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Abstract

We consider the problem of multivariate linear regression with a small fraction of the re-
sponses being missing and grossly corrupted, where the magnitudes and locations of such
occurrences are not known in priori. This is addressed in our approach by explicitly taking
into account the error source and its sparseness nature. Moreover, our approach allows each
regression task to possess its distinct noise level. We also propose a new algorithm that is
theoretically shown to always converge to the optimal solution of its induced non-smooth
optimization problem. Experiments on controlled simulations suggest the competitiveness
of our algorithm comparing to existing multivariate regression models. In particular, we
apply our model to predict the Big-Five personality from user behaviors at Social Net-
work Sites (SNSs) and microblogs, an important yet difficult problem in psychology, where
empirical results demonstrate its superior performance with respect to related learning
methods.

1. Introduction

It is known that multivariate linear model (Anderson, 2003) takes the form

Y = XW ∗ + Z, (1)

where Y ∈ Rn×p is a response matrix, X ∈ Rn×d is a design matrix, W ∗ ∈ Rd×p is
an unknown regression coefficient matrix and Z ∈ Rn×p is a stochastic observation noise
matrix. The central problem then is to accurately estimate the coefficient regression matrix
W ∗ from noisy observations Y . Typically the noise is assumed to have bounded energy and
can be successfully absorbed into the noise matrix Z, which is usually modelled as following
Gaussian-type distributions. As is standard in statistics, a general framework of estimating
W ∗ is given by

Ŵ = arg min
W
{L(X,Y ;W ) + λRW (W )}, (2)

where L is a loss function, λ > 0 is a user-specified tuning parameter and RW (W ) is
some regularization function. One of the most popular choices for L is the least square
loss which achieves the optimal rates of convergence under some conditions on X and Z
(Lounici et al., 2011; Rohde and Tsybakov, 2011) and has found many applications such as
multi-task learning (Caruana, 1997; Argyriou et al., 2008).
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However, there are practical scenarios where a few data entries are corrupted by severe
noises who are considerably larger than the “normal” ones that can be incorporated in
above-mentioned noise model. For example, there could be careless or even malicious user
annotations that severely corrupt a few data entries, and yet are difficult to be spotted.
This type of noises might dramatically degrade the estimation accuracy of estimator Ŵ .

In this paper, we propose to address this gross corruption problem by explicitly intro-
ducing a sparse matrix G∗ ∈ Rn×p, where the locations of nonzero entries are unknown and
their magnitudes could be very large. This gives the following linear model

Y = XW ∗ + Z +G∗. (3)

It thus provide us the ability to recover the grossly corrupted examples instead of simply
trashing them away as outliers. This model can also be applied to handle the missing data
problem, where responses in Y are not fully observed, but some are missing. Specifically,
we can simply fill the missing responses with zero and apply model (3) to the modified data.
Then, nonzero rows in the resulting G∗ whose locations correspond to the missing responses
have the same values as the responses but with reverse sign.

The corresponding optimization framework is naturally extended to that of estimating
(W ∗, G∗) by solving

min
W,G
{L(X,Y ;W,G) + λRW (W ) + ρRG(G)}, (4)

with ρ > 0 being a tuning parameter and RG(G) being some regularization function. In
addition, instead of the usual least square loss, the `2,1-norm is adopted as the loss function
to better cope with noise. Moreover, a group sparsity inducing norm is used for RW (W )
to enforce group-structured sparsity, as well as `1-norm for RG(G) to impose element-wise
sparsity on identifying possible gross corruptions. The main contributions here are three-
fold: (1) Our approach explicitly model and recover the grossly corrupted examples in the
context of multivariate linear regression with the `1-norm as loss function; (2) An efficient
and convergent multi-block proximal alternating direction method of multipliers (ADMM)
is applied to the induced non-smooth optimization problem; (3) In particular, we focus on
the application of Big-Five personality prediction based on behaviors at social network sites
(SNSs), a novel and important problem in computational psychology. Experiments with
synthetic and real data demonstrate the advantages of our method with respect to existing
multivariate regression models.

Related Work in Machine Learning and Statistics For linear regression model under
gross error as in (3), there have been various lines of work (Li, 2012; Nguyen and Tran, 2013;
Wright and Ma, 2010; Xu et al., 2013, 2012; Xu and Leng, 2012), among which (Nguyen
and Tran, 2013) and (Xu and Leng, 2012) consider the same optimization problem as (4)
for univariate and multivariate regression, respectively. However, both of them adopt least
square loss which, as pointed out in (Liu et al., 2013, 2014), has two drawbacks: First,
all regression tasks are regularized by the same parameter λ, which ignores the disparate
noise levels contained in different regression tasks; Second, the selection of the optimal λ is
dependent on the estimation of unknown variance of Z, which is crucial for achieving a good
finite-sample performance. To overcome these two drawbacks, a calibrated multivariate
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regression (CMR) method has been proposed in (Liu et al., 2013, 2014), which uses the
`2,1-norm as its loss function. It is tuning insensitive and calibrates each task with respect
to its own noise level, and it has been shown both theoretically and empirically that CMR
achieves an improved finite sample performance. As our approach also adopts the `2,1-norm
as the loss function as in (Liu et al., 2013, 2014). In this sense, our model in (4) may
be considered as an extension of the CMR model to deal with the challenging problem
of regression with grossly corrupted observations. It is worth noting that our induced
optimization problem and thus the solver are clearly different from those of (Liu et al.,
2013, 2014).

Related Work in Personality Prediction In psychology, the most influential theory
in the study of personality is the so called Big-Five theory (Funder, 2001; Matthews et al.,
2006), where personality is characterized by five distinct dimensions: Agreeableness, Con-
scientiousness, Extraversion, Neuroticism and Openness. To identify an individual’s per-
sonality, the most commonly used form is the self-report inventory (Domino and Domino,
2006), which requires people to answer questions about their typical behavior. In addition,
the Berkeley Personality Lab 1 has designed a widely-used Big-Five Inventory (BFI), which
contains 44 questions with high validity and reliability, and can be further summarized
to form a quantized five-dimensional personality descriptor. Despite its wide usage, it is
practically very difficult to conduct self-report inventory in large scales, and the social desir-
ability bias may influence the responses in case that people might state what they wish were
true rather than what is true, which would reduce the credibility of their own responses.
Moreover, there are also issues related to careless or malicious user annotations. All these
factors might result in erroneous or even missing personality descriptors. To handle such
problem, we can apply model (3) and consider the gross error explicitly by using G∗.

Since personality can be manifested by behavior, a natural idea is to infer personality
from human behaviour. Over the past decade, online Social Network Sites (SNSs) such as
Facebook and Twitter, as well as their Chinese equivalent, RenRen and Sina Weibo, have
become popular means of social communication and have been regarded as an important
part of people’s daily life. It has been observed that online SNS behaviors and real-world
behaviors share a significant amount in common (Landers and Lounsbury, 2006). SNSs
also provide an excellent data source for social research, since they are able to reproduce
social activities in real life and acquire rich information derived from a large and diverse
population. The growing demand of SNS users facilitates the technical development of
personalized recommendation (Jie, 2011; Reynol, 2011). One major issue here is to design
a proper personality prediction model.

So far, there are only sporadic research efforts that relate personality and SNS behav-
iors (Ma et al., 2011). Orr et al. (Orr et al., 2009) discuss the influence of shyness on the use
of SNS and discover that shyness is significantly positively associated with the time spent
on SNS and negatively correlated with the number of “friends”. Correa et al. (Correa et al.,
2010) analyze the connection of users’ personality and social media and find that openness
and extraversion associate positively with social media usage while neuroticism associates
negatively. Nevertheless, these works could only provide the association relation between
personality and behavior instead of a direct and quantitative measurement.

1. http://www.ocf.berkeley.edu/~johnlab/index.html
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The closest research effort is probably that of Gosling et al. (Gosling et al., 2011), where
experiments are conducted towards the manifestations of personality in SNS, to deliver a
mapping between personality and SNS online behaviors. They examine the personality with
self-reported Facebook usage and observable profile information and provide the correlation
factor between personality and online behaviors. In their work eleven features are used
including friends count, weekly usage and other frequency-related features. However, these
features are all based on statistical characteristics instead of the inner properties of users.
Moreover, their data collection procedure relies on self-reported usage and observable profile
information – both require considerable manual efforts and are not realistic for practical
purpose.

Notations We summarize here some useful notations used throughout this paper. For
any scale α, (α)+ := max{α, 0}. For any x = (x1, · · · , xd) ∈ Rd and 1 ≤ p <∞, we denote

by ‖x‖p := (
∑d

i=1 |xi|p)
1
p the `p norm and ‖x‖∞ := maxdi=1 |xi|p the `∞ norm. A group g is

a subset of {1, · · · , d} with cardinality |g|, while G denotes a set of potentially overlapping
groups such that ∪g∈Gg = {1, · · · , d}. xg denotes the subspace of x ∈ Rd with dimensions
indexed by g. Similarly, for any matrix A ∈ Rd×n, we denote by Ag∗ and A∗g the rows and
the columns of A indexed by g, respectively. I denotes the identity matrix whose size should
be clear from the context. For any matrix A, we respectively define the spectral, Frobenius

and `∞ norms as: ‖A‖2 := max1≤i≤r σi(A), ‖A‖F :=
√∑

ij A
2
ij and ‖A‖∞ := maxij |Aij |,

where r is the rank of A and σi(A) is the i-th largest singular value of A. The following
matrix norms are also specified: ‖A‖1,2 :=

∑d
i=1 ‖Ai∗‖2, ‖A‖2,1 :=

∑n
j=1 ‖A∗j‖2. Finally,

given a group set G, we denote by ΩG(A) :=
∑

g∈G ‖Ag∗‖F the group lasso penalty associated
with G.

2. Our Model

Throughout this paper, we assume that RW (W ) = ΩG(W ) is a group sparsity inducing

norm and Zi∗
iid∼ N(0,Σ) for some covariance matrix Σ.

The standard multivariate regression model with least square loss considers the following
convex problem

Ŵ = arg min
W

1√
n
‖Y −XW‖2F + λΩG(W ). (5)

Let σmax = max1≤k≤p σk, it has been shown in (Lounici et al., 2011) that, under the
assumption that

Σ = diag(σ2
1, · · · , σ2

p), (6)

and suitable conditions on X, if we choose λ = 2cσmax(
√

ln d+
√
p) for some c > 1, then the

estimator Ŵ in (5) achieves the optimal rates of convergence. In (Liu et al., 2013, 2014),
a new method named CMR has been proposed that calibrates the regularization for each
regression task with respect to its noise level σk by considering the following optimization
problem:

Ŵ = arg min
W
‖Y −XW‖2,1 + λΩG(W ). (7)

The optimal rate convergence of CMR in parameter estimation has also been provided in
(Liu et al., 2013, 2014).
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Notice that all previous work fails to take into considerations the gross errors such as
missing and grossly corrupted responses. To handle this kind of problem, it is natural to
consider the model (3). In particular, we attempt to combine the advantages of the CMR
method (7) and the model in (3) by considering the following problem:

(Ŵ , Ĝ) = arg min
W,G
‖Y −XW −G‖2,1 + λΩG(W ) + ρ‖G‖1, (8)

where λ > 0 and ρ > 0 are tuning parameters. Our method can be considered as an
extension of CMR in the sense that when there is no gross error, our method becomes the
original CMR.

A related work is (Xu and Leng, 2012) that considers the same model as (3) and studies
robust multi-task regression with grossly corrupted observations by solving the following
optimization problem:

(Ŵ , Ĝ) = arg min
W,G

1

2
‖Y −XW −G‖2F + λ‖W‖1,2 + ρ‖G‖1. (9)

However, as pointed out in (Liu et al., 2013, 2014), there are some limitations in the least
square loss function in (9).

In the context of Big-Five personality prediction, the response is a five dimensional
vector for each observed instance (i.e., a session of one’s SNS behaviors). It is clear that
these five dimensions are distinct and yet intrinsically connected : For example, sociable
individuals (i.e. Extraversion) are often more likely to be cooperative (i.e. Agreeableness).
Moreover, the noise levels of these five regression tasks are not necessarily the same. This
naturally suggests the usage of Multi-Task regression model with CMR loss. On the other
hand, ground-truth responses are obtained based on self-report inventory. It is subjective
by nature, and is truly difficult to rule out the potential existence of gross errors from either
careless or malicious user annotations.

3. Our CMRG Algorithm

Since both the loss function and regularization terms are non-smooth, the optimization
problem in (8) is computationally more difficult to solve than standard multivariate linear
regression problems in (5) and (9). In this section, we apply the proximal ADMM (Fazel
et al., 2013; Sun et al., 2014) to solve the optimization problem in (8). To start with, let us
reformulate (8) as an equivalent linearly constrained problem, using the variable splitting
procedure inspired by (Chen et al., 2012; Qin and Goldfarb, 2012).

Denote d′ :=
∑

g∈G |g|, and let Θ ∈ Rd′×p be the matrix obtained from W by duplicating
those rows of W whenever they are shared between two overlapping groups. In other
words, for the set of overlapping groups G, there exists a set of groups G′ consisting of non-
overlapping groups, which forms a disjoint partition of {1, · · · , d′} such that the following
identity holds

ΩG(W ) =
∑
g∈G
‖Wg∗‖F =

∑
g′∈G′

‖Θg′∗‖F = ΩG′(Θ).

Clearly d′ ≥ d, and the relationship between W and Θ is specified by the linear system
CW = Θ, where C ∈ Rd′×d is defined as: Cij = 1 if Θi∗ = Wj∗ and Cij = 0 otherwise. It is
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easy to see that C is a highly sparse matrix, and D := C>C is a diagonal matrix with each
diagonal entry equalling the number of repetitions of the corresponding row of W . When
G consists of non-overlapping groups, we have C = I.

Let Z = Y −XW −G, the optimization problem in (8) can be equivalently reformulated
as

(Ŵ , Ĝ) = arg min
(Z,Θ),G,W

‖Z‖2,1 + λΩG′(Θ) + ρ‖G‖1

s.t.

[
Z
Θ

]
+

[
In
0

]
G+

[
X
−C

]
W =

[
Y
0

]
, (10)

which is in the exact form of the following 3-block convex optimization problem:

min
w,y,z

{f(y) + g(z)− 〈b,w〉 | Fy +Hz + Bw = c}, (11)

if we let y := [Z> Θ>]>, z := G, w := W , f(y) := ‖Z‖2,1 +λΩG′(Θ), g(z) := ρ‖G‖1, b = 0,
F := In+d′ , H := [I>n 0]>, H := [X> − C>]>, and c := [Y > 0]>.

To solve the 3-block convex optimization problem in (11) (or specifically, optimization
problem in (10)), one may apply the multi-block ADMM extended directly from the ADMM
from solving the 2-block convex optimization problem (Boyd et al., 2011). However, it has
been shown in (Chen et al., 2013) that, different from the 2-block ADMM, the directly
extended multi-block ADMM may diverge. There have been many existing works to deal
with the possible non-convergence of multi-block ADMM. However, as pointed out in (Sun
et al., 2014), for all existing various multi-block ADMM, although theoretically convergent,
they usually performs substantially worse than the directly extended multi-block ADMM.
To get a convergent multi-block ADMM that performs as efficiently as the directly extended
ADMM, a proximal ADMM has been proposed in (Sun et al., 2014), which has both theo-
retical convergence guarantee and superior numerical efficiency over the directly extended
ADMM.

For a given σ > 0, let

Lσ(Z,Θ, G,W ; Λ1,Λ2) :=‖Z‖2,1 + λΩG′(Θ) + ρ‖G‖1 + 〈Λ1, Z +G+XW − Y 〉

+ 〈Λ2,Θ− CW 〉+
σ

2
‖Z +G+XW − Y ‖2F +

σ

2
‖Θ− CW‖2F

(12)

be the augmented Lagrangian function for (10). Then apply the proximal ADMM proposed
in (Sun et al., 2014) to optimization problem (10), giving rise to the following steps:

(Zk+1,Θk+1) = arg minLσ(Z,Θ, Gk,W k; Λk1,Λ
k
2), (13)

W k+ 1
2 = arg minLσ(Zk+1,Θk+1, Gk,W ; Λk1,Λ

k
2), (14)

Gk+1 = arg minLσ(Zk+1,Θk+1, G,W k+ 1
2 ; Λk1,Λ

k
2), (15)

W k+1 = arg minLσ(Zk+1,Θk+1, Gk+1,W ; Λk1,Λ
k
2), (16)

Λk+1
1 = Λk1 + τσ(Zk+1 +XW k+1 +Gk+1 − Y ), (17)

Λk+1
2 = Λk2 + τσ(Θk+1 − CW k+1), (18)
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where σ > 0, τ > 0 are given parameters and the initial values of W , Λ1 and Λ2 should be
selected such that W 0 := (X>X+C>C)−1(X>(Y −Z0−G0)+C>Θ0) and X>Λ0

1−C>Λ0
2 =

0, respectively.
All subproblems in (13)–(16) have closed form solutions. The solution Zk+1 to subprob-

lem (13) is given by

(Zk+1)∗j =

(
1− 1

σ‖(∆k
Z)∗j‖2

)
+

(∆k
Z)∗j , (19)

where ∆k
Z := Y −XW k −Gk − Λk

1
σ . The solution Θk+1 is given by

(Θk+1)g∗ =

(
1− λ

σ‖(∆k
Θ)g∗‖F

)
+

(∆k
Θ)g∗, g ∈ G′ (20)

where ∆k
Θ := CW k − Λk

2
σ . Let A := X>X + D, the solution W k+ 1

2 to subproblem (14) is
given by

W k+ 1
2 = A−1(X>(Y − Zk+1 −Gk) + C>Θk+1). (21)

The solution Gk+1 to subproblem (15) is given by

Gk+1
ij = Sign((∆k

G)ij) max{(∆k
G)ij − ρ/σ, 0}, (22)

where ∆k
G = Y −XW k+ 1

2 −Zk+1− Λk
1
σ and Sign(·) is the sign function. The solution W k+1

to subproblem (16) is given by

W k+1 = A−1(X>(Y − Zk+1 −Gk+1) + C>Θk+1). (23)

Summarizing the above procedure leads to Algorithm 1. Compared with directly
extended 3-block ADMM, the above proximal ADMM has an extra step for computing
W k+ 1

2 . As seen from (21), the extra cost of computing W k+ 1
2 is marginal provided that the

Choleskey factorization of A is available. The reward for performing the extra step is the
convergence of Algorithm 1 as presented in Theorem 1. The proof of Theorem 1 can
be derived directly from Theorem 2.2 in (Sun et al., 2014).

Theorem 1 Under the condition τ ∈
(
0, (1 +

√
5)/2

)
, the sequence {(Zk,Θk, Gk,W k,Λk1,Λ

k
2)}

generated by Algorithm 1 converges to an unique point (Ẑ, Θ̂, Ĝ, Ŵ , Λ̂1, Λ̂2) so that (Ẑ, Θ̂, Ĝ, Ŵ )
solves optimization problem (10) and (Λ̂1, Λ̂2) solves the dual problem of optimization prob-
lem (10).

4. Experiments

We compare our newly proposed model (8), which we denote as CMRG, with three existing
models: the ordinary multivariate regression (OMR) model (5), the calibrated multivari-
ate regression (CMR) model (7) and the ordinary multivariate regression with gross error
(OMRG) model (9) with ‖W‖1,2 replaced by ΩG(W ). We apply Algorithm 1 to solve our
model, and all other models are also solved similarly by ADMM.
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Algorithm 1 Our CMRG algorithm

1: Input: Y , X, λ > 0, ρ >, σ > 0 and τ > 0.
2: Initialization: Z0, Θ0, W 0, G0, Λ0

1, Λ0
2 such that W 0 := (X>X + C>C)−1(X>(Y −

Z0 −G0) + C>Θ0) and X>Λ0
1 − C>Λ0

2 = 0. k = 0.
3: repeat
4: Compute Zk+1 using (19).
5: Compute Θk+1 using (20).

6: Compute W k+ 1
2 using (21).

7: Compute Gk+1 using (22).
8: Compute W k+1 using (23).
9: Compute Λk+1

1 and Λk+1
2 using (17).

10: k ← k + 1.
11: until Convergence
12: Output: W k, Gk.

4.1. Synthetic Data

To evaluate the finite-sample performance of our new model, we generate a simulation data
following a similar scheme as in (Liu et al., 2013, 2014). Each data set consists of 400
training samples, 400 validation samples and 10, 000 testing samples. Specifically,

1. Generate each row of X, independently from a 1000-dimensional normal distribution
N(0,Σ) where Σii = 1 and Σij = 0.5 for all i 6= j.

2. Design a group sparsity structure so that G = {{1, · · · , 100}, {91, · · · , 190}, · · · , {361, · · · , 460},
{461}, · · · , {1000}} and generate the regression coefficient matrix W so that entries
in the first 460 rows are independently sampled from N(0, 1) and all other entries are
0.

3. Generate the random noise matrix Z = BD0, where B ∈ R1000×13 whose entries are
independently sampled from N(0, 1) and D0 ∈ R13×13 is a diagonal matrix defined as
D0 := σmax · diag(20/4, 2−1/4, · · · , 2−12/4).

4. Generate the gross error matrix G ∈ R400×13 with S nonzero entries, whose positions
are randomly selected and values are independently sampled from uniform distribution
δ · U(σmax, 2σmax), where δ > 1 is a scaling factor.

We conduct experiments with different values of σmax, S and δ to evaluate the per-
formance of CMRG. The parameter λ is chosen from λ0 ∗ {2−3, 2−2.75, · · · , 21.75, 22} with
λ0 =

√
ln d +

√
p, and the parameter ρ is chosen from {10−3, 10−2.8, · · · , 100.8, 101}. The

optimal parameter (λ̂, ρ̂) is determined as

(λ̂, ρ̂) = arg min
λ,ρ
‖Ỹ − X̃Ŵ λ,ρ‖2F ,

where Ŵ λ,ρ is the resulted estimate using parameter (λ, ρ), and X̃ and Ỹ denote the design
and response matrices of the validation data.
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To evaluate the empirical performance, we adopt the following criteria:

Pre.Err. = ‖Y −XŴ‖F /‖Y ‖F ,
Adj.Pre.Err. = ‖(Y −XŴ )D−1

0 ‖F /‖Y D
−1
0 ‖F ,

Est.Err.of W = ‖W ∗ − Ŵ‖F /‖W ∗‖F ,
Est.Err.of G = ‖G∗ − Ĝ‖F /‖G∗‖F ,

where (X,Y ) denotes the testing data, Rec.Rate.of W and Rec.Rate.of G measure the
percentage of correctly recovered signs of entries in W ∗ and G∗, respectively.

Table 1 and Table 2 summarize the results averaged over 10 repetitions for different
values of (σmax, S, δ). We observe that regression models that take gross error into con-
siderations (OMRG and CMRG) consistently outperform those that fail to do so (OMR
and CMR), and regression models adopting the `2,1-norm as the loss function (CMR and
CMRG) perform better than those adopting least square loss (OMR and OMRG). Com-
paring CMRG with OMRG, we find that CMRG has lower prediction error and estimation
error of W in most scenarios while OMRG has lower error rate in estimating G. Both
CMRG and OMRG can successfully recover the sign of entries in W ∗ and G∗ when only a
small portion of observations are corrupted by gross errors, but the success rate decreases
when the number of grossly corrupted observations is large. We believe that there exists
some threshold so that when the ratio between sample size and the number of corrupted
entries (i.e. n/S) is larger than the threshold, our approach can successfully recover the
signed support of both W ∗ and G∗.

4.2. Big-Five Personality Prediction

The data set we use is a SNS data set built from microblogging site Sina Weibo (the
Chinese counterpart of Twitter). To acquire the annotated data, we have developed a
mental illness treatment website, Anonymous. By allowing online users to log in Weibo
accounts through our Anonymous web platform, we are able to collect users’ historical
behavior data from Weibo into Anonymous. In total, there are 45 Weibo behavior features,
which are categorized into four groups: profile, self-presentation, security setting and social
networking, and 630 Weibo participants are recruited during the first two months of 2012.

We further scrutinize the participants to retain only those who are active users. We
exclude users who either publish less than 512 blogs altogether, or have no blog published
in the last three months. As a result, the data set contains 562 Weibo participants (in-
stances), which is further split into disjoint training and testing sets, that contain 450 and
112 instances, respectively. To acquire ground-truth labels, each participant is additionally
requested to fill up an inventory—the widely-used Big-Five Inventory from Berkeley Per-
sonality Lab. In practice, each element in this vector is a decimal number within the range
of [1, 5].

We compare our method with OMR, CMR, OMRG and ridge regression (RR) (i.e.
model (2) with least square loss and R(W ) = ‖W‖2F ). Similar to synthetic data, we choose
parameter λ from λ0 ∗ {10−3, 10−2.5, · · · , 102} with λ0 =

√
ln d+

√
p, and the parameter ρ

from {10−2, 10−1.5, · · · , 103}. The optimal parameter (λ̂, ρ̂) is determined by 5-fold cross-
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Table 1: Statistical performance (mean±std) of four regression models: OMR, CMR, OMRG and CMRG.
Method Pre.Err. Adj.Pre.Err. Est.Err.of W Rec.Rate.of W Est.Err.of G Rec.Rate.of G

σmax =
√
2

S
=

5
0 δ

=
5

OMR 0.3089±0.0020 0.2930±0.0025 0.4123±0.0022 93.81±0.12 - -
CMR 0.3086±0.0015 0.2931±0.0011 0.4115±0.0014 93.84±0.12 - -
OMRG 0.3075±0.0016 0.2914±0.0009 0.4104±0.0015 93.86±0.03 0.9986±0.0279 98.18±0.68
CMRG 0.3082±0.0017 0.2920±0.0012 0.4112±0.0015 93.87±0.09 1.0104±0.0398 98.08±1.62

δ
=

1
0 OMR 0.3636±0.0076 0.3381±0.0015 0.4856±0.0109 92.85±0.47 - -

CMR 0.3454±0.0040 0.3251±0.0017 0.4605±0.0054 93.16±0.24 - -
OMRG 0.3244±0.0007 0.3045±0.0024 0.4328±0.0006 93.51±0.08 0.7177±0.0469 95.96±0.00
CMRG 0.3243±0.0009 0.3034±0.0028 0.4328±0.0007 93.59±0.17 0.7237±0.0468 94.65±0.16

S
=

5
0
0 δ
=

5

OMR 0.4635±0.0060 0.4422±0.0103 0.6193±0.0085 91.07±0.20 - -
CMR 0.3930±0.0025 0.3739±0.0037 0.5241±0.0031 92.11±0.10 - -
OMRG 0.3968±0.0019 0.3784±0.0041 0.5292±0.0027 92.02±0.18 0.9543±0.0085 85.58±0.74
CMRG 0.3918±0.0020 0.3730±0.0044 0.5224±0.0027 92.13±0.11 0.9552±0.0205 89.51±0.60

δ
=

1
0 OMR 0.8054±0.0094 0.7898±0.0060 1.0756±0.0132 86.96±0.01 - -

CMR 0.4883±0.0046 0.4725±0.0001 0.6501±0.0062 89.99±0.08 - -
OMRG 0.4636±0.0022 0.4498±0.0035 0.6176±0.0026 85.74±1.31 0.7189±0.0242 82.70±1.02
CMRG 0.4635±0.0020 0.4496±0.0038 0.6176±0.0023 90.48±0.09 0.7187±0.0247 78.89±0.75

S
=

2
5
0
0 δ
=

5

OMR 0.8608±0.0092 0.8224±0.0196 1.1477±0.0135 85.59±0.26 - -
CMR 0.5075±0.0013 0.4862±0.0024 0.6755±0.0021 89.36±0.09 - -
OMRG 0.5346±0.0020 0.5138±0.0047 0.7117±0.0030 45.78±14.55 0.9274±0.0092 60.20±0.46
CMRG 0.5075±0.0013 0.4862±0.0024 0.6755±0.0021 89.36±0.09 1.0000±0.0000 51.92±0.00

δ
=

1
0 OMR 1.4958±0.0196 1.4361±0.0516 2.0030±0.0248 76.81±0.87 - -

CMR 0.6120±0.0004 0.5876±0.0023 0.8126±8.3e-5 86.23±0.13 - -
OMRG 0.6391±0.0019 0.6139±0.0047 0.8465±0.0007 40.22±2.49 0.6965±0.0019 65.89±0.07
CMRG 0.6120±0.0004 0.5876±0.0023 0.8126±8.3e-5 86.23±0.13 1.0000±0.0000 51.92±0.00
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Table 2: Statistical performance (mean±std) of four regression models: OMR, CMR, OMRG and CMRG.
Method Pre.Err. Adj.Pre.Err. Est.Err.of W Rec.Rate.of W Est.Err.of G Rec.Rate.of G

σmax = 2
√
2

S
=

5
0 δ

=
5

OMR 0.3715±0.0024 0.3459±0.0058 0.4958±0.0017 92.73±0.09 - -
CMR 0.3596±0.0008 0.3380±0.0042 0.4800±2.7e-5 92.87±0.02 - -
OMRG 0.3451±0.0008 0.3191±0.0072 0.4608±0.0023 93.19±0.01 0.7867±0.0179 95.20±0.20
CMRG 0.3439±0.0011 0.3179±0.0071 0.4593±0.0027 93.16±0.13 0.7850±0.0201 94.74±0.15

δ
=

1
0 OMR 0.5100±0.0029 0.4877±0.0207 0.6801±0.0057 90.51±0.02 - -

CMR 0.4198±0.0001 0.4021±0.0087 0.5593±0.0012 91.55±0.29 - -
OMRG 0.3471±0.0028 0.3223±0.0019 0.4632±0.0028 93.12±0.02 0.4205±0.0022 95.04±0.44
CMRG 0.3470±0.0023 0.3204±0.0005 0.4630±0.0019 93.12±0.08 0.4245±0.0096 93.53±2.35

S
=

5
0
0 δ
=

5

OMR 0.7308±0.0054 0.6789±0.0035 0.9772±0.0079 87.48±0.16 - -
CMR 0.4890±0.0016 0.4661±0.0031 0.6513±0.0025 89.86±0.18 - -
OMRG 0.4701±0.0022 0.4513±0.0028 0.6266±0.0030 90.32±0.24 0.7554±0.0023 79.58±0.14
CMRG 0.4708±0.0022 0.4521±0.0024 0.6278±0.0032 90.32±0.32 0.7570±0.0018 77.67±0.05

δ
=

1
0 OMR 1.4450±0.0049 1.4221±0.0092 1.9346±0.0072 82.44±0.33 - -

CMR 0.5967±0.0005 0.5772±0.0040 0.7953±0.0003 86.78±0.10 - -
OMRG 0.4920±0.0029 0.4707±0.0019 0.6557±0.0048 78.71±15.26 0.4208±0.0097 77.05±2.57
CMRG 0.4918±0.0031 0.4699±0.0016 0.6554±0.0049 89.69±0.20 0.4203±0.0094 75.71±0.76

S
=

2
5
0
0 δ
=

5

OMR 1.5402±0.0176 1.4759±0.0016 2.0561±0.0228 81.31±0.59 - -
CMR 0.6118±0.0006 0.5902±0.0024 0.8145±0.0018 86.36±0.29 - -
OMRG 0.6388±0.0011 0.6177±0.0077 0.8503±0.0035 39.42±1.13 0.7049±0.0090 66.37±0.14
CMRG 0.6118±0.0006 0.5902±0.0024 0.8145±0.0018 86.36±0.30 1.0000±0.0000 51.92±0.00

δ
=

1
0 OMR 3.0067±0.1150 2.9223±0.1457 4.0145±0.1506 73.14±0.26 - -

CMR 0.7021±2.8e-6 0.6786±0.0015 0.9295±0.0026 82.92±0.29 - -
OMRG 0.6859±0.0017 0.6615±0.0025 0.9093±0.0024 83.23±0.42 0.4126±0.0019 66.35±1.99
CMRG 0.6856±0.0015 0.6607±0.0017 0.9085±0.0020 83.35±0.30 0.4124±0.0020 65.62±0.41
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Table 3: Prediction error on Weibo data without gross error.

Weibo data without gross error Corrupted Weibo data

RR OMR CMR OMRG CMRG RR OMR CMR OMRG CMRG

Agr. 0.1784 0.1788 0.1783 0.1788 0.1783 0.2176 0.2146 0.2136 0.2055 0.1914
Con. 0.2128 0.2226 0.2212 0.2226 0.2212 0.2332 0.2174 0.2170 0.2160 0.2109
Ext. 0.2147 0.2172 0.2152 0.2172 0.2152 0.2384 0.2340 0.2379 0.2310 0.2205
Neu. 0.2262 0.2269 0.2271 0.2269 0.2271 0.2670 0.2676 0.2622 0.2594 0.2543
Ope. 0.1717 0.1830 0.1823 0.1830 0.1823 0.2088 0.1822 0.1814 0.1720 0.1641

Pre.Err. 0.1993 0.2046 0.2037 0.2046 0.2037 0.2320 0.2231 0.2221 0.2166 0.2076

Table 4: Recovery accuracy of OMRG and CMRG.
Method Est.Err.of G Rec.Rate.of G

OMRG 0.8859±0.2552 89.23±0.76
CMRG 0.7130±0.0052 99.20±0.30

validation on the training data. For performance evaluation, we use the relative prediction
error as in synthetic data.

We first conduct experiments on the training data without gross error. Averaged results
over 10 repetitions are shown in Table 3, where abbreviations in the left-most column denote
Agreeableness, Conscientiousness, Extraversion, Neuroticism and Openness, respectively,
and Pre.Err. denotes the relative prediction error for all five personalities. We observe
from Table 3 that regression models considering gross error (OMRG and CMRG) obtain
the same results as those that fail to do so (OMR and CMR), since there is no gross error in
the training data. Moreover, CMRG has better performance than regression models OMR
and OMRG while it is slightly worse than ridge regression.

To model practical scenarios where some observations may be missing, we randomly
delete 250 entries (≈ 10%) in the responses and conduct experiments on the corrupted
training data. Average prediction errors over 10 repetitions are shown in Table 3 and Table 4
that shows the accuracy of OMRG and CMRG for recovering the deleted entries. We can see
that CMRG performs significantly better than other methods. More importantly, CMRG
is capable of recovering missing observations accurately as shown in Table 4.

As a reference, we also compute the averaged absolute distance (AAD) between ground-
truth and real-valued prediction based on the corrupted data for all regression models, and
compare them with the best AAD results of (Golbeck et al., 2011) on Twitter dataset.
Averaged results over 10 repetitions are shown in Table 5, where the last column lists the
results of (Golbeck et al., 2011). We see that CMRG is the best and much better than the
best AAD results of (Golbeck et al., 2011) on Twitter dataset.

5. Conclusions

A new approach has been proposed to address the problem of multivariate regression with
missing and grossly corrupted observations. Our approach takes gross error into consider-
ation and at the same time calibrates each regression task with respect to its noise level.
An efficient and convergent proximal ADMM method has also been proposed to solve the

123



Zhang Cheng Zhu

Table 5: Comparison of AAD results on the corrupted data.
RR OMR CMR OMRG CMRG (Golbeck et al., 2011)

Agr. 0.65 0.64 0.64 0.61 0.56 0.65
Con. 0.59 0.55 0.55 0.55 0.54 0.73
Ext. 0.62 0.62 0.63 0.61 0.59 0.80
Neu. 0.68 0.68 0.66 0.65 0.64 0.91
Ope. 0.61 0.53 0.53 0.50 0.48 0.60

Ave. 0.63 0.60 0.60 0.58 0.56 0.74

induced optimization problem. Moreover, our method can be successfully applied to pre-
dict personalities based on behaviors at SNSs. Experiments on synthetic and real data
corroborate the effectiveness of our algorithm. In future, we plan to investigate statistical
properties of our method and the effect of different behaviors at SNSs to the prediction of
personality.
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