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Abstract

Sufficient dimension reduction (SDR) is a framework of supervised linear dimension reduction,
and is aimed at finding a low-dimensional orthogonal projection matrix for input data such that
the projected input data retains maximal information on output data. A computationally efficient
approach employs gradient estimates of the conditional density of the output given input data to
find an appropriate projection matrix. However, since the gradients of the conditional densities are
typically estimated by a local linear smoother, it does not perform well when the input dimension-
ality is high. In this paper, we propose a novel estimator of the gradients of logarithmic conditional
densities called the least-squares logarithmic conditional density gradients (LSLCG), which fits
a gradient model directly to the true gradient without conditional density estimation under the
squared loss. Thanks to the simple least-squares formulation, LSLCG gives a closed-form solution
that can be computed efficiently. In addition, all the parameters can be automatically determined
by cross-validation. Through experiments on a large variety of artificial and benchmark datasets,
we demonstrate that the SDR method based on LSLCG outperforms existing SDR methods both in
estimation accuracy and computational efficiency.

Keywords: sufficient dimension reduction, logarithmic conditional density, gradient estimation.

1. Introduction

High-dimensional data is ubiquitous in modern statistical data analysis, and overcoming the curse
of dimensionality is a big challenge. To cope with the difficulty of handling high-dimensional
data, dimension reduction is a common approach (Carreira-Perpifidn, 1997; Jain et al., 2000).
For supervised dimension reduction, sufficient dimension reduction (SDR) (Li, 1991; Cook, 1998;
Chiaromonte and Cook, 2002) is a well-established framework, which is aimed at finding a low-
dimensional projection matrix for input data vectors so that the projected data contains as much
information as possible on the output data.
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A seminal work on SDR is sliced inverse regression (SIR) (Li, 1991), which tries to find the
projection matrix based on the inverse regression function from output to input. Since then, a
number of methods related to SIR have been proposed such as the principal Hessian direction (Li,
1992) and sliced average variance estimation (Cook, 2000). However, these methods rely on the
strong assumption that the underlying density of input data is elliptic, which can be easily violated
in practice.

An alternative method applicable to a wider class of data is minimum average variance esti-
mation based on conditional density functions (AIMAVE) (Xia, 2007), which uses the conditional
density of the output given the projected input for finding a projection matrix. dMAVE non-
parametrically estimates the conditional density by a local linear smoother (Fan and Gijbels, 1996),
and has been proved to find the correct projection matrix asymptotically. However, the local linear
smoother tends to perform poorly when the input dimensionality is high, and the iterative estimation
procedure of AMAVE is computationally demanding for large datasets. In addition, it is usually dif-
ficult to tune parameters such as the bandwidth in the local linear smoother. Therefore, the practical
usage of AMAVE seems to be limited.

As a SDR method equipped with reliable parameter tuning, least-squares dimension reduction
(LSDR) has been proposed (Suzuki and Sugiyama, 2013). LSDR is an information-theoretic SDR
method involving non-parametric estimation of a squared-loss variant of mutual information. Unlike
dMAVE, a notable advantage of LSDR is that it is equipped with a systematic parameter tuning
method. However, the drawback of LSDR is that the estimation of a projection matrix requires
to solve a non-convex optimization problem, which suffers from multiple local optima in general.
Multiple starts with different initialization can mitigate this drawback, but this in return increases
the computation costs significantly.

An attractive and computationally efficient approach is based on the gradients of regression
functions (Samarov, 1993; Hristache et al., 2001; Xia et al., 2002). In stark contrast to IMAVE and
LSDR, the advantage is that this approach does not require any iterative optimization procedure,
and a projection matrix can be obtained analytically via eigenvalue decomposition. However, this
approach is not guaranteed to perform SDR, since it only tries to fulfill the necessity of SDR (Xia,
2007; Fukumizu and Leng, 2014). The insufficiency of the above gradient-based approach can be
overcome by the outer product of gradient based on the conditional density functions (dAOPG) (Xia,
2007), which employs the gradient of the conditional density of output given input. However, since
a local linear smoother is used to estimate the gradient, dOPG essentially shares the same drawbacks
as dAMAVE.

To extend the applicability of the gradient-based approach, in this paper, we propose a novel
SDR method based on a new estimator for the gradients of logarithmic conditional densities called
the least-squares logarithmic conditional density gradients (LSLCG). The fundamental idea of
LSLCG is to directly fit a log-gradient model to the true log-gradient under the squared loss. This
simple formulation yields a closed-form solution that can be computed efficiently. In addition, all
tuning parameters included in LSLCG can be objectively determined by cross-validation. Through
experiments, we demonstrate that the SDR method based on LSLCG outperforms existing SDR
methods both in estimation accuracy and computational efficiency.

This paper is organized as follows: In Section 2, we first formulate the problem of SDR, and then
we review existing methods and discuss their weaknesses. Section 3 gives LSLCG, a novel estimator
for the gradients of logarithmic conditional densities, and then proposes the SDR algorithm based
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on LSLCG. In Section 4, we experimentally evaluate the performance of the LSLCG-based SDR
method. Finally, Section 5 concludes this paper.

2. Review of Existing Methods

In this section, the problem of SDR is formulated, and then existing SDR methods are reviewed.

2.1. Problem Formulation

Suppose that we are given a collection of input and output data,

S

7 i
i=1

which are drawn independently from the joint distribution with density p(y, ). Further, we assume
that the input dimensionality d is large, but the “intrinsic” dimensionality of &, which is denoted
by dy, is rather small, and z € R% is the orthogonal projection of input data  with a low-rank
matrix B € R%x*dz:

z = BT:c,

where B'B = I, and I, is the d, by d, identity matrix. The goal of SDR is to estimate B* from
D such that the following SDR condition is satisfied:

p(ylz) = p(y|B* ). (1)

Throughout this paper, we denote the subspace spanned by the columns of B by Span(B).

2.2. Existing Methods for Sufficient Dimension Reduction

Here, we review some existing SDR methods and discuss their weaknesses. For other SDR methods,

the reader may refer to Adragni and Cook (2009), Burges (2009) and Ma and Zhu (2013).

2.2.1. MINIMUM AVERAGE VARIANCE ESTIMATION BASED ON CONDITIONAL DENSITY
FUNCTIONS (DMAVE)

A method applicable to a wide class of data is AMAVE (Xia, 2007). dMAVE non-parametrically
estimates the conditional density p(y|B " ) through a local linear smoother (LLS) (Fan and Gijbels,
1996). Consider the following regression-like model:

HbH(Y - y) = f(y7 BTm) + €,

where f(y, B"x) is a model, and Hy, (Y — y) denotes a symmetric unimodal kernel with the
bandwidth parameter by;. Assuming that the conditional expectation of € given the projected data
with respect to Y is zero, i.e. Ey{e|[B"x} = 0, we obtain

Ey{Hy, (Y —y)B'z} = f(y,B'x).

The key point of the above equation is that when by — 0 as n — oo, the conditional expecta-
tion Ey{Hy, (Y — y)|BTx} approaches to the conditional density p(y|B"x). Thus, estimating
f(y,BTx) is asymptotically equivalent to estimating p(y|B ' x).
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To estimate f(y, BT x) and B, the first-order Taylor approximation is applied as follows (Fan
and Gijbels, 1996):

f.B @)~ f(y,B'a@:) + (Vof(y, 2)|,opTa,) B (x—a;) for Bla~Bla;, (2)

where V, denotes the vector differential operator with respect to z. Then, the optimization prob-
lem! is formulated as

(B.41,.8,) = ave i
(B»'Vllmvcllci)

=0 > [ Hop (g = i) = £y, BT i) = Ve (f (4, 2)|=p7a,) " BT (@) — @) *wij, (3)

Ths ()T

where w;; = K}, (|BT (x; — @;)|)) is a weight function with a kernel function K}, containing the
bandwidth parameter h. B and (-, " ¢, j) are alternately and iteratively updated.

Since dMAVE does not assume any forms to the conditional density p(y|B " x), it is applicable
to a wide class of data. However, AIMAVE has mainly three drawbacks:

1. In the Taylor approximation (2), the proximity requirement B " & o~ B " x; holds only when
data is dense. Thus, dMAVE might not perform well when data is sparse in the subspace.
This is in particular problematic when the dimensionality d, is relatively high.

2. The alternate updates for B and (7, ¢},;) in dMAVE can be computationally expensive for
large datasets because the number of elements in (y;,, {;,;) is proportional to n?.

3. The parameter values for by and h are determined based on the normal reference rule of
the non-parametric conditional density (Silverman, 1986; Fan and Gijbels, 1996). Therefore,
when the data density is far from the normal density, this parameter selection method may not
work well.

2.2.2. LEAST-SQUARES DIMENSION REDUCTION (LSDR)

LSDR (Suzuki and Sugiyama, 2013) is an information-theoretic SDR method, which includes a
reliable parameter selection method. LSDR is based on the squared-loss mutual information (SMI):
SMI is an independence measure alternative to mutual information, which is defined by

_} pyx(yaa:) _ ? T T
SMI(Y, X) = 2/<py(y)px(€c) 1) Py (W)pew)dyde,

where pyx (y, ) is the joint density, and py (y) and px(x) denote the marginal densities of y and x,
respectively. As proved in (Suzuki and Sugiyama, 2013), the rationale of using SMI for SDR comes
from the following inequality:

SMI(Y, X) > SMI(Y, Z). 4)

1. The actual formulation in dMAVE has a trimming function for technical purposes in front of the summation >} ,
in (3). Here, for notational simplicity, we removed it.
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Interestingly, the equality holds if and only if the SDR condition (1) is satisfied. Thus, maximiz-
ing SMI(Y, Z) provides B*. When estimating SMI(Y, Z) from data in LSDR, a non-parametric
density-ratio estimator (Kanamori et al., 2009) has been applied. Then, estimation of SMI and
maximization of the SMI estimator with respect to B are performed alternately.

Unlike dMAVE, a notable advantage of LSDR is that a cross-validation method is provided
for tuning all the parameters. Furthermore, LSDR also does not have any assumptions on densi-
ties. However, the main drawback is that estimating B involves solving a non-convex optimization
problem, which suffers from multiple local optima in general. To cope with this problem, mul-
tiple point search with different initial values on B may be performed. However, this procedure
is computationally inefficient. Recently, another information-theoretic method has been proposed
in (Tangkaratt et al., 2015). However, this method also needs to solve a non-convex optimization
problem when estimating B.

2.2.3. ESTIMATION BASED ON OUTER PRODUCTS OF GRADIENTS

A computationally efficient approach in contrast to dAMAVE and LSDR is based on the gradients of
regression functions (Samarov, 1993; Hristache et al., 2001; Xia et al., 2002). The reason of using
the gradients is due to the following equation which can be easily derived from the SDR condition

(D:

VaeE{ylz} = B*V.- E{y|z"}
:Cle-I-CQb;—F"'-FCdeZZ, (5)

where z* = B*Tx, ¢ is the partial derivative of E{y|2z*} with respect to the k-th coordinate in
z*, and b} denotes the k-th column vector in B*. Eq.(5) indicates that the gradient V,E{y|x} is
contained in Span(B*). Therefore, B* can be estimated as a collection of the top d, eigenvectors
from the expectation of the outer products of the estimates to V,E{y|x}. Since any iterative
optimization steps and solving non-convex optimization problems are not needed, this approach
is computationally efficient. However, (5) only satisfies the necessary condition of (1), and the
sufficient condition is not satisfied in general. For example, when y follows a regression model
y = 2 + ()¢ where E{¢'|x} = 0, the regression function E{y|x} depends on only z(1), but the
conditional density p(y|z) depends on both (1) and () (Fukumizu and Leng, 2014, Section 2.1).

To extend the applicability of this approach, recently, a method called gradient-based kernel
dimension reduction (gKDR) has been proposed based on the gradient of a conditional expectation
E{g(y)|x} where g is a function in a reproducing kernel Hilbert space (Fukumizu and Leng, 2014).
Based on the kernel method, gKDR estimates B* by applying the eigenvalue decomposition to the
expectation of

Vakx(®)(Gx + ne,ly) Gy (Gx + neyl,) ' Vake(z) T, (6)

where G x and Gy are Gram matrices whose elements are kernel values ky(x;, ;) and ky (s, y;)
respectively, Vakx () = (Vakx(x, 1), . . ., Vakx (T, T,)) € R=*" and €, denotes the regular-
ization parameter. However, the performance of gKDR depends on the parameter €, and the kernel
parameters in ky and ky, and there seems to be no systematic model selection method for dimension
reduction based on kernel methods (Fukumizu et al., 2004, 2009)2.

2. In principle, model selection can be performed by cross-validation (CV) over a successive predictor. However, this
should be avoided in practice because of the two reasons: First, when CV is applied, one should optimize both
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An alternative solution to the problem based on the gradients of regression functions is to use
gradient estimates of the conditional density p(y|x). As in (5), it can be easily proved that the
gradient of the conditional density is also contained in Span(B*) as

Vap(ylz) = B*Vp(yl2"). (7

Unlike the approach based on regression functions, this approach satisfies the sufficient condition as
well, which can be proved similarly in Fukumizu and Leng (2014, Theorem 2). The outer product
of gradient based on the conditional density functions (dOPG) non-parametrically estimates the
gradient by LLS (Xia, 2007). As described in Section 2.2.1, by considering a regression-like model,

HbH(Y - y) = m(y7w) + €,

where m(y, ) is a model and Ey{¢|x} = 0, estimating m(y, x) is asymptotically equivalent to
estimating the conditional density p(y|x). Then, m(y, «) and its gradient Vm/(y, ) are estimated
with the first-order Taylor approximation as the minimizers of

n
(;Y\k:i, Ckz) = arg min Z[HbH (yk - yi) - m(ykv wl) - vm(m(ylﬁ 33)’€E=mi)—r(wj - xi)]Qwij>
(vkiCri) =1 HV’_/ o
ki ki

®)
where w;; = K}, (||&; — x;||). Then, the projection matrix B is estimated through the eigenvalue
decomposition. A dOPG algorithm is summarized in Algorithm 1.3 However, the practical applica-
bility of dOPG seems to be limited because dOPG employs LLS to estimate the gradient and thus
shares the same drawbacks as AMAVE.

To cope with the problems of LLS in gradient estimation, we derive a novel estimator for the
gradients of logarithmic conditional densities and propose a SDR method based on the estimator.

3. Least-Squares Logarithmic Conditional Density Gradients

In this section, we propose a novel estimator for the gradients of logarithmic conditional densities:

dip(yle)  9ip(y, z)p(x) — ply,®)0;p(x)  djp(y,x)  Op(x)

d;jlogp(y|lx) = = = - ;)
sloglyl p(ylz) p(y, )p(x) ply,z)  pla)
where 0; = %. As shown below, the proposed estimator does not have any requirement unlike

LLS, and analytically computes the solutions. A cross-validation method for parameter tuning is
also provided.

parameters in a SDR method and hyper-parameters in the predictor. This procedure results in a nested CV, which is
computationally quite inefficient. Second, features extracted based on CV are no longer independent of predictors,
which is not preferable in terms of interpretability (Suzuki and Sugiyama, 2013).

3. The actual dOPG algorithm proposed in Xia (2007, Section 2.1) is slightly different from Algorithm 1, and uses some
techniques to improve estimation. Here, we presented a simpler algorithm to make clearer the fundamental difference
from our algorithm.
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Input: Data samples, {(y;, )} ;.
1. Estimate the gradient of the conditional density for y; and x; as E ki~
2. Compute 3 = # P Py Ekzar,ﬂ
3. Obtain the d, eigenvectors, ey, es, . . . eq,, via eigenvalue decomposition of s

Output: B = (e, e, ... €4,).

Figure 1: An algorithm of dOPG. The d eigenvectors in the algorithm mean the eigenvectors cor-
responding to the largest d, eigenvalues of X.

3.1. The Estimator

The fundamental idea is to fit a gradient model, g(y, z) = (¢ (y, x),..., 9™ (y, )", directly
to the true gradient of the logarithmic conditional density of y given  under the squared loss:

N = [[ {9 w.2) - 0;108p010)} piy. 2)yde - ¢

= // g¥ (y,w) 2p(y,w)dydw - 2//9(j)(y,w)3jp(y,w)dydw

2 [[ {aﬂ(’@))}p@, x)dyda |

_ / / {69 (. 2)) by, @)dydz — 2 / / v, )]:Z::oooodydw\z(j)
—1—2//8]9 (y, 2)p(y, = dyda:+2// (y, { Jf())}p(y,m)dydm

- [[{s"w.2)} bl 2)yaa

+2//8]g (y, 2)p(y, = dyda:+2// { ﬂ();a)c)}p(y,x)dydw,

where Cj = [[ {9;log p(ylx)}? p(y, x)dyde, dz, ,(;) denotes the integration except for 2U), and
we reached the last equality by applying integration by parts to the second term in the second
line under a mild assumption that lim, )|, g9 (y,x)p(y,x) = 0. We can easily derive the
empirical approximation of the first and second terms in the last equality, but it is difficult to em-
pirically approximate the third term because it includes the true partial derivative of the log-density,

O;logp(x) = 8;1(?7:(;):)' To cope with this problem, we employ a non-parametric plug-in estimator
for log-density gradients, which we call the least-squares log-density gradients (LSLDG) (Cox,
1985; Sasaki et al., 2014). The estimation accuracy of LSLDG has been shown to be much bet-
ter than that of a log-density-gradient estimator based on kernel density estimation particularly for
high-dimensional data, and LSLDG efficiently computes all the solutions in a closed form. Further-
more, all the tuning parameters in LSLDG can be cross-validated. Thus, LSLDG would provide an

accurate and efficient approximation of the third term.
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Substituting 6; ’(JS)C) by the LSLDG estimator 77 (), the loss J (g(j )) is approximated as

w// {g(j)(y,m oy, z dydm+2// jg” ) +g9(y, )“j)(m)}p(y,w)dydw-

Then, the empirical version of the approximative loss is given by

o 1< : 2 j ' :
J(gD) = - Z {gm(yi, :1:2-)} +2 {3jg(ﬂ)(yi, z;) + g9 (v, xi)?(a)(wi)} : (10

To estimate 0; log p(y|x), we use the following linear-in-parameter model:

_ _0)2
Zez] eXp( |w( (]a)c;” y 20?) ) zejlej(y, x),

v (y,x)

8]9(] Zew 8]7/1 y, ) 0;r¢j(ya m)u

\ﬁ,_./
M)
¢;" (y,z)

where w](-i) (y,x) is a basis function.* By substituting this model and adding the £ regularizer to
(10), we obtain the closed-form solution as

~

6, = arg min (6]G;68; +20] by +X16] 6] = —(G; + AV,
i
where A7) > 0 is the regularization parameter,

1 n
G; = ﬁZiﬁj(yi,xi)l/Jj(yi,wz) and h; = Zd’y ;) + 79 (i) ().
=1

Finally, the estimator, which we call the least-squares logarithmic conditional density gradients
(LSLCG), is obtained as

79 () = 6] 9 ().

3.2. Model Selection by Cross-Validation

The performance of LSLCG depends on the choice of models, which are the Gaussian width pa-
rameters, og(cj ) and oy, and the regularization parameter AU in the current setup. We perform model
selection by cross-validation as follows:

Step 1 Divide the sample D = {(y;, z;)}?*, into T disjoint subsets {D;}7_;.

4. When n is too large, we may only use a subset of data samples as center points for computational efficiency.
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Step 2 Obtain an estimator /g\ij ) (x) using D \ Dy, and then compute the hold-out error to D, as

1 Nz 2 N7 N7 )
vV =5 2 o wof +2{08 v + 3 e @}, an
(va)eDt

where | D;| denotes the number of elements in D;.

Step 3 Choose the model that minimizes CV = £ 23:1 CV(t).

3.3. Least-Squares Gradients for Dimension Reduction

Here, we propose our SDR method. Our algorithm is essentially the same as the one in Figure 1:
We replace the gradient estimates from LLS to LSLCG, and perform eigenvalue decomposition to
s = % S 1 9(yi, )G (yi, i), where g(y;, x;) is an estimate from LSLCG. We call this method
the least-squares gradients for dimension reduction (LSGDR). A MATLAB package is available
from https://sites.google.com/site/hworksites/home/software/lsgdr.

4. Numerical Experiments for Sufficient Dimension Reduction

In this section, we investigate the performance of the proposed SDR method using both artificial
and benchmark datasets, and compare it with the existing methods.

4.1. Ilustration of Dimension Reduction on Artificial Data

First, we illustrate the behavior of LSGDR using artificial data, and the comparison to dMAVE?,
LSDR® and gKDR”.

4.1.1. INTRINSIC-DIMENSION-SCALABILITY AND COMPUTATIONAL EFFICIENCY

To investigate the scalability to the intrinsic-dimension d, and computational efficiency, we gener-
ated the outputs y according to the model,

dz

y = Z(a;(j))Q + 0.3¢,

=1

where x and € were drawn from the standard normal density. The data dimension and total number
of samples were dx = 10 and n = 500, respectively. After generating data, y and & were stan-
dardized in a element-wise manner to have zero means and unit variances. The estimation error
was assessed by Errorgro = [|[BBT — B*B*T ||, where || - [|kro denotes the Frobenius norm, B*
is the true projection matrix, and B is its estimate. For LSGDR, we only used 100 center points
in the basis functions wj(.l) (x) which were randomly selected from data samples. 05(,;] ) and A\U) are

cross-validated as in Section 3.2.8

5.http://www.stat.nus.edu.sg/~staxyc/dMAVE.m

6. http://www.ms.k.u-tokyo.ac.jp/software.html#LSDR

7. http://www.ism.ac.jp/~fukumizu/software.html

8. To reduce the computation cost, we fix o, as the median value of |y; — y;| for all ¢ and j throughout the remaining
parts of this paper.
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Figure 2: Comparison to existing methods in terms of (a) the estimation error and (b,c,d) computa-
tion cost. Each point denotes the mean value over 50 runs, and the error bars are standard

deviations.

Figure 2(a) shows that LSGDR produces the best performance and gKDR works reasonably well
to a wide range of the intrinsic dimensionality d,, while the estimation errors in IMAVE and LSDR
sharply increase as d,, increases. A reason of this unsatisfactory performance for LSDR is that good
initialization on B is more challenging for data contained in a higher-dimensional subspace. For
dMAVE, LLS seems not to work well to data with large d, as reviewed in Section 2.2.1.

Figure 2(b) reveals that LSGDR is computationally the most efficient method. Since AIMAVE
and LSDR estimate the projection matrix B using the data projected on the subspace, the compu-
tation costs of these methods increase as the intrinsic-dimensionality d, grows. On the other hand,
changing d, does not affect the computation costs of gKDR and LSGDR which use (non-projected)
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Figure 3: Comparison to gKDR when the number of center points is changed.

data. Instead, when data dimension dx increases, the computation costs of gKDR and LSGDR
grow (Figure 2(c)). Note that the computation cost of LSGDR increases more mildly and is still the
smallest among all the methods. This is because LSGDR uses only 100 centers in the basis func-
tion, which is independent of the sample size n. The computation cost of AMAVE also increases
with dx because an estimate from dOPG is used for initialization on B. Increasing the sample size n
strongly grows the computation costs of AIMAVE and gKDR (Figure 2(d)). For dAMAVE, the number
of elements (7}, 0 ¢r. j) in (3) is proportional to n?, and gKDR has to compute the inverse of an n x n
matrix in (6). For gKDR, the computation costs can be decreased by reducing the size of the Gram
matrices, Gx and Gy, and the number of centers x; in the kernel function kx(x, x;) as done in
LSGDR. However, this is not a good approach in gKDR: Using a smaller number of center points
reduces the computation costs, but significantly increases the estimation error (Figure 3(a) and (b)).
In contrast to gKDR, LSGDR keeps the estimation error small against fewer center points, while
the computation costs are reduced dramatically.

4.1.2. PERFORMANCE ON VARIOUS KINDS OF ARTIFICIAL DATA

Here, we generated data according to the following various kinds of models, all of which were
adopted from the papers of AMAVE, LSDR and gKDR:

(a) (Xia, 2007) (dy = 20, d, = 2,1 = 200)
y =sgn(2z' BY + M) log(|227 8P + 4 + ?))),

where sgn(-) denotes the sign function, & ~ N(0,1,,), €V, e ~ N(0,1), and N'(p, C)
denotes the normal density with the mean g and covariance matrix C. The first four elements
in B are all 0.5 while the others are zeros. For 3(), the first four elements are 0.5, —0.5,
0.5 and —0.5, respectively, and the others are zeros.
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Table 1: The means and standard deviations of estimation errors and CPU time over 50 runs. The
numbers in the parentheses are standard deviations. The best and comparable methods
judged by the Wilcoxon signed-rank test at the significance level 1% are described in
boldface.

(a) (Xia, 2007) (dx = 20, dy = 2,n = 200)
LSGDR dMAVE LSDR gKDR
Errorro | 0.378(0.112) | 0.643(0.166) | 0.656(0.103) | 0.784(0.165)
Time | 4.685(0.239) | 15.244(0.750) | 9.392(1.877) | 23.668(0.642)

(b) (Xia, 2007) (dx = 10, d, = 2,n = 500)
LSGDR dMAVE LSDR gKDR
Errorgr, | 0.305(0.099) | 0.280(0.059) | 0.390(0.085) | 0.490(0.172)

Time | 3.218(0.308) | 24.152(2.980) | 8.552(1.271) | 50.753(4.292)

(¢) (Suzuki and Sugiyama, 2013) (dx = 4,d, = 2,n = 100)
LSGDR ‘ dMAVE LSDR gKDR
0.104(0.114) | 0.225(0.120) | 0.431(0.256) | 0.340(0.209)
1.213(0.163) | 0.205(0.048) | 4.343(0.560) | 0.971(0.131)

Errorg.,
Time

(d) (Fukumizu and Leng, 2014) (dx = 10, d, = 2,n = 400)

| LSGDR | dMAVE | LSDR | gKDR
0.286(0.471) | 1.018(0.342) | 0.750(0.323) | 0.791(0.366)
2.894(0.178) | 14.413(1.100) | 14.606(2.473) | 30.371(0.937)

Errorgy,
Time

(e) (Fukumizu and Leng, 2014) (dx = 10,d, = 1,n = 400)
LSGDR | dMAVE | LSDR | gKDR

0.043(0.029) | 0.150(0.043) | 0.234(0.072) | 0.220(0.070)

3.474(0.207) | 17.276(2.130) | 6.016(0.605) | 34.575(1.586)

Errorg;,
Time

(b) (Xia, 2007) (dx = 10,d, = 2,n = 500)
y=2x"BY +2exp(z' BP))e,
where & ~ Uni[—v/3,v/3]%, ¢ ~ N(0,1), B = (1,2,0,0,0,0,0,0,0,2)" /3, B3 =
(0,0,3,4,0,0,0,0,0,0)" /5, and Uni[a, b] denotes the uniform density on [a, b].
(c) (Suzuki and Sugiyama, 2013; Fukumizu et al., 2009) (dx = 4,d, = 2,n = 100)
2
T 05+ (2@ +1.5)2
where z ~ N (0,1, ) and € ~ NV(0,1).
(d) (Fukumizu and Leng, 2014) (dx = 10, d, = 2,n = 400)
y= (')’ +a") (@’ — (2")°) + e,

+ (1.0 + )2 4 0.4,

Y
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where 2’ = (x(l) —|—x(2))/\@, x = (:1:(1) — $(2))/\/§, x ~ Uni[—1,1]%, ¢ ~ Gamma(1, 2),
and Gamma(k, 6) denotes the Gamma density with the shape parameter & and scale parameter

6.
(e) (Fukumizu and Leng, 2014) (dx = 10,d, = 1,n = 400)
y = (M —0.5)%,
where  is drawn from a normal density A/ (0, 0.25) truncated on [—1, 1], and € ~ N(0, 1).

The results are summarized in Table 1. Table 1 (a) and (b) show that the performance of LSGDR
is best or comparable to the best method in terms of the estimation error, and computationally the
most efficient. Since the models (a) and (b) have quite complex forms, these results ensure that
LSGDR is a promising method to various kinds of data. For Table 1 (c), LSGDR is the most
accurate method, but AIMAVE has the smallest computation costs. Since AMAVE does not perform
cross-validation for tuning the parameters unlike the other methods, it should be computationally
efficient when n is small. However, the computation costs of LSGDR and gKDR seem not to be
so expensive. Since the models (d) and (e) include variables from non-Gaussian densities such as
a gamma and truncated normal density, Table 1 (d) and (e) imply that LSGDR works well for data
drawn from a wide range of densities.

4.2. Regression Performance on Benchmark Datasets

Finally, we apply LSGDR, dMAVE, LSDR and gKDR to the UCI benchmark datasets (Bache and
Lichman, 2013) and StatLib,” and investigate the regression performance of these methods. We
randomly selected n samples from each dataset in the training phase, and the rest, whose number
is denoted by n., were used in the test phase. After estimating B by each method in the training
phase, we learned a regressor fLR(f}Taz) by ¢-regularized least-squares with Gaussian kernels. In
the test phase, the regression error was measured by \/ n%e ot {yi — fLR(ﬁTa:i)}?. To make the
estimation more challenging, we added more noise dimensions, which are independently drawn
from Gamma(1, 2), to the original data. In this experiment, since the true intrinsic dimensionality
d, is unknown, we chose it by cross-validation: Each method performed 5-fold cross-validation to
choose the intrinsic dimensionality d, from the candidates {1,2, ..., dx—1} such that the regression
error is minimized. Unlike the last experiments, we did not perform the comparison in terms of CPU
time because LSGDR and gKDR provide computationally more efficient procedures than dAMAVE
and LSDR: The eigenvalue decomposition allows us to check all B to the candidates for dz by
estimating the gradients only once. On the other hand, since IMAVE and LSDR are not based on
the eigenvalue decomposition, the same idea cannot be applied and thus they are computationally
very expensive in this cross-validation.

When no noise dimension is added, LSGDR produces the best result or is comparable to the best
method for most of the datasets, while for Housing and Power plant, other methods or the original
data without dimension reduction provide better performance than LSGDR (Table 2). However, as
the noise dimensions are added, LSGDR tends to significantly outperform the other methods. These
results indicate that LSGDR is better at finding informative subspaces from high-dimensional data
than other methods.

9.http://lib.stat.cmu.edu/datasets/
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Table 2: The means and standard deviations of regression errors over 30 runs for each dataset. The
best method in terms of the mean error and comparable methods according to the Wilcoxon
signed-rank test at the significance level 1% are specified by bold face. d,qq denotes the

number of added noise dimensions to the original data.

White wine (dx = 11 + dyqq4, n = 500)

LSGDR dMAVE LSDR gKDR No reduc.
daaa = 0 | 0.839(0.012) | 0.850(0.015) | 0.850(0.012) | 0.845(0.014) | 0.838(0.009)
daad = 2 | 0.844(0.010) | 0.853(0.012) | 0.855(0.015) | 0.852(0.011) | 0.846(0.010)
dygqa = 4 | 0.848(0.011) | 0.862(0.017) | 0.865(0.012) | 0.860(0.021) | 0.851(0.009)
daada = 6 | 0.849(0.010) | 0.868(0.017) | 0.879(0.017) | 0.864(0.020) | 0.858(0.014)

Red wine (dx = 11 + da4q4, 7 = 500)

LSGDR dMAVE LSDR gKDR No reduc.
daaa = 0 | 0.805(0.015) | 0.807(0.018) | 0.806(0.020) | 0.804(0.016) | 0.801(0.015)
dyaqa = 2 | 0.812(0.018) | 0.817(0.020) | 0.815(0.015) | 0.814(0.014) | 0.811(0.015)
daaa = 4 | 0.813(0.015) | 0.823(0.014) | 0.819(0.017) | 0.822(0.014) | 0.821(0.012)
dagqa = 6 | 0.813(0.014) | 0.828(0.012) | 0.827(0.013) | 0.828(0.019) | 0.826(0.012)

Housing (dx = 13 + dagq4, n = 200)

LSGDR dMAVE LSDR gKDR No reduc.
dagqa = 0 | 0.464(0.045) | 0.438(0.038) | 0.472(0.054) | 0.433(0.043) | 0.450(0.048)
daad = 2 | 0.471(0.042) | 0.465(0.041) | 0.481(0.050) | 0.463(0.040) | 0.470(0.050)
dagd = 4 | 0.466(0.043) | 0.466(0.042) | 0.489(0.042) | 0.459(0.046) | 0.474(0.047)
daad = 6 | 0.468(0.041) | 0.494(0.038) | 0.513(0.060) | 0.490(0.035) | 0.526(0.044)

Concrete (dx = 8 + dagq, n = 500)

LSGDR dMAVE LSDR gKDR No reduc.
daada = 0 | 0.416(0.019) | 0.420(0.021) | 0.441(0.024) | 0.409(0.019) | 0.428(0.014)
daad = 2 | 0.426(0.026) | 0.434(0.020) | 0.449(0.020) | 0.421(0.020) | 0.468(0.015)
daga = 4 | 0.421(0.023) | 0.447(0.026) | 0.455(0.021) | 0.446(0.022) | 0.507(0.018)
daada = 6 | 0.418(0.018) | 0.454(0.021) | 0.457(0.018) | 0.462(0.020) | 0.545(0.019)

Power plant (dx = 4 + daqq4, n = 500)

LSGDR dMAVE LSDR gKDR No reduc.
daada = 0 | 0.255(0.003) | 0.253(0.003) | 0.255(0.003) | 0.253(0.003) | 0.252(0.002)
dagqa = 2 | 0.257(0.003) | 0.254(0.004) | 0.257(0.003) | 0.256(0.003) | 0.264(0.003)
daad = 4 | 0.257(0.003) | 0.255(0.002) | 0.258(0.002) | 0.258(0.006) | 0.281(0.004)
dagqa = 6 | 0.258(0.004) | 0.257(0.003) | 0.259(0.003) | 0.260(0.004) | 0.294(0.005)

Body fat (*StatLib) (dx = 13 + daqq, » = 100)

LSGDR | dMAVE LSDR gKDR No reduc.
daaqa = 0 | 0.588(0.038) | 0.600(0.031) | 0.603(0.049) | 0.606(0.040) | 0.613(0.029)
daad = 2 | 0.589(0.034) | 0.610(0.047) | 0.621(0.036) | 0.612(0.046) | 0.623(0.028)
daga = 4 | 0.596(0.034) | 0.627(0.050) | 0.636(0.056) | 0.626(0.044) | 0.642(0.029)
daad = 6 | 0.606(0.035) | 0.664(0.057) | 0.654(0.053) | 0.643(0.045) | 0.661(0.030)
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5. Conclusion

In this paper, we proposed a novel method for sufficient dimension reduction (SDR). Our main con-
tribution in this paper was to develop a novel estimator for the gradients of logarithmic conditional
densities, which is the key ingredient in our SDR method. The proposed gradient estimator is com-
putationally efficient because all the solutions are computed in a closed from. Furthermore, a cross-
validation method was also provided to objectively determine all the tuning parameters included in
the estimator. Applying the proposed gradient estimator allowed us to develop a computationally ef-
ficient SDR method based on the eigenvalue decomposition to the expectation of the outer products
of gradient estimates. We demonstrated that the proposed SDR method outperforms existing SDR
methods in terms of both estimation accuracy and computational efficiency on artificial datasets as
well as of regression accuracy on benchmark datasets especially for high-dimensional data.

In this paper, the proposed gradient estimator has been applied only for SDR. However, we
believe that it has a wide range of applications. In future, we will explore novel applications in
statistical data analysis.
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