we force the RBM to unlearn the data that is dissimilar
to the current data sample. This process also ensures that the Markov chain explores other
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Figure 3: Proposed Diss-CD approach. Top image shows how CD-k is run using Gibbs sampling.
In our proposed approach (bottom image), a new Markov chain is started from t=1 using dissimilar
data as the starting point for fantasy sample generation

modes in the probability space, and thus builds a more complete model of the data p.d.f.
Algorithm 1 describes the proposed method.

Algorithm 1: Dissimilar CD (Diss-CD) Algorithm

Input: RBM(θ = {W,b, c}), Training data S, Dissimilar data S, Number of Gibbs cycles
k, Number of hidden layer units n, Number of visible layer units m
Output: Gradient approximation 4wij ,4bj ,4ci for i = 1 · · ·n and j = 1 · · ·m

1. Initialize 4wij = 4bj = 4ci = 0 for i = 1 · · ·n and j = 1 · · ·m
2. for all pos v ∈ S, neg v ∈ S do:

(a) pos v(0) ← S, neg v(1) ← S

(b) for i = 1 · · ·n do: sample pos h
(0)
i ∼ p(hi|pos v(0))

(c) for t = 1 · · · k do:

i. for i = 1 · · ·n do: sample neg h
(t)
i ∼ p(neg hi|neg v(t))

ii. for j = 1 · · ·m do: sample neg v
(t+1)
j ∼ p(neg vj |neg h(t))

(d) for i = 1 · · ·n, j = 1 · · ·m do

i. 4wij ←
4wij + p(pos hi = 1|pos v(0))pos v

(0)
j − p(neg hi = 1|neg v(k))neg v

(k)
j

ii. 4bj ←4bj + pos v
(0)
j − neg v

(k)
j

iii. 4ci ←4ci + p(pos hi = 1|pos v(0))− p(neg hi = 1|neg v(k))
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Algorithm 2: Dissimilar CD (Diss-CD) Algorithm for Fast PCD

Input: RBM(θ = {W,b, c}, θ fast = {W fast,b fast, c fast}), Training data S,
Dissimilar data S, Number of Gibbs cycles k, Number of hidden layer units n, Number of
visible layer units m
Output: Gradient approximation 4θ = {4wij ,4bj ,4ci},4θ fast =

{4wfastij ,4bfastj ,4cfasti } for i = 1 · · ·n and j = 1 · · ·m

1. init 4wij = 4bj = 4ci = 0 for i = 1 · · ·n and j = 1 · · ·m
2. for all pos v ∈ S,neg v ∈ S do:

(a) pos v(0) ← S, neg v(1) ← S

(b) for i = 1 · · ·n do: sample pos h
(0)
i ∼ p(hi|pos v(0))

(c) for t = 1 · · · k do

i. for i = 1 · · ·n do: sample neg h
(t)
i ∼ p(neg hi|neg v(t); θ fast+ θ)

ii. for j = 1 · · ·m do: sample neg v
(t+1)
j ∼ p(neg vj |neg h(t); θ fast+ θ)

(d) for i = 1 · · ·n, j = 1 · · ·m do

i. 4wij ←
4wij + p(pos hi = 1|pos v(0))pos v

(0)
j − p(neg hi = 1|neg v(k))neg v

(k)
j

ii. 4bj ←4bj + pos v
(0)
j − neg v

(k)
j

iii. 4ci ←4ci + p(pos hi = 1|pos v(0))− p(neg hi = 1|neg v(k))

(e) 4θ fast = ε · θ fast+4θ

To explain our idea further, maximizing the likelihood using CD-k is equivalent to
minimizing the Kullback-Leibler divergence between data distribution P 0 and the model
equilibrium distribution P kθ (where θ = {W,b,c}) (Hinton, 2002).

KL(P 0‖P kθ ) = −H(P 0)− 〈logP kθ 〉P 0 (7)

where the first term in Equation 7 denotes entropy over the data distribution and the second
denotes the entropy over the model-generated distribution. The minimization of the KL
divergence involves minimizing the second term w.r.t the model parameters as the first term
is independent. Minimization of the second term results in:〈

∂logP kθ (D)

∂θ

〉
P 0

=

〈
∂logfθ
∂θ

〉
P 0

−
〈
∂logfθ
∂θ

〉
Pk

(8)

The term logfθ is a random variable sampled from the distribution with parameters
given by θ. As discussed in Section 2.2, Hinton proposed CD-1 to approximate the second
term of Equation 8, which is commonly used in deep learning applications. CD-1 minimizes
the difference between KL(P 0‖P∞θ ) and KL(P 1

θ ‖P∞θ ), where P 1
θ is the reconstruction of

data generated using one Gibbs sampling. This approximation suffers from the problem
of P 1

θ being very close to that of the data distribution itself rendering the Markov chain
incapable of exploring other modes in the data distribution. As mentioned earlier, this
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issue is mitigated to some extent when using CD-k, considering k Gibbs sampling steps are
performed. In the proposed approach, we replace P 1

θ by a sample from the distribution
that we know is dissimilar to P 0 which can coerce the Markov chain to visit other modes
when using PCD for k steps. By thus modeling the distribution across a larger probability
space, this approach provides an opportunity to reduce future generalization error. Please
see Algorithm 1 for more details.

While Algorithm 1 shows how Diss-CD can be used in standard PCD (or CD-k), the
proposed approach can also be viewed as a generic framework that can be applied along
with other Gibbs sampling variants such as Fast PCD and Tempered MCMC (described in
Section 2.2). Algorithm 2 describes how Diss-CD is adapted to the Fast PCD method. The
fantasy sample generation in Fast PCD using fast weights is done using dissimilar data. The
objective of fast weights in Fast PCD is to explore many modes with a high learning rate
for fantasy sample generation. With the help of dissimilar data being explicitly supplied to
fast weights, there will be an acceleration in the diversity of modes being visited leading to
a better approximation of the probability distribution of the training data.

Algorithm 3: Dissimilar CD (Diss-CD) Algorithm for Tempered MCMC

Input: RBM(θ = {W,b, c}), Training data S, Dissimilar data S, Number of Gibbs cycles
k, Number of hidden layer units n, Number of visible layer units m, list of temperatures T
Output: Gradient approximation 4wij ,4bj ,4ci for i = 1 · · ·n and j = 1 · · ·m

1. init 4wij = 4bj = 4ci = 0 for i = 1 · · ·n and j = 1 · · ·m

2. for all the pos v ∈ S, neg v ∈ S do

(a) for r = 1 · · · length(T ) do

i. pos v
(0)
r ← S,neg v

(1)
r ← S

ii. for i = 1 · · ·n do sample pos hr,i ∼ p(pos hr,i|pos v
(0)
r )

iii. for t = 1 · · · k do

A. for i = 1 · · ·n do sample neg h
(t)
r,i ∼ p(neg hr,i|neg v

(t)
r )

B. for j = 1 · · ·m do sample neg v
(t+1)
r,j ∼ p(neg vr,j |neg h

(t)
r )

(b) for r = 1 · · · length(T ) do

i. swap (neg v
(k)
r ,neg h

(k)
r ) and (neg v

(k)
r−1,neg h

(k)
r−1) using Tr and Tr−1 with

probability given by Equation 9

(c) for i = 1 · · ·n, j = 1 · · ·m do

i. 4wij ←
4wij + p(pos hi = 1|pos v(0))pos v

(0)
j − p(neg hi = 1|neg v(k))neg v

(k)
j

ii. 4bj ←4bj + pos v
(0)
j − neg v

(k)
j

iii. 4ci ←4ci + p(pop hi = 1|pos v(0))− p(neg hi = 1|neg v(k))
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Similarly, Algorithm 3 describes the adaptation of Diss-CD to the Tempered MCMC
method. Instead of running the parallel Markov chains with respect to training data, we
propose to start running them by using dissimilar data. Starting from the Markov chain
with highest temperature, the fantasy particles in consecutive chains are compared and
swapped with a probability given by Equation 9, where E is the energy function and Tr is
temperature at which rth chain is operating. The fantasy particle at the lowest temperature
chain after swaps is used for weight update.

min

(
1, exp

((
1

Tr
− 1

Tr−1

)
.(E(vr, hr)− E(vr−1, hr−1))

))
(9)

4. Experiments

A detailed study of our proposed approach on various datasets using different energy-based
models was carried out using PCD and its variants. The proposed Diss-CD approach was
first evaluated on the basic building block of energy-based deep learning architectures,
viz. RBMs. To study the change in performance on using Diss-CD against the standard
PCD (or its variants), we used the convergence error (over epochs) as well as the log
likelihood on test data. These metrics have been used in earlier work that proposed PCD
variants (Tieleman and Hinton, 2009), (Tieleman and Hinton, 2009), (Salakhutdinov,
2010), (Desjardins et al., 2010). The convergence is observed as the rate of decrease in
the squared reconstruction error of training data in each epoch. Instead of the true log
likelihood (which can be calculated only for small networks), we use the approximated
log likelihood on test data which is computed using Equation 2 (likelihood is simply the
negative exponential of the energy without normalization constant). This approximation
assumes that the normalization constant is fairly comparable across the networks for a
given experiment (we empirically verified this on small networks with upto 15 hidden nodes
by exhaustively enumerating the configurations). For PCD, the length of persistence k
is taken as 3 as in (Hinton, 2002). In Tempered MCMC, the number of parallel Markov
chains M that are run are 11 as in (Desjardins et al., 2010), and each Markov chain is
run with a persistence of 3. All the experiments are repeated for 5 runs and the average
performance across the runs are reported. Subsequently, we also validated the performance
of Diss-CD on another energy-based deep learning architecture, the Gated Factored RBM
(GFRBM), discussed in Section 2 (Memisevic and Hinton, 2010). The proposed Diss-CD
method showed promising performance in all the models under all variants of sampling.

4.1. Datasets

The proposed method is evaluated on datasets that are commonly used to verify deep learn-
ing methods as in (Tieleman and Hinton, 2009), (Tieleman and Hinton, 2009), (Salakhutdi-
nov, 2010), (Desjardins et al., 2010). The datasets include MNIST, Caltech-101 Silhouettes,
and the Synthetic Transformation dataset1. The datasets are described in Table 1.

1. http://yann.lecun.com/exdb/mnist, https://people.cs.umass.edu/~marlin/data.shtml, http://

www.cs.toronto.edu/~rfm/factored
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Dataset Name Total
Size

Description Size of each fea-
ture

Tested on

MNIST 60000 Images of digits(0 to 9) 28x28 Bin image RBM

Caltech-101
Silhouttes

8671 Images of convex shapes
(black on white background)

28x28 Binary im-
age

RBM

Synthetic Trans-
formations

10000
pairs

Each pair of image differs by
a rotation constant

2x13x13 Binary
image

GFRBM

Table 1: Description of datasets used to test Diss-CD

4.2. Choosing Dissimilar data

The choice of dissimilar data for Diss-CD is subjective. Much of the knowledge about
choosing the type of dissimilar data comes from knowledge about the dataset. Although
it is difficult to come up with concrete rules for choosing the dissimilarity, we lay down a
few ground rules in Table 2 for choosing dissimilar data based on the type of dataset. The
thumb rule is to choose the type of data that you want to unlearn as dissimilar data, to
leverage the learning mechanism in energy-based deep models. In future work, we plan to
explore the concept of adaptively choosing dissimilar data for every training example.

Type of Dataset Potential dissimilar data

Classification problem Data from other classes

Modelling shapes of images Images with other shapes from/other datasets

Object detection Dissimilar objects from other datasets

Anomaly detection in videos Normal videos

Table 2: Heuristics to choose dissimilar data for various types of data

4.3. Experiments with RBM

A vanilla standard RBM with 500 nodes in the hidden layer is used. All the hyperparam-
eters i.e number of epochs, learning rate, momentum, weight decay are kept constant for
all experiments. The convergence of error and log likelihood are reported at the end of
the 40th epoch in all RBM experiments (and the evolution over these epochs is reported
where possible). As the performance of the proposed method is dependent on the type of
dissimilarity used, the performance is studied under different scenarios of dissimilarity: (i)
Dissimilar data from same dataset; and (ii) Dissimilar data from another dataset.

4.3.1. RBM trained with dissimilar data from other classes of same dataset

We studied the performance of RBMs trained on MNIST and Caltech-101 silhouette datasets,
where dissimilar data for both experiments are chosen from the respective dataset.

MNIST: Given data from all the digits in the MNIST dataset, an RBM is trained to learn
the distribution of each digit individually, by choosing the remaining digits randomly as
dissimilar data. For example, when the RBM is trained to learn digit 0, all the remaining
digits 1 to 9 are considered as dissimilar data. Figure 4 presents the error to which the
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Figure 4: Squared reconstruction error (x103) at the end of training for each MNIST digit

RBM converged for learning each digit in MNIST using PCD and Diss-PCD. The results
show that the convergence is better in case of Diss-PCD. The test log likelihood of each
digit on the trained RBMs is shown in Table 3.

Digit
PCD Diss-PCD

LL LL

Digit 0 552 2369
Digit 1 240 1237
Digit 2 455 1766
Digit 3 457 1665
Digit 4 416 1772
Digit 5 384 1541
Digit 6 382 1708
Digit 7 399 1873
Digit 8 485 1960
Digit 9 442 1537

Table 3: Log likelihood (LL)
(higher is better) of each digit
in MNIST at the end of train-
ing

The results of the evaluation of the proposed approach
against other variants of PCD i.e Fast-PCD and T-MCMC
are shown in Table 42. The error convergence for digit 0 is
shown in Figure 5. A similar trend was observed for other
digits, and the corresponding results are not presented here
for space constraint reasons. Also, an inferential statistic
t-test (independent samples test, as we are comparing log
likelihood of PCD and Diss-PCD at the end of training) was
conducted on the reported log likelihood values of PCD and
Diss-PCD for the Digit 0 experiment across 20 trials, and
we found the difference of the log likelihood values in the
two methods to be statistically significant with a confidence
level of 99%.
Caltech-101 Silhouettes: In this experiment, a standard
RBM (with 500 hidden units) is trained on a subset (of
about 1000 images with convex shapes) of images from the
Caltech-101 Silhouettes dataset, and the experiment is run
with non-convex shapes from the same dataset as dissimilar
data. The squared reconstruction error at the end of train-
ing is shown in Table 5. Evidently, the proposed approach showed promise over all known
variants of PCD, although it showed a slightly lower log likelihood in case of T-MCMC.
This can be explained due to the presence of multiple Markov chains in T-MCMC, which
may anyway be causing it to explore other modes of the distribution. We note, however,
that T-MCMC is not used often in practice due to the computational overhead (Desjardins
et al., 2010).

2. We note that since the test log likelihoods are unnormalized, i.e. the normalization constants are ignored,
the log likelihood values should not be compared across variants of PCD as the normalization constant
can differ in each case.
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Digit Fast PCD Diss Fast PCD T-MCMC Diss TMCMC
Error Likelihood Error Likelihood Error Likelihood Error Likelihood

Digit 0 37.7 601 10.9 2012 37 599 28 1522
Digit 1 21.7 513 3.9 1410 19.1 402 18.1 1392
Digit 2 38.2 480 10.5 1907 34.2 522 31 1892
Digit 3 37.8 475 9.7 2001 38.4 468 35.6 1981
Digit 4 32.5 430 7.7 1788 32.5 445 34 1922
Digit 5 33.9 422 8.3 1585 34 422 21 1478
Digit 6 40 700 8.1 1933 33 470 24 1496
Digit 7 35 610 7.1 1635 29 416 32 1544
Digit 8 53 781 9.5 1924 40 465 32 2033
Digit 9 38 596 7.2 1811 31 434 26 1546

Table 4: Squared reconstruction error(x103) and log likelihood (higher is better) for each
digit in MNIST dataset using Fast PCD vs Diss-Fast PCD, and Tempered MCMC(T-
MCMC) vs Diss-TMCMC
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Figure 5: Convergence of error2(x103) in RBM over epochs for digit 0 in MNIST dataset.

4.3.2. RBM trained with dissimilar data chosen from different dataset

The experiments in this section study the performance of the proposed approach when the
dissimilar sample is chosen from a completely different dataset. We studied the performance
of RBM when trained on the Caltech-101 Silhouettes dataset, where dissimilar data are

CD Variant Without Diss-CD With Diss-CD
Error Likelihood Error Likelihood

PCD 6.8 3721 5.3 3906
Fast PCD 7.7 1271 6.6 3801

Tempered MCMC 6.5 3778 6.4 3712

Table 5: Squared reconstruction error(x103) and likelihood after convergence on a subset
of Caltech 101 Silhouettes dataset with dissimilar data from Caltech-101
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chosen from the MNIST dataset. As before, an RBM is trained on Caltech-101 Silhouettes
on a subset (of about 1000 images with convex shapes) of images, with MNIST data as
dissimilar. The results are reported in Table 6.

PCD Variant Without Diss-CD With Diss-CD
Error Likelihood Error Likelihood

PCD 6.8 3721 6.2 3812
Fast PCD 7.7 1271 6.6 2713

Tempered MCMC 6.5 3778 6.5 3798

Table 6: Squared reconstruction error(x103) and log likelihood at the end of training on a
subset of Caltech-101 Silhouettes data with dissimilar data from MNIST

4.4. Gated Factored RBM

The GFRBM is trained on the Synthetic Transformation (ST) dataset as in (Memisevic and
Hinton, 2010). The input for GFRBM is a pair of 13x13 binary images, where one image is a
left shift of the other. The dissimilar data for this model is a pair of images constituted by a
different image and its randomly shifted version. Figure 6 shows the squared reconstruction
error at the end of training in this experiment, and also the log likelihood modelled by
GFRBM on the aforementioned left shift dataset (subset of the ST dataset). It can be seen
that the likelihood of test data is higher in case of proposed Diss-PCD.
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Figure 6: Squared reconstruction error over epochs and log likelihood at the end of training (value
in box) in GFRBM for ST dataset (Diss-PCD converged after a few epochs, which is why the curve
is truncated)

5. Discussion

We note here that in all the aforementioned experiments, the dissimilar data was used only
for the first 5 epochs to ensure the Markov chain visits other modes of the probability
distribution, after which it was allowed free exploration. In Figure 5, although the error
increased slightly after 5 epochs of Diss-PCD, the error is still upper-bounded by PCD, and
quickly decreases again after a couple of epochs. From a different viewpoint, our proposed

404



Similarity-based Contrastive Divergence Methods

method can hence be viewed as a “supervised pre-training” step before letting the model
run freely. To describe this further, Table 7 analyzes the effect of learning digit 2 of the
MNIST dataset by training a standard RBM using Diss-PCD for varying number of initial
epochs (after which the model runs freely). We find that when Diss-PCD is used for too
many epochs, there is a deterioration in error performance, since there may be too many
shifts in the modes explored by Gibbs sampling. We overcome this issue, by using Diss-CD
only for the first few epochs (5, in our experiments in this work).

Dissimilarity epochs

5 epochs 10 epochs 40 epochs

10.2 12.8 80.4

Table 7: Squared reconstruction
error(x103) at the end of training
(40th epoch) when using Diss-PCD
at different levels

Also, while it is evident from the experimental re-
sults that the proposed Diss-CD approach has merit
in being used in energy-based deep learning models,
one of the key issues of the proposed Diss-CD ap-
proach is that the choice of dissimilar data can be
subjective. In most classification problems, we be-
lieve that this choice is often quite intuitive. However,
we conducted an experiment to study the significance
of the effect of choice of dissimilarity, while training
an RBM on digit 1. The RBM, when trained with
dissimilar samples from other digits, reported a log likelihood of 1237 (Table 3). When the
same experiment is conducted with dissimilar data consisting of only digit seven (which is
similar to one visually), Diss-CD reported a lower log likelihood of 952, clearly implying
that the choice of dissimilarity plays an important role. We also note that if the dissimilar
data is reasonably similar to that of training data, our Diss-CD effectively becomes PCD.
Hence, it is possible to ensure that the performance of the proposed approach is always
bounded below by the performance of PCD itself (or any other variant it is used with).

6. Conclusions and Future Work

A novel training method for energy-based deep learning methods based on using dissimilar
data to improve Contrastive Divergence performance is proposed. The proposed Diss-CD
approach allows the system to model the p.d.f of the training data better than using CD
alone, by allowing the Markov chain to visit different modes in the probability space of
training data, thus addressing a common issue in traditional Gibbs sampling. The proposed
method is evaluated on many datasets with different variants of PCD, and also on two kinds
of energy-based deep learning models, viz. RBMs and GFRBMs. Our experimental studies
show promise in the use of this approach. Our future work includes: (i) although it is not
possible to prove theoretical bounds on CD performance considering it is an approximation
itself (as in earlier work on CD variants, (Tieleman and Hinton, 2009), (Salakhutdinov,
2010), (Desjardins et al., 2010)), we plan to study the possibility of proving bounds on the
performance of the proposed Diss-CD approach; (ii) considering similarity plays a big role
in this idea, we plan to explore different similarity metrics (or even learning one adaptively
for a given application) to improve Diss-CD performance; (iii) considering that T-MCMC
occasionally performed better than our approach, we plan to investigate the use of parallel
Markov chains with dissimilar data in our future work; and (iv) we plan to extend our study
to include other energy-based models such as CRBMs.
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