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Abstract
Partial label learning deals with the problem that each training example is associated with a set of
candidate labels, and only one among the set is the ground-truth label. The basic strategy to learn
from partial label examples is disambiguation, i.e. by trying to recover the ground-truth labeling
information from the candidate label set. As one of the major machine learning techniques, max-
imum margin criterion has been employed to solve the partial label learning problem. Therein,
disambiguation is performed by optimizing the margin between the maximum modeling output
from candidate labels and that from non-candidate labels. However, in this formulation the margin
between the ground-truth label and other candidate labels is not differentiated. In this paper, a new
maximum margin formulation for partial label learning is proposed which aims to directly max-
imize the margin between the ground-truth label and all other labels. Specifically, an alternating
optimization procedure is utilized to coordinate ground-truth label identification and margin max-
imization. Extensive experiments show that the derived partial label learning approach achieves
competitive performance against other state-of-the-art comparing approaches.

1. Introduction

Partial label learning deals with the problem that each training example is associated with a set of
candidate labels, among which only one label is valid (Cour et al., 2011; Zhang, 2014). In recent
years, many real-world learning tasks were solved under the framework of partial label learning
such as web mining (Jie and Orabona, 2010), multimedia content analysis (Cour et al., 2011; Zeng
et al., 2013), ecoinformatics (Liu and Dietterich, 2012), etc.

Formally speaking, let X = Rd be the d-dimensional instance space and Y = {1, 2, . . . , q} be
the label space with q possible class labels. Furthermore, let D = {(xi, Si) | 1 ≤ i ≤ m} denote
the partial label training set where xi ∈ X is a d-dimensional feature vector (xi1, xi2, . . . , xid)>

and Si ⊆ Y is the associated candidate label set. The task of partial label learning is to induce a
multi-class classifier f : X → Y based on D. In partial label learning, the ground-truth label yi of
xi is hidden in its candidate label set Si and not accessible during training phase.1

1. Partial label learning is also termed as ambiguous label learning (Hüllermeier and Beringer, 2006; Chen et al., 2014),
soft label learning (Côme et al., 2008), or superset label learning (Liu and Dietterich, 2014) in some literatures.
Furthermore, there are some studies which admit noisy candidate label set without containing the ground-truth label
(Cid-Sueiro, 2012).
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The basic strategy to learn from partial label examples is disambiguation, which aims to iden-
tify the ground-truth label from candidate label set. Maximum margin criterion is one of the major
techniques in designing machine learning approaches. Earlier attempts towards maximum mar-
gin partial label learning perform disambiguation by optimizing the margin between the maximum
modeling output from candidate labels and that from non-candidate labels (Nguyen and Caruana,
2008). In other words, given the parametric model Θ and xi’s modeling output F (xi, y; Θ) on each
label y ∈ Y , existing formulation aims to maximize the following predictive difference over each
instance: maxyj∈Si F (xi, yj ; Θ) − maxyk /∈Si

F (xi, yk; Θ). Nonetheless, the above margin does
not consider the predictive difference between the ground-truth label (i.e. yi) and other candidate
labels (i.e. Si\{yi}), which may lead to suboptimal performance for the resulting maximum margin
partial label learning approach.

Note that the goal of partial label learning is to induce a multi-class classifier f : X → Y , the
canonical multi-class margin, i.e. F (xi, yi; Θ)−maxỹi 6=yi F (xi, ỹi; Θ), would be a natural choice
for learning from partial label examples. Here, the predictive difference between the ground-truth
label and all other labels can be fully taken into account. In light of this, a new learning approach
named M3PL, i.e. MaxiMum Margin Partial Label learning, is proposed in this paper. The major
difficulty in making use of multi-class margin for partial label training examples lies in that the
ground-truth labeling information is not accessible to the learning algorithm. To tackle this issue,
an alternating optimization procedure is employed by M3PL to iteratively identify the ground-truth
label and maximize the multi-class margin. Comparative studies against other well-established
partial label learning approaches clearly validate the effectiveness of the proposed formulation.

The rest of this paper is organized as follows. Section 2 briefly discusses related work. Section
3 presents details of the proposed M3PL approach. Section 4 reports the result of comparative
experiments. Finally, Section 5 summarizes the paper and indicates several future research issues.

2. Related Work

Partial label learning can be regarded as one of the weakly-supervised learning frameworks, which
lies between the two ends of the supervision spectrum, i.e. supervised learning with explicit su-
pervision and unsupervised learning with blind supervision. Learning with weak supervision has
found wide applications in solving various learning tasks as obtaining explicit and sufficient su-
pervision information in real-world scenarios is generally hard (Pfahringer, 2012). In particular,
partial label learning is related to several popular weakly-supervised learning frameworks such as
semi-supervised learning, multi-instance learning and multi-label learning.

Semi-supervised learning (Chapelle et al., 2006; Zhu and Goldberg, 2009) learns from training
examples which are either explicitly labeled with a single label or unlabeled without any labeling
information, while for partial label learning the training examples are partially labeled with a set
of candidate labels. Multi-instance learning (Dietterich et al., 1997; Amores, 2013) learns from
training examples with labels assigned to a bag of instances, while for partial label learning the
candidate labels are assigned to single instances. Multi-label learning (Tsoumakas et al., 2010;
Zhang and Zhou, 2014) learns from training examples each associated with multiple valid labels,
while for partial label learning only one of the candidate labels associated with the instance is valid.

In recent years, several approaches have been proposed to solving partial label learning problem
by utilizing major machine learning techniques, such as maximum likelihood (ML) estimation (Jin
and Ghahramani, 2003; Liu and Dietterich, 2012), convex optimization (Cour et al., 2011), k-nearest
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neighbors (Hüllermeier and Beringer, 2006; Zhang and Yu, 2015), sparse coding (Chen et al., 2014),
error-correcting output codes (ECOC) (Zhang, 2014), etc. Specifically, maximum margin criterion
has also been applied to design partial label learning approaches (Nguyen and Caruana, 2008).
Given the (linear) classification model Θ = {(wp, bp) | 1 ≤ p ≤ q}, existing partial label maximum
margin formulation aims to solve the following optimization problem (OP):

OP 1: Existing Maximum Margin Formulation

min
Θ,ξ

1

2

q∑
p=1

||wp||2 + C
m∑
i=1

ξi

s.t. : max
yj∈Si

(w>yj · xi + byj )− max
yk /∈Si

(w>yk · xi + byk) ≥ 1− ξi

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}

Here, ξ = {ξ1, ξ2, . . . , ξm} correspond to the set of slack variables and C is the regularization
parameter. As shown in OP 1, existing formulation focuses on differentiating the maximum output
from candidate labels against that from non-candidate labels. One potential issue lies in that the
predictive difference between the ground-truth label and other candidate labels are not considered in
this formulation, which may lead to suboptimal performance for the resulting partial label learning
approach.

In the next section, a new maximum margin formulation towards partial label learning is pro-
posed, which aims to maximize the margin between the ground-truth label and all other labels in
the label space.

3. The M3PL Approach

3.1. Proposed Formulation

Following the same notations in Section 1, the training set D consists of m partial label examples
(xi, Si) (1 ≤ i ≤ m) with xi ∈ X and Si ⊆ Y . In addition, let y = (y1, y2, . . . , ym) be
the (unknown) ground-truth label assignments for the training examples. Under the partial label
learning assumption, the ground-truth label of each instance xi should reside in its candidate label
set Si. Therefore, the feasible solution space for ground-truth label assignments corresponds to
S = S1 × S2 × · · · × Sm.

As usual, M3PL assumes a maximum margin learning system with q linear classifiers Θ =
{(wp, bp) | 1 ≤ p ≤ q}, one for each class label. Once the ground-truth label assignments y =
(y1, y2, . . . , ym) are fixed, M3PL aims to maximize the canonical multi-class margin over each
instance xi, i.e.: (w>yi · xi + byi) −maxỹi 6=yi(w

>
ỹi
· xi + bỹi). By introducing slack variables ξ =

{ξ1, ξ2, . . . , ξm} to accommodate margin relaxations, the maximum margin formulation considered
by M3PL corresponds to the following optimization problem:
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OP 2: Proposed Maximum Margin Formulation

min
y,Θ,ξ

1

2

q∑
p=1

||wp||2 + C

m∑
i=1

ξi

s.t. : (w>yi · xi + byi)− max
ỹi 6=yi

(w>ỹi · xi + bỹi) ≥ 1− ξi

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}
y ∈ S
m∑
i=1

I(yi = p) = np ∀p ∈ {1, 2, . . . , q}

As shown in OP 2, the first two constraints impose the maximum margin criterion over each
training example, and the third constraint imposes that the ground-truth label assignment y should
be confined within the feasible solution space S. The fourth constraint, i.e.

∑m
i=1 I(yi = p) = np,

serves as an additional restriction on y in terms of its compatibility with the prior class distribution.2

Here, np represents the prior number of examples for the p-th class label in Y .
Intuitively, by sharing equal labeling confidence 1

|Si| among each candidate label in Si, the prior
number can be roughly estimated as:

n̂p =

m∑
i=1

I(p ∈ Si) ·
1

|Si|
(1)

Obviously,
∑q

p=1 n̂p = m holds. Furthermore, let bn̂pc denote the integer part of n̂p and r =
m −

∑q
p=1bn̂pc denote the residual number after the rounding operation. Then, the integer value

np used in the fourth constraint is determined as:

np =

{
bn̂pc+ 1 if p is among the r class labels with least n̂p values

bn̂pc otherwise
(2)

Accordingly,
∑q

p=1 np = m still holds.
Note that OP 2 involves the optimization of mixed-type variables (i.e. integer variables y and

real-valued variables Θ), which is difficult to be optimized simultaneously. In the following subsec-
tion, an alternating optimization procedure is employed to update y and Θ in an iterative manner.

3.2. Alternating Optimization

3.2.1. FIX y, UPDATE Θ

By fixing the ground-truth label assignments y = (y1, y2, . . . , ym), OP 2 turns to be the following
optimization problem:

2. I(a) is an indicator function which returns 1 if the argument a is true, and 0 otherwise.
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OP 3: Classification Model Optimization

min
Θ,ξ

1

2

q∑
p=1

||wp||2 + C
m∑
i=1

ξi

s.t. : (w>yi · xi + byi)− max
ỹi 6=yi

(w>ỹi · xi + bỹi) ≥ 1− ξi

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}

As shown in OP 3, the resulting optimization problem is identical to the well-studied single-
label multi-class maximum margin formulation (Crammer and Singer, 2001; Hsu and Lin, 2002).
Therefore, any off-the-shelf implementations on multi-class SVM can be used here to fulfill the
optimization task (Fan et al., 2008).

3.2.2. FIX Θ, UPDATE y

By fixing the classification model Θ = {(wp, bp) | 1 ≤ p ≤ q}, OP 2 turns to be the following
optimization problem:

OP 4: Ground-truth Label Assignment Optimization (Version 1)

min
y,ξ

m∑
i=1

ξi

s.t. : ξi ≥ 1− ηyii
ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}
y ∈ S
m∑
i=1

I(yi = p) = np ∀p ∈ {1, 2, . . . , q}

Here, ηyii represents the multi-class margin on xi by taking yi as its ground-truth label, i.e.:

ηyii = (w>yi · xi + byi)− max
ỹi 6=yi

(w>ỹi · xi + bỹi) (3)

By replacing ξi = max(0, 1− ηyii ) according to the first two constraints, OP 4 can be transformed
into the following equivalent form:

OP 5: Ground-truth Label Assignment Optimization (Version 2)

min
y

m∑
i=1

max(0, 1− ηyii )

s.t. : y ∈ S
m∑
i=1

I(yi = p) = np ∀p ∈ {1, 2, . . . , q}

Let Z = [zpi]q×m denote the labeling matrix for training examples with binary values, where
zpi = 1 indicates that the p-th class label in Y is the ground-truth label for xi. Accordingly, set the
coefficient matrix C = [cpi]q×m as follows:
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∀1 ≤ p ≤ q, 1 ≤ i ≤ m : cpi =

{
max(0, 1− ηpi ) if p ∈ Si
M otherwise

(4)

Here, M is a user-specified constant with large value so as to refrain from assigning ground-truth
label outside the candidate label set.3 Based on the above definitions, OP 5 can be rewritten in the
following form:

OP 6: Ground-truth Label Assignment Optimization (Version 3)

min
Z

q∑
p=1

m∑
i=1

cpi · zpi

s.t. :

q∑
p=1

zpi = 1 ∀i ∈ {1, 2, . . . ,m}

m∑
i=1

zpi = np ∀p ∈ {1, 2, . . . , q}

zpi ∈ {0, 1}

Here, the first constraint
∑q

p=1 zpi = 1 ensures that the ground-truth label for each training example
is unique. In addition, the second constraint

∑m
i=1 zpi = np enforces the constraint w.r.t. prior class

distribution.
Note that OP 6 corresponds to a binary integer programming (BIP) problem, which is generally

NP-hard to solve. Fortunately, OP 6 falls into a special case of BIP where the constraint matrix
is totally unimodular and the right-hand sides of the constraints are integers (Papadimitriou and
Steiglitz, 1998). In this case, the original BIP problem can be equivalently solved in its linear
programming (LP) relaxation form by replacing the integer constraint zpi ∈ {0, 1} with the weaker
interval constraint zpi ∈ [0, 1]:

OP 7: Ground-truth Label Assignment Optimization (Version 4)

min
Z

q∑
p=1

m∑
i=1

cpi · zpi

s.t. :

q∑
p=1

zpi = 1 ∀i ∈ {1, 2, . . . ,m}

m∑
i=1

zpi = np ∀p ∈ {1, 2, . . . , q}

0 ≤ zpi ≤ 1

Thereafter, solution to the relaxation problem OP 7 can be efficiently found by employing standard
LP solvers such as simplex algorithm or interior point algorithm (Boyd and Vandenberghe, 2004).

3. In this paper, M is set to be 105.
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Algorithm 1 The M3PL Approach
Inputs:
D: the partial label training set, {(xi, Si) | 1 ≤ i ≤ m} (xi ∈ X , Si ⊆ Y)
Cmax: the maximum value for regularization parameter
x∗: the unseen instance.

Outputs:
y∗: the predicted class label for x∗

Process:
1: Initialize the regularization parameter: C = 10−5 · Cmax;
2: Initialize the coefficient matrix C according to Eq.(5);
3: Solve the LP problem OP 7, and then initialize the ground-truth label assignment y with yi =

arg max1≤p≤q zpi (1 ≤ i ≤ m);
4: while C < Cmax do
5: C = min{(1 + ∆)C, Cmax};
6: Initialize the objective function value in OP 2: Obj = +∞;
7: repeat
8: Objold = Obj;
9: Solve the multi-class maximum margin problem OP 3, and then update the classification

model Θ;
10: Set the coefficient matrix C according to Eq.(4);
11: Solve the LP problem OP 7, and then update the ground-truth label assignment y with

yi = arg max1≤p≤q zpi (1 ≤ i ≤ m);
12: Calculate the new objective function value in OP 2: Obj = 1

2

∑q
p=1 ||wp||2 +

C
∑m

i=1 max(0, 1− ηyii );
13: until Objold −Obj < δ
14: end while
15: return y∗ = arg maxp∈Y w>p · x∗ + bp;

3.3. Iterative Implementation

To initialize the alternating optimization procedure, M3PL sets the initial coefficient matrix C by
resorting to candidate label sets:

∀1 ≤ p ≤ q, 1 ≤ i ≤ m : cpi =

{
1
|Si| if p ∈ Si
M otherwise

(5)

By solving OP 7 based on initial coefficients, the ground-truth label assignment y = (y1, y2, . . . , ym)
would be yi = arg max1≤p≤q zpi. Then, the classification model Θ is updated by solving OP 3 and
the alternating optimization procedure iterates. The iteration procedure terminates once the objec-
tive function value in OP 2 decreases less than δ after one round of alternating update.

Instead of specifying some fixed value for the regularization parameter C, M3PL chooses to
gradually increase the value of C within an outer annealing loop. Similar strategy has been used
in solving other weakly-supervised learning problems (Joachims, 1999; Chapelle et al., 2008) to
reduce the risk of the learning algorithm being getting stuck with local minimum solution.
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Table 1: Characteristics of the experimental data sets.

Controlled UCI Data Sets
ConfigurationsData set #Examples #Features #Class Labels

glass 214 10 5 (I) r = 1, p ∈ {0.1, 0.2, . . . 0.7}
vehicle 846 18 4 (II) r = 2, p ∈ {0.1, 0.2, . . . 0.7}

segment 2310 18 7 (III) r = 3, p ∈ {0.1, 0.2, . . . 0.7}
satimage 6435 36 7 (IV) p = 1, r = 1, ε ∈ {0.1, 0.2, . . . 0.7}

Real-World Data Sets
Data Set # Examples # Features # Class Labels avg. #CLs Domain

Lost 1122 108 16 2.23 automatic face naming (Cour et al., 2011)
BirdSong 4998 38 13 2.18 bird song classification (Briggs et al., 2012)
MSRCv2 1758 48 23 3.16 object classification (Liu and Dietterich, 2012)

Yahoo! News 22991 163 219 1.91 automatic face naming (Guillaumin et al., 2010)
Soccer Player 17472 279 171 2.09 automatic face naming (Zeng et al., 2013)

The pseudo-code of M3PL is summarized in Algorithm 1.4 Given the partial label training
examples, M3PL firstly initializes the regularization parameter C and the ground-truth label as-
signment (Steps 1-3). After that, the classification model and ground-truth label assignment is
alternatively optimized until convergence (Steps 7-13). An outer loop is used to gradually increase
the value of C by a factor of 1 + ∆ (Step 5). Finally, the unseen instance is classified based on the
learned classification model (Step 15). 5

4. Experiment

4.1. Experimental Settings

In this section, two series of experiments are conducted to evaluate the performance of the proposed
approach, with one series on controlled UCI data sets (Bache and Lichman, 2013) and the other one
on real-world partial label data sets. Table 1 summarizes characteristics of the employed data sets.

Following the controlling protocol over multi-class UCI data set (Cour et al., 2011; Chen et al.,
2014; Liu and Dietterich, 2012; Zhang, 2014), an artificial partial label data set can be generated
under different configurations of three controlling parameters p, r and ε. Here, p controls the pro-
portion of examples with partial labeling (i.e. |Si| > 1), r controls the number of candidate labels
other than the ground-truth label (i.e. |Si| = r + 1), and ε controls the co-occurring probability
between one extra candidate label and the ground-truth label. As shown in Table 1, a total of 28
(4x7) configurations are considered for each of the four UCI data sets.

The real-world partial label data sets are collected from several task domains, such as auto-
matic face naming including Lost (Cour et al., 2011), Yahoo! News (Guillaumin et al., 2010),
Soccer Player (Zeng et al., 2013), bird song classification including BirdSong (Briggs et al.,
2012), and object classification including MSRCv2 (Liu and Dietterich, 2012). For the automatic
face naming task, faces cropped from an image or video frame are represented as instances while

4. Code package available at http://cse.seu.edu.cn/PersonalPage/zhangml/files/M3PL.zip.
5. In this paper, OP 3 (Step 9) and OP 7 (Step 11) are solved by adopting the LibLinear toolbox (Fan et al., 2008) and

CVX toolbox (Grant and Boyd, 2014) respectively. Furthermore, ∆ is set to be 0.5 following (Chapelle et al., 2008)
and δ is set to be 10−4.

103

http://cse.seu.edu.cn/PersonalPage/zhangml/files/M3PL.zip


YU ZHANG

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

p(proportion of partially labelled examples)

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

 

 
M3PL
PL−KNN
PL−SVM
CLPL
LSB−CMM

(a) glass

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

p(proportion of partially labelled examples)

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

 

 
M3PL
PL−KNN
PL−SVM
CLPL
LSB−CMM

(b) vehicle

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.75

0.8

0.85

0.9

0.95

1

1.05

p(proportion of partially labelled examples)

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

 

 
M3PL
PL−KNN
PL−SVM
CLPL
LSB−CMM

(c) segment

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

p(proportion of partially labelled examples)

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

 

 
M3PL
PL−KNN
PL−SVM
CLPL
LSB−CMM

(d) satimage

Figure 1: Classification accuracy of each comparing algorithm changes as p (proportion of partially
labeled example) increases from 0.1 to 0.7 (r = 1).

names extracted from the associated captions or subtitles are regarded as candidate labels. For the
bird song classification task, singing syllables of the birds are represented as instances while bird
species jointly singing during a 10-seconds period are regarded as candidate labels. For the object
classification task, image segmentations are represented as instances while objects appearing within
the same image are regarded as candidate labels.

Four well-established partial label learning approaches are employed for comparative studies,
each implemented with parameter setup suggested in respective literatures: 1) An existing max-
imum margin partial label learning approach PL-SVM (Nguyen and Caruana, 2008) [suggested
setup: regularization parameter pool with {10−3, . . . , 103}]; 2) The k-nearest neighbor partial label
learning approach PL-KNN (Hüllermeier and Beringer, 2006) [suggested setup: k=10]; 3) The con-
vex optimization partial label learning approach CLPL (Cour et al., 2011) [suggested setup: SVM
with squared hinge loss]; 4) The maximum likelihood partial label learning algorithm LSB-CMM
(Liu and Dietterich, 2012) [suggested setup: q mixture components]. Accordingly, for M3PL the
parameter Cmax is chosen among {10−2, . . . , 102} via cross-validation.
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Figure 2: Classification accuracy of each comparing algorithm changes as p (proportion of partially
labeled example) increases from 0.1 to 0.7 (r = 2).

In this paper, ten-fold cross-validation is performed on each data set where the mean predictive
accuracies as well as standard deviations are recorded for all comparing approaches.

4.2. Experimental Result

4.2.1. CONTROLLED UCI DATA SETS

Figures 1 to 3 illustrate the classification accuracy of each comparing algorithm as p increases from
0.1 to 0.7 with step-size 0.1 (r = 1, 2, 3). For any partially labeled example, its candidate label set
consists of the ground-truth label along with r additional labels randomly chosen from Y . Figure
4 illustrates the classification accuracy of each comparing algorithm as ε increases from 0.1 to 0.7
with step-size 0.1 (p = 1, r = 1). For any label y ∈ Y , one extra label y′ ∈ Y is designated as the
coupling label which co-occurs with y in the candidate label set with probability ε. Otherwise, any
other class label would be randomly chosen to co-occur with y.

As shown in Figures 1 to 4, M3PL achieves competitive performance against the comparing
algorithms in most cases. Based on pairwise t-test at 0.05 significance level, Table 2 summarizes
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Figure 3: Classification accuracy of each comparing algorithm changes as p (proportion of partially
labeled example) increases from 0.1 to 0.7 (r = 3).

the win/tie/loss counts between M3PL and the comparing algorithms. Out of the 112 statistical
comparisons (28 configurations x 4 data sets), the following observations can be made:

• Compared to the existing maximum margin counterpart PL-SVM (Nguyen and Caruana,
2008), M3PL achieves superior performance in 51.8% cases and only loses in 8.0% cases.
These results clearly indicate the advantage of the proposed formulation against existing par-
tial label maximum margin formulation;

• Compared to PL-KNN (Hüllermeier and Beringer, 2006), CLPL (Cour et al., 2011) and LSB-
CMM (Liu and Dietterich, 2012), M3PL achieves superior or at least comparable performance
in 60.7%, 96.4% and 75.0% cases respectively. These results validate the ability of M3PL in
achieving state-of-the-art generalization performance for partial label learning problem.
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Figure 4: Classification accuracy of each comparing algorithm changes as ε (co-occurring proba-
bility of the coupling label) increases from 0.1 to 0.7 (p = 1, r = 1).

Table 2: Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the classification perfor-
mance of M3PL against each comparing algorithm.

M3PL against
PL-SVM PL-KNN CLPL LSB-CMM

[Figure 1] 18/10/0 7/13/8 14/14/0 0/21/7
[Figure 2] 15/13/0 6/12/10 14/14/0 2/20/6
[Figure 3] 15/12/1 7/10/11 15/13/0 3/19/6
[Figure 4] 10/10/8 6/7/15 9/15/4 1/18/9
In Total 58/45/9 26/42/44 52/56/4 6/78/28

107



YU ZHANG

Table 3: Classification accuracy (mean±std) of each comparing algorithm on the real-world partial
label data sets. In addition, •/◦ indicates whether M3PL is statistically superior/inferior
to the comparing algorithm on each data set (pairwise t-test at 0.05 significate level).

MSRCv2 Lost BirdSong Yahoo! News Soccer Player
M3PL 0.521±0.030 0.767±0.043 0.709±0.010 0.655±0.009 0.446±0.013
PL-SVM 0.482±0.043• 0.729±0.040• 0.663±0.032• 0.636±0.010• 0.443±0.014•
CLPL 0.413±0.039• 0.742±0.038 0.632±0.017• 0.462±0.009• 0.368±0.010•
PL-KNN 0.448±0.037• 0.424±0.041• 0.614±0.024• 0.457±0.010• 0.497±0.014◦
LSB-CMM 0.456±0.031• 0.707±0.055• 0.717±0.024 0.648±0.007 0.525±0.015◦

Table 4: Transductive accuracy (mean±std) of each comparing algorithm on the real-world partial
label data sets. In addition, •/◦ indicates whether M3PL is statistically superior/inferior
to the comparing algorithm on each data set (pairwise t-test at 0.05 significate level).

MSRCv2 Lost BirdSong Yahoo! News Soccer Player
M3PL 0.732±0.025 0.860±0.006 0.855±0.030 0.870±0.002 0.761±0.010
M3PL† 0.735±0.025 0.876±0.007 0.861±0.048 0.881±0.002 0.766±0.009
PL-SVM 0.653±0.024• 0.887±0.012◦ 0.825±0.012• 0.871±0.002 0.688±0.014•
CLPL 0.656±0.010• 0.894±0.005◦ 0.822±0.004• 0.834±0.002• 0.680±0.010•
PL-KNN 0.616±0.006• 0.615±0.036• 0.772±0.021• 0.692±0.010• 0.492±0.015•
LSB-CMM 0.524±0.007• 0.721±0.010• 0.716±0.014• 0.872±0.001 0.704±0.002•

4.2.2. REAL-WORLD DATA SETS

Table 3 reports the performance of each comparing algorithm on the real-world partial label data
sets. Based on the results of ten-fold cross-validation, pairwise t-tests at 0.05 significance level
between M3PL and the comparing algorithms are recorded as well.

As shown in Table 3, it is impressive that M3PL significantly outperforms its maximum margin
counterpart PL-SVM on all real-world data sets. Furthermore, M3PL achieves superior performance
against CLPL, PL-KNN and LSB-CMM on the MSRCv2 data set, and achieves superior or at least
comparable performance against them on the Lost, BirdSong and Yahoo! News data sets. On
the Soccer Player data set, M3PL significantly outperforms CLPL and is inferior to PL-KNN
and LSB-CMM.

In addition to inductive performance on unseen examples, transductive accuracies of each com-
paring algorithm on training examples are also reported in Table 4. Here, for each training example
(xi, Si), the prediction on its ground-truth label is made by consulting the candidate label set, i.e.:
yi = arg maxy∈Si F (xi, y; Θ). Generally, transductive performance reflects the disambiguation
ability of the partial label learning approach in recovering ground-truth labeling information from
candidate label set. Similar to Table 3, pairwise t-tests at 0.05 significance level between M3PL
and the comparing algorithms are also recorded in Table 4. Furthermore, as the training procedure
of M3PL terminates, the identified ground-truth label assignment y can be also used as the disam-
biguation predictions on the training examples. The resulting transductive performance is reported
in Table 4 as well (denoted as M3PL†) for reference purpose.
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As shown in Table 4, M3PL significantly outperforms all the comparing algorithms on the
MSRCv2, BirdSong, and Soccer Player data sets. On the Lost data set, M3PL achieves
superior performance against PL-KNN and LSB-CMM and is inferior to PL-SVM and CLPL. On
the Yahoo! News data set, M3PL achieves superior or at least comparable performance against
the other comparing algorithms. As expected, M3PL and M3PL† show similar transductive perfor-
mance over each real-world data set.

5. Conclusion

In this paper, the partial label learning problem is tackled by adopting a new formulation of the
maximum margin criterion. Specifically, the canonical multi-class margin is directly optimized
by the proposed approach with an alternating optimization procedure. Experimental studies on
controlled UCI data sets and real-world partial label data sets validate the effectiveness of the derived
M3LP approach.

In the future, it is worth studying whether better performance could be gained by incorporating
kernel trick into the proposed M3PL approach. Furthermore, it is also interesting to investigate
other ways to solve the proposed maximum margin formulation OP 2 other than utilizing alternating
optimization.
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