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Abstract

We study the budgeted bandit problem, where each arm is associated with both a reward
and a cost. In a budgeted bandit problem, the objective is to design an arm pulling
algorithm in order to maximize the total reward before the budget runs out. In this work,
we study both multi-armed bandits and linear bandits, and focus on the setting with
continuous random costs. We propose an upper confidence bound based algorithm for
multi-armed bandits and a confidence ball based algorithm for linear bandits, and prove
logarithmic regret bounds for both algorithms. We conduct simulations on the proposed
algorithms, which verify the effectiveness of our proposed algorithms.
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1. Introduction

Bandit problems are typical examples of sequential decision making problems in an un-
certain environment. Many different kinds of bandit problems have been studied in the
literature, including multi-armed bandits (MAB) and linear bandits. In a multi-armed ban-
dit problem, an agent faces a slot machine with K arms, each of which has an unknown
reward distribution (throughout this work, we restrict our attention to stochastic bandits);
at each round t, he/she needs to pull one arm from the K candidates and will receive a
random reward drawn from the unknown distribution associated with the pulled arm. The
goal of the agent is to sequentially pull arms so as to maximize the total reward. In a
linear bandit problem, the set of K arms is replaced by a compact set of d-dimensional vec-
tors (Dani et al., 2008), and the expected reward of an arm linearly depends on its vector
representation. The key of bandit algorithms is to make a trade-off between exploration
and exploitation: the agent should simultaneously consider pulling the best arm based on
the information collected in the past (exploitation) and trying other arms to collect useful
information for future pulling (exploration).
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In this paper, we consider the budgeted bandit problem, in which pulling an arm is
costly and the objective is to maximize the total reward subject to a budget constraint on
the total cost. A variety of Internet applications can fall into this problem. For example,
both the real-time bidding problem in online advertising (Chakrabarti et al., 2008) and
the cloud service provisioning problem in cloud computing (Ardagna et al., 2011) can be
regarded as budgeted bandits. In fact, this problem has been studied in the literature, with
different settings (Tran-Thanh et al., 2010, 2012; Ding et al., 2013). For example, Tran-
Thanh et al. (2010) study budgeted multi-armed bandits with fixed costs and propose an

epsilon-first algorithm with regret bound O(B
2
3 ) where B is the budget. Tran-Thanh et al.

(2012) further derive an improved regret bound of O(logB) for the same setting. Ding et al.
(2013) study multi-armed bandits with discrete random costs and propose two algorithms
based on upper confidence bound (UCB) whose regret bounds are both O(logB). Different
from these works, in this paper, we study budgeted bandits with continuous costs. Many
real world applications can be modeled as budgeted bandits with continuous costs. An
example is bid optimization in sponsored search: the per-click payment of a bid (the cost
of an arm) is allowed to have six digits after the radix point, which is more convenient
to be modeled as a continuous variable. Another example is virtual instance selection in
cloud computing. When a user has a certain job to run in the cloud, he/she can select
different type of virtual instances 1; the running time of his/her job on a selected instance
is a continuous variable and so for the payment.

We consider two kinds of budgeted bandits, multi-armed bandits and linear bandits.
For the budgeted MAB problem with continuous random costs, we propose a UCB-

based algorithm called Budget-UCB. The algorithm can be regarded as an extension of the
UCB-BV1 algorithm proposed in (Ding et al., 2013), however, its theoretic analysis is far
different from that of UCB-BV1. Actually the discrete costs are very critical to UCB-BV1
because the analysis of its regret bound is based on induction which only works for a well-
ordered set (the set of discrete costs is well ordered). In contrast, the interval [0, 1] of the
continuous costs is not well-ordered at all. As a result, with the techniques used in (Ding
et al., 2013), UCB-BV1 cannot achieve a meaningful regret bound in our setting. To tackle
this challenge, we make modifications to UCB-BV1 and explore new proof techniques so as
to obtain a nearly optimal distribution dependent regret bound of O(logB).

For the budgeted linear bandit problem, all the arms constitute a subspace of d-dimensional
space Rd, and the expected reward and cost of an arm are fixed but unknown linear func-
tions of the vector representation of the arm. For this setting, we generalize the algorithms
proposed by Dani et al. (2008) and Abbasi-Yadkori et al. (2011), and obtain a new algo-
rithm called Budget-CB. In each step of the algorithms proposed in (Dani et al., 2008) and
(Abbasi-Yadkori et al., 2011), a confidence ball is constructed, which contains, with high
probability, the parameter of the fixed and unknown linear function associated with the
expected rewards. Since they do not take costs into consideration, they tend to pull arms
with large rewards and do not work well for our setting. Consider a simple example with
two arms: the expected reward and cost for the first arm are both 1, while the expected
reward and cost for the second arm are 0.5 and 0.1 respectively. For this example, the
algorithms proposed in (Dani et al., 2008) tend to pull the first arm frequently. However, it

1. Amazon EC2 Instances: https://aws.amazon.com/ec2/instance-types/?nc1=h_ls.
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is clear that a much better policy is to pull the second arm more frequently. To tackle this
challenge, we construct two confidence balls, one for the reward and the other for the cost,
and then optimize the reward-to-cost ratio in these two confidence balls. We prove that by
doing so, we can achieve a distribution dependent regret bound of polylog(B).

The proofs for the regret bounds of the above two algorithms are technical: We need to
bridge the relationship between the expected pulling time of suboptimal arms, bound the
expected pulling time for suboptimal arms, and deal with the randomness of the stopping
time. We also need to carefully characterize the conditional independence between rewards,
costs, the arm pulled by the algorithm, and the stopping time (as random variables) in
the regret analysis. We believe that our proof techniques can be applied to more general
settings and can be of independent interest to the community.

To summarize, we have two main contributions: (1) To the best of our knowledge, this
is the first work that obtains an O(log(B)) distribution dependent regret bound of UCB
based algorithms for budgeted multi-armed bandits with continuous random costs; (2) It
is the first time that budgeted linear bandits are investigated and a distribution dependent
regret bound of order polylog(B) is derived.

The remaining of the paper is organized as follows. Related work is discussed in Section
2. The algorithm for budgeted multi-armed bandits with continuous random costs is intro-
duced and analyzed in Section 3. The algorithm for budgeted linear bandits is described
and analyzed in Section 4. Experimental results are given in Section 5. Section 6 concludes
the paper and discusses possible further research directions.

2. Related Work

While most existing works on bandit problems (Agrawal et al., 1988; Auer et al., 2002;
György et al., 2007; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Wang et al., 2009;
Kleinberg, 2004; Li et al., 2010) do not consider budget constraints, which does not hold in
many real-world applications, there have been some attempts that take budget constraint
into consideration (Audibert et al., 2010; Bubeck et al., 2009; Guha and Munagala, 2007;
Tran-Thanh et al., 2010, 2012; Badanidiyuru et al., 2013). Roughly speaking, these related
works can be classified into two categories.

In the first category, the cost of pulling an arm is fixed and no exploration for costs
is needed. In the pure exploration problem studied by Audibert et al. (2010) and Bubeck
et al. (2009), the exploration phase and exploitation phase are separated. In the exploration
phase, it is assumed that pulling each arm has a unit cost, and the budget is imposed on
the total number of pulls. After the exploration, the agent is asked to choose the best arm
according to certain criteria, and this arm will always be used in the future exploitation
phase (which is not associated with a cost any more). Guha and Munagala (2007) study
how to minimize the budget given a confidence level for the optimality of the selected arm.
Tran-Thanh et al. (2010) propose ε-first methods, which use a fixed proportion (ε) of the
budget for exploration, and the remaining proportion for exploitation. Tran-Thanh et al.
(2012) propose a UCB style algorithm for the regret minimization problem of fixed cost
budgeted bandits.

In the second category, the cost of pulling an arm is a discrete random variable, instead of
a fixed value. Due to the uncertainty of costs, both the exploitation phase and exploration
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phase should take the costs into account. Ding et al. (2013) develop two UCB based
algorithms to solve this problem and obtain nearly optimal regret bounds.

In this paper, we study a more general setting for UCB based algorithms, in which
the cost of pulling an arm is random and continuous. We call it budgeted bandits with
continuous random costs, which covers previous work with UCB based algorithms (both
fixed costs (Tran-Thanh et al., 2012) and discrete random costs (Ding et al., 2013)) as its
special cases. We also propose the budgeted linear bandits in this work. A closely related
work is (Badanidiyuru et al., 2013), which also studies bandit problems with continuous
costs. The differences between (Badanidiyuru et al., 2013) and our work lie in two aspects:
(1) We study both multi-armed bandits and linear bandits, while Badanidiyuru et al. (2013)
only consider multi-armed bandits; (2) Our analysis focuses on distribution dependent regret
bounds, while Badanidiyuru et al. (2013) focus on distribution independent bounds.

3. Budgeted Multi-armed Bandits with Continuous Random Costs

3.1. Problem Formulation of Budgeted Multi-armed Bandits

In the budgeted multi-armed bandit (MAB) problems, the bandit is associated with a
finite set of arms denoted by {1, 2, · · · ,K} (K ≥ 2). For ease of reference, denote the set
{1, 2, · · · ,K} as [K]. The agent is asked to pull one of the K arms at each round t. If
arm i is pulled, the agent will receive a reward ri,t and a cost ci,t. We assume that the
pairs {(ri,t, ci,t)}∞t=1 are independently and identically drawn from an unknown continuous
distribution,2 and both rewards and costs take real values from [0, 1].

We use B to denote the budget, which is a known parameter and will constrain the total
number of pulls, i.e., the stopping time of the pulling procedure. The stopping time Ta,B
of a pulling algorithm a is a random variable depending on B, and can be mathematically

formulated by
∑Ta,B−1

t=1 cat,t ≤ B <
∑Ta,B

t=1 cat,t. The total reward collected up to time Ta,B

by the pulling algorithm a is defined as Ra =
∑Ta,B

t=1 rat,t. Let R∗ denote the optimal expected
total reward when the distribution of rewards and costs are known. We use expected regret
to evaluate the performance of the algorithm which is defined as below,

Regret
def
= R∗ − E[Ra] = R∗ − E

[ Ta,B∑
t=1

rat,t

]
, (1)

where the E is taken over the randomness of rewards, costs, and the pulling algorithm.

3.2. Algorithm

Our proposed Budget-UCB algorithm is shown in Algorithm 1. In the algorithm, for any
arm i, ni,t, r̄i,t and c̄i,t denote the pulling times, average reward and average cost of arm i
before round t. Mathematically,

ni,t =

t−1∑
s=1

1(as = i), r̄i,t =

∑t−1
s=1 ri,s1(as = i)

ni,t
, c̄i,t =

∑t−1
s=1 ci,s1(as = i)

ni,t
,

2. Note that we only assume that the reward-cost pairs at different rounds are independent, and do not
assume that the cost and reward at the same round are independent. In some applications the cost of
pulling an arm may be correlated to the reward.
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where 1(·) is the indicator function. The parameter λ is a positive lower bound of the
expected costs of all arms.3 In Algorithm 1, the first term on the right side of Eqn. (2)
is an exploitation term, which is the average reward-to-cost ratio. This term forces the
algorithm to choose those arms with higher marginal rewards. The second term is an
exploration term: it is proportional to εi,t thus prefers the arms pulled less frequently in
the past (this is in the same spirit with the exploration term in UCB1 (Auer et al., 2002)),
and inversely proportional to c̄i,t thus prefers the arms with lower costs (intuitively, due to
the limited budget, the arms with lower costs are worth exploring because they consume
less). The third term is a hybrid term that performs joint exploitation and exploration.

Algorithm 1 The Budget-UCB Algorithm (Input: λ)

Initialization: Pull each arm i once in the first K steps, set t = K.
1: while

∑t
s=1 cas,s ≤ B do

2: Set t = t+ 1.

3: Define εi,t =
√

2 log(t−1)
ni,t

. Calculate the index Di,t of each arm i as follows.

Di,t =
r̄i,t
c̄i,t

+
εi,t
c̄i,t

+
εi,t
c̄i,t

min{r̄i,t + εi,t, 1}
max{c̄i,t − εi,t, λ}

; (2)

4: Pull the arm at with the largest index: at ∈ arg maxiDi,t.
5: end while

Return: The accumulate reward
∑t

s=1 ras,s.

3.3. Regret Analysis

We first declare the notations that will be frequently used throughout this work: (1) µri and
µci denote the expected reward and cost of arm i respectively. (2) i∗ denotes the arm with

the largest expected reward to expected cost ratio, i.e., i∗ = arg maxi
µri
µci

. We name arm i∗

as the optimal arm. Without loss of generality, we assume there is a unique optimal arm.4.

The others arms are called suboptimal arms. (3) For any i 6= i∗, ∆i =
µr
i∗
µc
i∗
− µri

µci
. Obviously,

∆i > 0. (4) Bt denotes the budget left at the beginning of round t. (5) ni,Ta,B denotes the
pulling time of arm i when the algorithm a stops. (6) µcmin denotes mini∈[K]{µci}.

The regret analysis of the Budget-UCB algorithm is different from previous works (Tran-
Thanh et al., 2010; Ding et al., 2013). This is because we consider continuous costs and the
main proof technique in (Ding et al., 2013), the induction methodology designed for discrete
costs, cannot be directly applied. Therefore, we first propose a framework that relates the
regret with the pulling time of each suboptimal arm.

3. Note that to use this algorithm, one needs to know λ in advance, which is a lower bound of the expected
costs of all the arms. In some applications, the expected costs can be known and it is easy to set λ.
In some other applications, the costs correspond to monetary payments and one can set λ to be the
minimum unit of the currency.

4. If there are multiple optimal arms (denote them as O), we can randomly pick an i∗ ∈ O as the “optimal”
arm. We have ∆i = 0 ∀i ∈ O, which will not contribute to upper bound of the regret in Lemma 1.
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Lemma 1 The expected regret of any algorithm a (denoted as Regret(a)) is upper bounded
by: Regret(a) ≤∑i 6=i∗ µ

c
i∆iE[ni,Ta,B ] + µri∗/µ

c
i∗.

Proof The proof of Lemma 1 consists of two steps.
(S1) We will prove that R∗ ≤ (B + 1)µri∗/µ

c
i∗ .

Proof : Let a∗ denote the optimal pulling algorithm. We can obtain that

R∗ = E
[ ∞∑
t=1

ra∗t ,t1(Bt ≥ 0)
]

=

∞∑
t=1

K∑
i=1

E
[
ri,t|a∗t = i, Bt ≥ 0

]
P(a∗t = i, Bt ≥ 0)

≤
( ∞∑
t=1

K∑
i=1

E
[
ci,t|a∗t = i, Bt ≥ 0

]
P(a∗t = i, Bt ≥ 0)

)µri∗
µci∗

= E
[ ∞∑
t=1

ca∗t ,t1(Bt ≥ 0)
]µri∗
µci∗

(3)

=E
[ Ta∗,B∑
t=1

ca∗t ,t

]µri∗
µci∗
≤ (B + 1)µri∗

µci∗
.

The inequality in (3) holds because: (i) a∗t and Bt are only related to the pulling history
until round t − 1. Thus, E

[
ri,t|a∗t = i, Bt ≥ 0

]
= µri ≤ µciµ

r
i∗/µ

c
i∗ . (ii) Similar to the

discussion in (i), we can obtain that E
[
ci,t|a∗t = i, Bt ≥ 0

]
= µci . �

(S2) We will prove Lemma 1 in this step. According to (S1), the optimal reward can be

upper bounded as R∗ ≤ (B+1)µr
i∗

µc
i∗

< E
[∑Ta,B

t=1 cat,t + 1
]
µr
i∗
µc
i∗
. Accordingly, for any algorithm

a, the regret can be bounded as

Regret(a) ≤ E
[ Ta,B∑
t=1

cat,t + 1
]µri∗
µci∗
− E

[ Ta,B∑
t=1

rat,t

]
= E

[ Ta,B∑
t=1

µri∗

µci∗
cat,t − rat,t

]
+
µri∗

µci∗

=E
[ ∞∑
t=1

K∑
i=1

(µri∗
µci∗

ci,t − ri,t
)
1(at = i, Bt ≥ 0)

]
+
µri∗

µci∗

=

K∑
i=1

∞∑
t=1

E
[(µri∗
µci∗

ci,t − ri,t
)∣∣∣at = i, Bt ≥ 0

]
P(at = i, Bt ≥ 0) +

µri∗

µci∗

=

∞∑
t=1

∑
i6=i∗

µci∆iP(at = i, Bt ≥ 0) +
µri∗

µci∗
=
∑
i 6=i∗

µci∆iE[ni,Ta,B
] +

µri∗

µci∗
.

Thus we reach the conclusion in Lemma 1.

Then we only need to focus on bounding the expected pulling time of each suboptimal arm.
We introduce two notations T0 and N as follows: (both T0 and N are deterministic)

T0 =
⌊ 2B

µcmin

⌋
; N = 8

(1 + 1
λ + ∆i

2

∆iµci

)2

log T0. (4)

Without loss of generality, we assume N > 1, which is easy to be satisfied with B ≥ 1
given the costs are upper bounded by 1. We can verify that ni,Ta,B can be decomposed as

ni,Ta,B
=

∞∑
t=1

1{at = i, Bt ≥ 0} ≤ 1 +N +

T0∑
t=K+1

1{at = i, ni,t ≥ N}+

∞∑
t=T0+1

1{Bt ≥ 0}. (5)

For ease of reference, for any t ≥ 1 and a given i 6= i∗, denote the event {at = i, ni,t ≥ N}
as E0

t . The expectations of the last two terms in (5) will be bounded in (S1) and (S2).
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(S1): Bound E[
∑T0

t=K+1 1{E0
t }]. Define Hi,t =

εi,t
c̄i,t

+
εi,t
c̄i,t

min{r̄i,t+εi,t,1}
max{c̄i,t−εi,t,λ} . If E0

t happens, at

least one of the following four events happens.

E1
t : |c̄i,t − µci | ≥ εi,t; E2

t :
r̄i,t
c̄i,t
≥ µri
µci

+Hi,t, |c̄i,t − µci | < εi,t;

E3
t :

r̄i∗,t
c̄i∗,t

≤ µri∗

µci∗
−Hi∗,t, , |c̄i,t − µci | < εi,t; E4

t :
µri∗

µci∗
<
µri
µci

+ 2Hi,t, |c̄i,t − µci | < εi,t, ni,t ≥ N.

This is because: (i) One of E1
t and E1

t must hold; (ii) Conditioned on E1
t , at least one of

the following three events must hold: (ii-a)
r̄i,t
c̄i,t
≥ µri

µci
+Hi,t; (ii-b)

r̄i∗,t
c̄i∗,t
≤ µr

i∗
µc
i∗
−Hi∗,t; (ii-c)

µr
i∗
µc
i∗
<

µri
µci

+2Hi,t. Thus, E[
∑T0

t=K+1 1{E0
t }] ≤

∑4
j=1

∑T0
t=K+1 P{E

j
t }. We will bound the sum

of the four probabilities from (S1-1) to (S1-4).
(S1-1)Bound

∑T0
t=K+1 P{E1

t }: This step depends on the following lemma:

Lemma 2 For Budget-UCB, we have

P(|r̄i,t − µri | ≥ εi,t) ≤ 2(t− 1)−3, P(|c̄i,t − µci | ≥ εi,t) ≤ 2(t− 1)−3. (6)

Proof We adapt the proof of Theorem 1 in (Auer et al., 2002). Denote X̄i,n as the average
reward of n independent plays of arm i. We have

P(|r̄i,t − µri | ≥ εi,t) =

t−1∑
n=1

P(|r̄i,t − µri | ≥ εi,t, ni,t = n) =

t−1∑
n=1

P
(
|r̄i,t − µri | ≥

√
2 log(t− 1)

ni,t
, ni,t = n

)
≤
t−1∑
n=1

P
(
|X̄i,n − µri | ≥

√
2 log(t− 1)

n

)
≤4

t−1∑
n=1

2(t− 1)−4 = 2(t− 1)−3,

where the inequality marked with 4 comes from the conventional Chernoff-Hoeffding in-
equality. Similarly, the second inequality of (6) can be obtained.

By Lemma 2, we have that
∑T0

t=K+1 P{E1
t } ≤ 2

∑∞
t=3 1/(t− 1)3 ≤ 1.

(S1-2)Bound
∑T0

t=K+1 P{E2
t }. If event E2

t happens, we have |r̄i,t − µri | ≥ εi,t. Otherwise,

we have |ri,t − µri | < εi,t, which implies that µri < ri,t + εi,t. One can also verify that E2
t

happens means that µci > ci,t − εi,t. Therefore, we can obtain

r̄i,t
c̄i,t
− µri
µci

=
(r̄i,t − µri )µci + (µci − c̄i,t)µri

c̄i,tµci
<
εi,t
c̄i,t

+
εi,tµ

r
i

c̄i,tµci
<
εi,t
c̄i,t

+
εi,t
c̄i,t

min{r̄i,t + εi,t, 1}
max{c̄i,t − εi,t, λ}

= Hi,t.

By Lemma 2, we have
∑T0

t=K+1 P{E2
t } ≤

∑∞
t=3 P(|r̄i,t − µri | ≥ εi,t) ≤ 2

∑∞
t=3(t− 1)−3 = 1.

(S1-3)Bound
∑T0

t=K+1 P{E3
t }. We can verify that if the event E3

t holds, we have |r̄i∗,t−µri∗ | ≥
εi∗,t. Leveraging Lemma 2 again, we have

∑T0
t=K+1 P{E3

t } ≤ 1.

(S1-4)Bound
∑T0

t=K+1 P{E4
t }. For event E4

t , given |c̄i,t − µci | < εi,t and ni,t ≥ N , it can be

verified that for any t ≤ T0,
µr
i∗
µc
i∗
≥ µri

µci
+ 2Hi,t (i.e., 1(E4

t ) = 0) as follows:

εi,t =

√
2 log(t− 1)

ni,t
<

√
2 log(T0)

N
=

∆iµ
c
i

2 + 2
λ + ∆i

⇒ εi,t

(
1 +

1

λ
+

∆i

2

)
≤ ∆i

2
µci

⇒ εi,t

(
1 +

1

λ

)
≤ ∆i

2
(µci − εi,t) ≤

∆i

2
c̄i,t ⇒ Hi,t ≤

εi,t
c̄i,t

(
1 +

1

λ

)
≤ ∆i

2
=

1

2

(
µri∗

µci∗
− µri
µci

)
.
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According to (S1-1) to (S1-4), we can obtain that E[
∑T0

t=K+1 1{E0
t }] ≤ 3.

(S2): Bound
∑∞

t=T0+1 P{Bt ≥ 0}. We use two sub steps to bound it.

(S2-1)We prove that for any t ≥ T0, P{Bt+1 ≥ 0} ≤ exp
{
− 2(B − tµcmin)2/t

}
.

Proof. Denote the cost at round s ∈ {1, 2, · · · , t} as c(s). We have

E[c(1)] + · · ·+ E[c(t)] ≥ tµcmin ≥ b
2B

µcmin

cµcmin ≥ 2B − µcmin > B. (7)

Accordingly, we have that

P{Bt+1 ≥ 0} = P{c(1) + · · ·+ c(t) ≤ B}
≤P{c(1) + · · ·+ c(t)− E[c(1)]− · · · − E[c(t)] ≤ B − E[c(1)]− · · · − E[c(t)]}

≤ exp{−2(B − E[c(1)]− · · · − E[c(t)])2

t
} (according to Hoeffding inequality)

≤ exp
{
− 2(B − tµcmin)2

t

}
. (according to (7)) . �

(S2-2)Bound
∑∞

t=T0+1 P{Bt ≥ 0} according to (S2-1). Define T (B) as follows:

T (B) = exp
{
− µcmin(B − µcmin)2

B

}
+ (

3B

µcmin

) exp
{
− Bµcmin

2

}
+

1

(µcmin)2
exp{1− 2Bµcmin}. (8)

Please note that T (B) tends to zero as B tends to infinity. Then we have

∞∑
t=T0+1

P{Bt ≥ 0} ≤ exp
{
− µcmin(B − µcmin)2

B

}
+

∞∑
t=T0+1

P{Bt+1 ≥ 0}

≤ exp
{
− µcmin(B − µcmin)2

B

}
+

∞∑
l=0

exp
{
− 2(B + lµcmin)2

2B
µc
min

+ l

}
≤ exp

{
− µcmin(B − µcmin)2

B

}
+ (b 2B

µcmin

c+ 1) exp
{
− Bµcmin

2

}
+

∞∑
l=T0+1

exp{−l(µcmin)2} ≤ T (B).

Therefore, according to Lemma 1, (5), (S1) and (S2), we come to the following theorem:

Theorem 3 The regret of Budget-UCB is at most

∑
i 6=i∗

8
(
1 + 1

λ + ∆i

2

)2
∆iµci

log
2B

µcmin

+ (3 + T (B))

K∑
i 6=i∗

∆iµ
c
i +

µri∗

µci∗
, (9)

where T (B) is defined in (8).

Please note that T (B) tends to zero asB tends to infinity. We make the following discussions
about the theorem.

• This theorem shows that the asymptotic regret bound of the proposed algorithm is
of O(logB) when B is sufficiently large. More precisely, given a bandit (i.e., the
parameters {µri , µci}Ki=1 are fixed), the regret of the algorithm grows in the logarithmic
order of the budget B when B goes to infinity.
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• When B is not very large, other terms in the regret bound may play a more important
role than log(B). We conducted a set of numerical experiments to evaluate how the
algorithm performs when B is not very large. The experimental results are reported
in Section 5.

• Badanidiyuru et al. (2013) propose an algorithm whose regret is

O(
√
KOPT + OPT

√
K/B),

where OPT is the expected total reward of the optimal policy. Since OPT is linear
order of B, the regret of their algorithm is upper bounded by O(

√
B). However, this

is not to say that our algorithm is better than theirs, because our O(logB) bound
is distribution dependent, which is incomparable with their distribution independent
bound.

4. Budgeted Linear Bandits with Continuous Random Costs

4.1. Problem Formulation of Budgeted Linear Bandits

The linear bandit (Dani et al., 2008; Abbasi-Yadkori et al., 2011) problem is a more complex
and practical one than the conventional multi-armed bandits . We extend the budgeted
multi-armed bandits to the linear setting and proposed the budgeted linear bandits. In
budgeted linear bandits, the set of arms is represented by a d-dimensional compact set
K ⊆ Rd (d ≥ 1). An agent chooses an arm xt ∈ K at round t, then results in a random
reward rt(xt) ∈ [0, 1] and a random cost ct(xt) ∈ [0, 1]. For any arm x ∈ K, the reward at
round t, the cost at round t, the expected reward and cost are of the following linear forms:

rt(x) = x>µr + ηrt , ct(x) = x>µc + ηct , E[rt(x)] = x>µr, E[ct(x)] = x>µc, (10)

where µr, µc ∈ Rd are unknown parameters, and µr and µc are bounded, i.e., ‖µr‖2 ≤
S, ‖µc‖2 ≤ S, S > 0 and S is known in advance. x> is the transpose of x and ηrt , η

c
t are

C-sub-Gaussion.5 For any x ∈ K, ‖x‖2 ≤ L.6 We further assume that the expected costs
of all the arms are larger than a positive parameter λ > 0 which is known in advance and
smaller than 1. The expected reward of all the arms are no less than zero. Mathematically,
for any x ∈ K, x>µr ∈ (0, 1) and x>µc ∈ [λ, 1). This assumption is very natural since in
practice whatever non-trivial action an agent takes, he/she needs to afford a certain non-
zero cost. This assumption means that the zero action x = 0 is not in the compact set K.
Taking the action x = 0 will lead to both zero expected reward and zero expected cost and
it is ignored in our problem.

Similar to the conventional budgeted MAB, we also define an optimal arm x∗, which is

arg maxx∈K
x>µr

x>µc
and γ denotes the corresponding ratio, i.e., (x∗)>µr

(x∗)>µc
. We require that there

is a positive gap ∆min between the optimal and sub-optimal arms, i.e., ∆min = (x∗)>µr

(x∗)>µc
−

supx∈K\{x∗}
x>µr

x>µc
and ∆min > 0. Please note such the ∆min also exists in (Dani et al., 2008)

(the ∆ in (Dani et al., 2008)). On the other hand, ∆max denotes (x∗)>µr

(x∗)>µc
− infx∈K\{x∗}

x>µr

x>µc
.

5. We adapt the definition of C-sub-Gaussion from (Abbasi-Yadkori et al., 2011), which is: For any ξ ∈ R,

E[eξηt |x1, x2, · · · , xt, η1, · · · , ηt−1] ≤ exp{ ξ
2C2

2
}

6. This implies that for any t, ‖xt‖2 ≤ L.
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Adapting the stopping time and the regret for conventional budgeted bandits, for any
algorithm a, the stopping time Ta,B and the regret can be defined as follows:

Ta,B−1∑
t=1

ct(xt) ≤ B <

Ta,B∑
t=1

ct(xt); Regret(a) = R∗ − E
[ Ta,B∑
t=1

rt(xt)
]
, (11)

where R∗ is the total expected reward of the optimal algorithm when µr and µc are known.

4.2. Algorithm

Our proposed algorithm for budgeted linear bandits is shown in Algorithm 2. We call
it Budget-CB since confidence balls (CB) play an important role in the algorithm. The
algorithm follows the framework Optimism in the Face of Uncertainty principle for Linear
bandits (OFUL) (Abbasi-Yadkori et al., 2011). In Algorithm 2, ‖x‖A denotes

√
x>Ax where

A is positive definite and Id is the d-dimensional identity matrix. To run Algorithm 2, we
need two hyper parameters: δ ∈ (0, 1) and ρ > 0.

Algorithm 2 The Budget-CB Algorithm (Input: λ, hyper parameters ρ > 0, δ ∈ (0, 1))

Initialization: Pull an arm randomly in the first step, set t = 1.
1: while

∑t
s=1 cs(xs) ≤ B do

2: Set t = t+ 1.
3: Define ε(t) = C

√
d log (1 + tL2/(ρd)) + 2 log(1/δ) + S

√
ρ.

Calculate At = ρId +
∑t−1

s=1 xsx
>
s , µ̄

r
t = A−1

t

∑t−1
s=1 rs(xs)xs, µ̄

c
t = A−1

t

∑t−1
s=1 cs(xs)xs.

Construct confidence balls as follows:
Br
t = {νr; ‖νr − µ̄rt‖At ≤ ε(t)}, Bc

t = {νc; ‖νc − µ̄ct‖At ≤ ε(t)};
4: Pull one arm xt ∈ arg maxx∈K,νr∈Brt ,νc∈Bct

min{x>νr,1}
max{x>νc,λ} .

5: end while
Return: The accumulate reward

∑t
s=1 rs(xs).

At each round, we update the estimated reward vector µ̄rt and the estimated cost vector
µ̄ct according to the Step 3 of the algorithm, which are in fact the results of minimizing the
regularized square loss on the past decisions xt and observations (rs(xs), cs(xs)). In Step 3,
we also construct confidence balls Br

t and Bc
t centered at µ̄rt and µ̄ct respectively. The radius

of the balls is ε(t) which controls the degree of exploration. The decision of xt is made by
jointly maximizing the reward-to-cost ratio among all the possible x, νr and νc in K, Br

t

and Bc
t .

7

4.3. Regret Analysis

In this subsection, we upper bound the regret of Budget-CB algorithm. Similarly, we first
give the framework of analyzing budgeted linear bandit. Let τa denote the pulling time of
all the suboptimal arms when the algorithm a stops. The analysis of the regret bound of
Budget-CB depends on the following lemma.

7. The computation of xt is similar to that in (Dani et al., 2008): if the decision set is small, we can
enumerate all choices; for some other special cases, such as K is a polytope, the optimization problem
is indeed NP-hard (Sahni, 1974), the exact computation is not computationally practical, and we can
adopt local search methods to compute it.
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Lemma 4 For any algorithm a, the regret is at most ∆maxE{τa}+ γ.

Proof (S1) We will prove that R∗ ≤ (B + 1)γ.
Proof of (S1). Let a∗ denote the optimal policy. Denote P{Bt ≥ 0,∪di=1{xit ≤ xi}} as
FBt (x), where xit is the i-th dimension of xt, and so is xi. Again, we can safely write
E[rt(x)|Bt ≥ 0, xt = x] and E[ct(x)|Bt ≥ 0, xt = x] as E[rt(x)] and E[ct(x)] respectively,
since the event {Bt ≥ 0, xt = x} is only related to the history until round t− 1, while rt(x)
and ct(x) are independent of the history. Similar to the (S1) of the proof of Lemma 1,

E
[ Ta∗,B∑
t=1

rt(xt)
]

=

∞∑
t=1

∫
K
E[rt(x)]dFBt (x) ≤

( ∞∑
t=1

∫
K
E[ct(x)]dFBt (x)

)
γ

= E
[ ∞∑
t=1

ct(xt)1(Bt ≥ 0)
]
γ ≤ (B + 1)γ. �

(S2) We will prove Lemma 4 according to the results in (S1). We can verify that R∗ ≤(
E
[∑Ta,B

t=1 ct(xt)
]

+ 1
)
γ. Thus, the regret can be upper bounded as follows:

(
E
[ Ta,B∑
t=1

ct(xt)
]

+ 1
)
γ − E

[ Ta,B∑
t=1

rt(xt)
]

= E
Ta,B∑
t=1

[γct(xt)− rt(xt)] + γ

=

∞∑
t=1

E[(γct(xt)− rt(xt))1(Bt ≥ 0)] + γ =

∞∑
t=1

∫
K
E [γct(x)− rt(x)] dFBt (x) + γ

=

∞∑
t=1

∫
K

(
γx>µc − x>µr

)
dFBt (x) + γ ≤

∞∑
t=1

∫
K\{x∗}

x>µc∆maxdFBt (x) + γ

≤
∞∑
t=1

∫
K\{x∗}

∆maxdFBt (x) + γ = ∆maxE[τa] + γ.

Therefore, we can get Lemma 4.

To get E{τa}, we also need to divide the pulling rounds before round τ0 and after round τ0,
where τ0 denotes

⌊
2B
λ

⌋
. Similar to the (S2) for conventional budgeted multi-armed bandits,

we can get that E[
∑∞

t=τ0+1 1{at 6= x∗, Bt ≥ 0}] ≤ L(B), where

L(B) = exp
{
− λ(B − λ)2

B

}
+

3B

λ
exp

{
− Bλ

2

}
+

1

λ2
exp{1− 2Bλ}. (12)

Then, we focus on bounding the expected pulling time of suboptimal arms before the τ0-th
round, which is denoted as E{τ ′}. The proof consists of three steps.
(S1) We will prove that the two parameter vectors µr and µc lie in the confidence balls with
high probabilities.

Lemma 5 For the Budget-CB algorithm, with probability at least 1 − δ, for any t ≥ 1,
µr ∈ Br

t , µ
c ∈ Bc

t .

Proof Define the following notations: ηr = (ηr1, · · · , ηrt )>, ηc = (ηc1, · · · , ηct )>, X =
(x1, · · · , xt)>. According to Theorem 1 in (Abbasi-Yadkori et al., 2011), for any δ > 0
and t, with probability at least 1− δ,

‖X>ηr‖A−1
t
≤ C

√
2 log

(
det(At)1/2det(ρId)−1/2

δ

)
. (13)
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Since µ̄rt = (X>X + ρI)−1X>(Xµr + ηr) = (X>X + ρI)−1X>ηr +µr− ρ(X>X + ρI)−1µr,
for any x ∈ Rd, we have x>µ̄rt − x>µr = x>(X>X + ρI)−1X>ηr − ρx>(X>X + ρI)−1µr =
〈x,X>ηr〉A−1

t
− ρ〈x, µr〉A−1

t
, where 〈x, y〉M = x>My and M is positive definite. According

to Lemma 10 in (Abbasi-Yadkori et al., 2011), we have det(At) ≤ (ρ + tL2

d )d. As a result,
(13) can be further bounded as

‖X>ηr‖A−1
t
≤ C

√
d log

(
1 +

tL2

ρd

)
+ 2 log

1

δ
.

When the above event holds, using Cauchy-Schwarz inequality, we can obtain

x>µ̄rt − x>µr ≤ ‖x‖A−1
t

(
‖X>ηr‖A−1

t
+ ρ‖µr‖A−1

t

)
≤ ‖x‖A−1

t

(
‖X>ηr‖A−1

t
+
√
ρ‖µr‖2

)
≤‖x‖A−1

t

(
C

√
d log

(
1 +

tL2

ρd

)
+ 2 log

1

δ
+
√
ρS
)

= ‖x‖A−1
t
ε(t),

where the first inequality holds because ‖µr‖2
A−1
t

≤ 1/λmin(At)‖µr‖22 ≤ 1/ρ‖µr‖22 and

λmin(At) is the minimum eigenvalue of At, which is certainly no smaller than ρ. Finally, by
setting x = At(µ̄

r
t − µr), we get ‖µ̄rt − µr‖At ≤ ε(t).

Similarly, for the cost of the arms, we have x>µ̄ct − x>µc ≤ ‖x‖A−1
t
ε(t). Then by setting

x = At(µ̄
c
t − µc), we get ‖µ̄ct − µc‖At ≤ ε(t).

(S2) We will give a high probability bound of τ ′.

Lemma 6 For Budget-CB, if ρ ≥ max{1, L2}, with probability at least 1 − δ, τ ′ is upper
bounded by

τ ′ ≤ 32d

λ4∆2
min

(
C

√
d log

(
1 +

τ0L2

ρd

)
+ 2 log

1

δ
+
√
ρS
)2

log
(

1 +
τ0L

2

dρ

)
. (14)

Proof Define the following two formulas in (15). It is easy to see that ϕ(t) ≥ λ2∆min when
xt 6= x∗.

(a) ϕ(t) = 〈x∗, µr〉〈xt, µc〉 − 〈xt, µr〉〈x∗, µc〉; (b) (µ̃r, µ̃c) = arg max
νr∈Br

t ;µc∈Bc
t

min{〈xt, νr〉, 1}
max{〈xt, νc〉, λ}

. (15)

At round t, since arm xt is pulled, we have

min{〈xt, µ̃r〉, 1}
max{〈xt, µ̃c〉, λ}

≥ min{〈x∗, µr〉, 1}
max{〈x∗, µc〉, λ} =

〈x∗, µr〉
〈x∗, µc〉 , (16)

which shows that 〈x∗, µr〉〈xt, µ̃c〉 ≤ 〈x∗, µc〉〈xt, µ̃r〉. Given ‖µ̄rt −µr‖At ≤ ε(t) ‖µ̄ct−µc‖At ≤
ε(t), we can obtain that

ϕ(t) = 〈x∗, µr〉〈xt, µc〉 − 〈xt, µr〉〈x∗, µc〉 ≤ 〈x∗, µr〉〈xt, µc − µ̃c〉 − 〈x∗, µc〉〈xt, µr − µ̃r〉
=〈x∗, µr〉〈xt, µc − µ̄ct〉+ 〈x∗, µr〉〈xt, µ̄ct − µ̃c〉 − 〈x∗, µc〉〈xt, µr − µ̄rt 〉 − 〈x∗, µc〉〈xt, µ̄rt − µ̃r〉
≤4ε(t)‖xt‖A−1

t−1
. (17)

By Lemma 11 in (Abbasi-Yadkori et al., 2011), we get that if ρ ≥ max{1, L2}, with
probability at least 1− δ,

τ ′λ4∆2
min ≤

τ0∑
t=1

ϕ(t)2 ≤ 32d
(
C

√
d log

(
1 +

τ0L2

ρd

)
+ 2 log

1

δ
+
√
ρS
)2

log
(

1 +
τ0L

2

dρ

)
. (18)
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Then we can get Lemma 6.

(S3) Give the expected regret of Budget-CB. According to Lemma 6, we can get that

E{τ ′} ≤ (1− δ)
{ 32d

λ4∆2
min

(
C

√
d log

(
1 +

τ0L2

ρd

)
+ 2 log

1

δ
+
√
ρS
)2

log
(

1 +
τ0L

2

dρ

)}
+ δτ0. (19)

The expected pulling time of suboptimal arms is bounded by E{τ ′}+L(B). Therefore, by
setting δ = 1

B and by Lemma 4, we can get that

Theorem 7 For any ρ ≥ max{1, L2}, the expected regret of Budget-CB is at most

32d∆max

λ4∆2
min

(
C

√
d log

(
1 +

2BL2

λρd

)
+ 2 logB +

√
ρS
)2

log
(

1 +
2BL2

λdρ

)
+ (

2

λ
+ L(B))∆max + γ.

Theorem 7 shows that the asymptotic regret of Budget-CB is O
(
d2∆max

∆2
min

log2(B)
)

, which is

a polylog(B) regret bound.

5. Experiments

In this section, we report our experimental results on the performance of the proposed
algorithms. First, we simulate a budgeted multi-armed bandit as follows. (1) A bandit
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(a) Continuous costs
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(b) Discrete costs
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(c) Linear bandit problems

Figure 1: Experimental results of the MAB

with 100 arms is created. (2) The reward/cost of each pulling of an arm is sampled from
beta distributions. The two parameters of each beta distribution are uniformly sampled
from [1, 5]. (3) The budget is chosen from the set {500, 1000, 2000, 5000, 10000}. For each
value of budget, all the algorithms are run for 100 times and their average regrets are
examined. (4) For comparison purpose, UCB1 and the εn-GREEDY algorithm (Auer et al.,
2002) are implemented as baselines. We also propose a variant of UCB-BV1 as baseline8

(Ding et al., 2013): we only need to replace the Di,t in (2) of Algorithm 1 with Eqn. (20-a).
For ease of reference, denote the variant as vUCB-BV1.

(20-a) Di,t =
r̄i,t
c̄i,t

+ 1.5(1 +
1

λ
)εi,t; (20-b) Di,t =

r̄i,t
c̄i,t

+
(1 + 1

λ )εi,t

λ− εi,t
. (20)

8. We find that if we directly run the original UCB-BV1 (by replacing the Di,t in (2) of Algorithm 1 with
Eqn. (20-b)), when the B is not sufficiently large, the exploration term in Eqn. (20-b)) is too large. As
a result, UCB-BV1 wastes much budget on suboptimal arms and does not achieve good results.
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The results of the simulation are shown in Figure 1(a), from which we have the following
observations. (1) UCB1 and the εn-greedy algorithm perform the worst. The reason is that
these two algorithms are not designed for the budgeted bandit problems and do not take
budget constraints into consideration: they tend to pull arms with large empirical rewards
which may also have large costs and therefore run out of budgets quickly. To verify this, we
have listed the mean rewards (r̄), mean costs (c̄), ratio of mean reward over mean cost (r̄/c̄),
the stopping time (τ) and the pulling percentage of the optimal (%opt) of each algorithm
across the 100 runs in Table 1. It is clear that UCB1 and εn-GREEDY have larger average
rewards but much smaller stopping time than the other two algorithms. (2) Budget-UCB
outperforms the vUCB-BV1 algorithm, since it can find the optimal arm with fewer pullings
and then focus on pulling the optimal arm, which can be reflected in the pulling percentage
of the optimal arm.

Table 1: Statistics of the Continuous Costs Bandit

Algorithm r̄ c̄ r̄/c̄ τ %opt

UCB1 0.861 0.868 0.991 11518.7 1.01
εn-GREEDY 0.966 0.976 0.990 10248.1 < 1
vUCB-BV1 0.743 0.310 2.396 32258.9 72.04

Budget-UCB 0.759 0.245 3.100 40872.4 80.03

We also test how our proposed Budget-UCB algorithm performs when the costs take
discrete values (which is a special case of continuous costs). For this purpose, we change
the costs to be discrete by sampling the cost of each pulling of an arm from a Bernoulli
distribution. In addition, we change the distribution of the reward of each arm to be
Bernoulli too. The parameters of the Bernoulli distributions are also randomly chosen from
(0, 1). The results are shown in Figure 1(b), from which we can see that the Budget-UCB
also achieves the lowest empirical regrets among the four algorithms. Similar statistical
results like that for continuous cost bandits can be found at Table 2.

Table 2: Statistics of the Discrete Random Costs Bandit

Algorithm r̄ c̄ r̄/c̄ τ (%)opt

UCB 0.789 0.786 1.027 13018.8 1.088
εn-GREEDY 0.874 0.879 0.995 11374.9 0.132
vUCB-BV1 0.451 0.781 1.692 21673.6 45.714

Budget-UCB 0.785 0.249 3.149 40101.3 79.845

Second, we simulate a linear bandit as follows. (1) The set of arms is a ten-dimensional
polyhedron in the Euclidean space. (2) The reward/cost of each pulling of an arm is sampled
from a truncated Gaussian distribution supported on [0, 1]; each dimension of µr and µc

(the true reward/cost vector) is sampled from a uniform distribution. (3) For comparison
purpose, the CB algorithm (Abbasi-Yadkori et al., 2011) (designed for classical linear bandit
problems without budget constraint) is implemented as a baseline. (4) The budget is set
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as 500, 1000, 2000, 5000, 10000. For each value of budget, both algorithms are run for 100
times and their average regrets are examined.

The results of the simulation is summarized in Figure 1(c).
From Figure 1(c), we can see that Budget-CB outperforms CB. The reason is that CB

tends to pull arms with large empirical rewards and thus most of the budget is not spent on
the optimal arm (which has large reward-cost ratio but not necessarily large reward). This
verifies the necessity of designing a specific algorithm for the linear bandits with continuous
random costs, rather than simply adopting an algorithm designed for other settings.

To sum up, the experimental results show that our algorithms are better than baselines
for budgeted bandit problems with continuous random costs.

6. Conclusions and Future Work

In this paper, we have studied both budgeted multi-armed bandits and budgeted linear
bandits with continuous random costs. We have designed two algorithms and proved their
(poly) logarithmic regret bounds with respect to the budget.

For future work, we plan to investigate the following aspects. First, we have assumed
that the rewards and costs of different arms are independent of each other in this work.
We will investigate the case that the rewards and costs of different arms are correlated.
Second, we will investigate how to solve real-world bandit applications with more complex
constraints (e.g., with both budget constraint and time constraint). Third, we will explore
the distribution-free regret bound.
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