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Abstract

Due to their open and anonymous nature, online social networks are particularly vulner-
able to Sybil attacks. In recent years, there has been a rising interest in leveraging social
network topological structures to combat Sybil attacks. Unfortunately, due to their strong
dependency on unrealistic assumptions, existing graph-based Sybil defense mechanisms suf-
fer from high false detection rates. In this paper, we focus on enhancing those mechanisms
by considering additional graph structural information underlying social networks. Our
solutions are based on our novel understanding and interpretation of Sybil detection as the
problem of partially labeled classification. Specifically, we first propose an effective graph
pruning technique to enhance the robustness of existing Sybil defense mechanisms against
target attacks, by utilizing the local structural similarity between neighboring nodes in a
social network. Second, we design a domain-specific graph regularization method to fur-
ther improve the performance of those mechanisms by exploiting the relational property
of the social network. Experimental results on four popular online social network datasets
demonstrate that our proposed techniques can significantly improve the detection accuracy
over the original Sybil defense mechanisms.

Keywords: Sybil Attack, Social Networks, Sybil Defenses, Transitive Trust

1. Introduction

Over the last few years, social networking sites have become an indispensable part of peo-
ple’s lives. Social network service providers benefit from collecting a huge amount of user
information. Due to their open and anonymous nature, online social networks are particu-
larly susceptible to spamming manipulations. One of the prevalent forms is Sybil attacks,
where an attacker creates a large number of fake identities, known as Sybils, to unfairly
increase their power or suppress other honest users within a target community. Traditional
mechanisms which rely on central trusted identities are not sufficient to defend against
Sybil attacks, since it is difficult to convince users to publicize their privacy information,
and electing a trusted identity is challenging in extremely large social networks.
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In recent years, there is substantial growth of interest in leveraging social network struc-
ture Yu et al. (2008); Tran et al. (2011); Cao et al. (2012) to combat Sybil attacks. However,
the existing structure-based Sybil defense mechanisms under-perform and suffer from high
false detection rates due to their unrealistic assumptions and limited usage of topologi-
cal information. Specifically, they explicitly assume that the honest region is fast mixing,
where random walks from non-Sybil nodes can quickly reach a stationary distribution after
O(log(n)) steps, compared to Sybil nodes. However, studies show that in real-world social
networks, mixing time is much larger than that anticipated in Sybil defense mechanisms Mo-
haisen et al. (2010). This fact determines that structure-based solutions, which depend on
the fast mixing property, cannot produce desirable accuracy. Furthermore, most of these
mechanisms are vulnerable to target attacks Cao et al. (2012), in which an adversary has
prior knowledge about the locations of honest seeds, and launches Sybil attacks by substan-
tially compromising these honest seeds as well as their nearby nodes. As a result, some
dummy nodes can appear to be honest due to their direct connections with these honest
seeds, rendering ineffective the structure-based defense mechanisms.

Our goal in this paper is to provide effective strategies to overcome the above limitations
and improve the performance of existing structure-based Sybil defense mechanisms. First,
we provide a novel perspective of interpreting Sybil defense as the problem of partially
labeled classification. We demonstrate that existing structure-based Sybil defense mecha-
nisms can be seen as the processes of explicitly propagating honest labels across a social
network, so as to partition the entire network into non-Sybil and Sybil regions, i.e., each
node is declared as either Honest or Sybil.

Based on this partially labeled classification framework, we propose two effective methods–
graph pruning and graph regularization, by exploring additional structural information em-
bedded within social graphs, to improve the detection accuracy of current Sybil defense
mechanisms. The graph pruning technique is introduced to handle the target attack prob-
lem, by exploiting local structure similarity between neighboring nodes. This strategy is
performed on original social networks before Sybil detection to diminish the influence of
target attacks where attack edges are established intentionally around the honest seeds. In
addition, studies Taskar et al. (2001); Neville and Jensen (2007) show that many real-world
networks such as social networks and web graphs possess relational property, implying that
linked or neighboring nodes are likely to have the same class labels. This characteristic has
been widely applied in many fields for classification or prediction tasks Sen et al. (2008).
In this paper, a domain-specific graph regularization method is proposed based on the rela-
tional property to enhance the detection accuracy over existing Sybil defense mechanisms.
To our best knowledge, none of the aforementioned structure-based Sybil defense mecha-
nisms has taken graph regularization into account. Evaluation results demonstrate that our
methods can significantly enhance the performance of existing Sybil defense mechanisms.

In all, our main contributions are three-folds: 1) we provide a novel interpretation of
Sybil defense as the problem of partially labeled classification; 2) a graph pruning technique
is introduced to enhance the robustness of existing Sybil defense mechanisms against target
attacks; 3) we also design a specialized manifold regularizer by exploiting the relational
property in social networks to further improve the accuracy of Sybil defense mechanisms.
Experimental results on four popular social network datasets indicate that our regularizer
can even decrease the false negative rate to nearly zero.
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2. Related Work

2.1. Social Network-based Sybil Defense

Many topological solutions to counter Sybil attacks have been proposed in recent years.
SybilGuard Yu et al. (2006) and SybilLimit Yu et al. (2008) are the first decentralized
protocols to leverage social network structures to detect Sybil nodes. In SybilGuard, each
node performs random route of length w = Θ(

√
nlogn) and a suspect is accepted if its

random route intersects with the verifier’s. When the number of attack edges is bounded to
g = O(

√
n/logn), SybilGuard accepts at most Θ(

√
nlogn) Sybil nodes per attack edge with

a high probability. SybilLimit improves upon SybilGuard’s bound by using multiple walks,
which allows it to accept at most O(logn) Sybil nodes per attack edge. However, both of
them make unrealistic assumptions about the number of honest nodes in a network and
suffer from high false negatives. SybilInfer Danezis and Mittal (2009) adopts the Bayesian
inference technique that assigns to each node its probability of being Sybil, but suffers
from high computational cost. Gatekeeper Tran et al. (2011) is another decentralized Sybil
defense scheme that improves over the guarantees provided by SybilLimit. It heavily relies
on the expander-like property, which is a stronger assumption than fast mixing and has
not been validated in real social networks. Similarly, Mohaisen et al. (2010) point out that
mixing time is much larger than that anticipated in Sybil defense schemes, implying that
social networks are generally not fast mixing. Such a finding renders ineffective all defense
schemes based on the mixing property. In order to eliminate negative impact of mixing
time, Mohaisen et al. (2011) model different levels of trust in social networks and design
modified random walks upon SybilLimit to improve its performance. More recent work
such as Integro Boshmaf et al. (2015) integrates behavior analyzes with graph structure for
sybil detection and also used modified random walk mechanism to compute rankings. The
insight is that by incorporating trust information, the algorithmic property–quotient cut
can be greatly shrunk and becomes clearer, which is an obvious sign for Sybil detection.
Therefore, even the honest region does not strictly satisfy the fast mixing property, random
walks originated from non-Sybil nodes will land on non-Sybil nodes with higher probabilities
compared to Sybil nodes. However, such a trust-driven model may affect many honest nodes,
leading to high false positives.

Viswanath et al. (2010) explain the rationale behind structure-based Sybil defense mech-
anisms from the perspective of graph partitioning. They state that existing community
detection algorithms can be utilized to detect Sybils. However, such algorithms are vulner-
able to target attacks and rarely provide provable guarantees. Cao et al. (2012) develop a
Sybil ranking mechanism (called SybilRank) which distinguishes Sybil nodes from non-Sybil
nodes based on their relative trustworthiness. SybilRank is validated on real social graph
and is proven to be effective and efficient against Sybil attacks. Since it depends on honest
seeds to propagate trust across the network, this approach also suffers from target attacks.
We enhance the robustness of the existing topological Sybil defense mechanisms against
target attacks by exploiting additional structural features in social networks.
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2.2. Partially Labeled Classification

Partially labeled classification is a well-studied topic in the machine learning field. Tra-
ditional classifiers solely utilize labeled data for training. However, it is not easy to ob-
tain sufficient labeled instances due to costly human efforts and being time consuming.
Semi-supervised classification techniques well address this problem by utilizing the similar-
ity among unlabeled data. Together with the labeled data, they form a better classifier.
Zhu’s recent survey Zhu (2006) summaries commonly used approaches for semi-supervised
learning with various ways to operate the classification task. In general, semi-supervised
classification algorithms fall into one of the three categories: self-training, feature extraction
approaches, and graph-based regularization.

The key to graph-based regularization in a semi-supervised setting is the label smoothness
or cluster assumption Seeger (2001), which states that data points in a high dense region
(cluster) tend to have the same labels. Many proposals have been developed for graph-based
semi-supervised classification Bousquet et al. (2003)Grandvalet et al. (2004) Zhou et al.
(2003). They differ in particular choices of their objective functions and regularizers which
manifest the underlying structure among unlabeled data. For example, Blum and Chawla
(2001) formulate semi-supervised learning as a graph mincut (called st-cut) problem. Their
objective is to seek for a minimum set of edges whose removal cuts the connections between
sources and sinks. Thus, the nodes connecting to the sources are labeled as positive, while
the other nodes are labeled as negative. Zhu et al. (2003) apply the Gaussian random fields
and harmonic function methods to construct the objective function for semi-supervised
classification. This representation allows a simple closed-from solution for the node marginal
probabilities and has many interesting properties. Normalized Laplacian is used by Zhou
et al. (2003) to build the regularizer for label smoothing among the entire graph, which
exploits both the local and global consistency in the graph.

3. Understanding Sybil Defense

To identify Sybil nodes, existing structure-based Sybil defense mechanisms partition the
entire network into honest and Sybil regions. The basic rationale behind is the following
two core assumptions: 1) strong trust relationships exist among nodes, making it difficult
for Sybil nodes to establish many social connections with non-Sybil nodes, even if they can
easily recruit a large number of Sybil nodes and build an arbitrary topology network among
them. As a result, Sybil region connects to the main network via a small number of attack
edges. 2) honest region is fast mixing, where random walks from a benign node can quickly
reach a stationary distribution after O(log(n)) steps, compared to those from Sybil nodes.
However, these Sybil defense mechanisms are less effective than expected since real-world
social networks do not conform to the above assumptions (see Section 2.1).

Viswanath et al. Viswanath et al. (2010) provide an interesting common insight for
current Sybil defense schemes that explains them as graph partitioning algorithms. They
demonstrate that despite their considerable differences, these topological schemes work by
identifying a local community that surrounds the trusted nodes. And then, they point
out that existing state-of-the-art community detection algorithms can be utilized to solve
the problem of Sybil attacks. However, the community detection framework is confined
to consider only limited topological features despite the local connectivity among social
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networks and fast mixing property of the honest region. Thereby, it does not provide a
clear guidance on addressing the mixing time sensitivity problem, which incurs high false
positives. Furthermore, different choices of metrics, which are utilized to measure the quality
of community detection, will lead to different Sybil detection results. No work has provided
a reasonable metric to achieve better detection results Cai and Jermaine (2012). As also
pointed out in Section 2.1, community detection algorithms are likely vulnerable to target
attacks. Thus, in this paper, we take a different perspective to understand and reformulate
the problem of Sybil defense.

Basically, the existing topological methods for detecting Sybil attacks assume that an
attacker infiltrates the systems by creating a large amount of ‘bad’ nodes and then building
a network of arbitrary topology among them Cai and Jermaine (2012). Due to the inherent
trust assumption that prevents an attacker from establishing too many social links with
benign nodes, there is an abnormal characteristic in social networks, where a large number
of nodes connect to the main network via few edges. Hence, the presence of such a small
cut is probably a good indicator of Sybil attacks. The objective of Sybil detection is to
seek for a set of minimal edges (small cut) whose removal partitions the entire graph into
non-Sybil and Sybil regions. Such a process is particularly similar to the principle in Blum
and Chawla (2001), which copes with the partially labeled classification problem from the
perspective of graph mincut (see Section 2.2).

Intuitively, in the Sybil defense setting, there are two types of classes, i.e. non-Sybil and
Sybil. To find Sybil nodes, the various mechanisms attempt to mark those unlabeled nodes
by propagating honest labels among the network starting from some known honest seeds.
Each node in the network is labeled as either non-Sybil or Sybil. Since initially only partial
nodes are labeled as honest, the classification process proceeds by searching for specific
characteristics (e.g, mixing time) that can discriminate honest nodes from Sybils. Hence,
Sybil defense can be reformulated as a partially labeled classification problem as follows:

Given:

• An affinity graph G = (V,E), where nodes in V denote identities and edges in E
reflect the trust relationship between users in the social network.

• Binary class labels Y = {+1,−1} defined on V, where +1 denotes honest label and
−1 denotes Sybil label.

• A set of nodes H0 with honest labels (called honest seeds). We have, f(vi) = +1,∀vi ∈
H0 , where f is the labeling function.

Output: The mapping/labeling function f : V → Y from nodes to class labels.
As discussed in Section 2.2, the problem of partially labeled classification has been stud-

ied in the semi-supervised learning field Zhu (2006). Given a small portion of data points
associated with class labels (called training set), transductive inference is applied to infer
those unlabeled data by incorporating the intrinsic manifold structure. However, existing
semi-supervised classification algorithms are not obviously applicable to detect Sybil nodes
since no Sybil label information is given to supervise the Sybil classification problem.

Under the partially labeled classification framework, our focus in this paper is to provide
effective strategies to enhance the robustness of current topological anti-Sybil designs and
improve their detection accuracy. Inspired by the work of Mohaisen et al. Mohaisen et al.
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(2011), which leverages trust information to improve the performance of SybilLimit, we
investigate topological features embedded within social graphs to strengthen current Sybil
defense mechanisms. In Section 4, we discuss how to exploit the local structural similarity
to address the target attack problem. In Section 5, a graph regularization technique, based
on the relational property, is developed to smooth the detection results of existing Sybil
defense approaches.

4. Graph Pruning

Most topological Sybil defense mechanisms rely on a basic assumption that one or more
honest nodes are known in advance. These nodes (also known as honest seeds) are uti-
lized for identity verification and partitioning the entire network into non-Sybil and Sybil
regions. However, once honest seeds are compromised by a set of disruptive nodes, these
defense systems would under-perform Cao et al. (2012). Indeed, such attacks may be easily
accomplished by an adversary through establishing as many social connections as possible
with high-degree honest nodes. This type of attack is called target seeding attack or target
attack. To the best of our knowledge, no solution has been proposed in the literature to
solve this problem.

In this paper, we present a graph pruning technique that effectively reduces the impact
from target attacks by enforcing that the number of attack edges around honest seeds is
few. This avoids the situation where a large number of Sybil nodes are accepted due to
their close connection to honest seeds, hence evade Sybil detection. This strategy leverages
local structural similarity underlying social networks. Intuitively, corresponding to the
fast mixing and inherent trust relationship assumptions, we speculate that the similarity
between benign nodes and honest seeds are much higher compared to the similarity between
benign nodes and Sybil nodes. Thus, by eliminating edges with low-similarity values (i.e.,
wij ≤ Ts), where wij is the similarity of nodes i and j and Ts is the threshold to determine
whether one edge should be trimmed, the number of attack edges is expected to be reduced.
Different structural similarity metrics Mohaisen et al. (2011) in social networks have been
proposed for measuring the strength of social links and predicting future interactions, such
as number of common friends, cosine similarity, Jaccard similarity, etc. We choose the
proximity metric of number of common friends to measure the local structure similarity in
the graph pruning process since 1) it is simple and intuitive; 2) it well reflects the trust
level between two users; 3) it is difficult for an adversary to simultaneously trick an honest
node and its neighbors into trusting it.

In our method, pruning is firstly performed in local regions around honest seeds. Its
goal is to prevent honest seeds and their nearby nodes in the network from being tricked
by a set of disruptive nodes. On the other hand, pruning should not have much impact
on honest users. This is partially determined by the size of the pruned region, which is
denoted by Tp, the maximum diameter between honest seeds and the pruned nodes. The
pruned network shall thus satisfy the following two requirements: 1) it should minimize
attack edges nearby honest seeds; 2) it shall also retain as many honest nodes as possible
because some benign nodes may be disconnected from the entire graph during the pruning
process. We can balance the trade-off by adjusting two parameters–pruning diameter Tp
and similarity threshold Ts. Specific parameter choices will be examined in our experiments.

194



Sybil Detection via Graph Pruning and Regularization

Algorithm Graph Pruning
Require: G, graph G = (V,E); H0, set of honest seeds; Ts, similarity threshold; Tp, pruned diameter
Ensure: Gprune, pruned graph

// Defining and Initializing Notations

1: Initially all edges in graph G have weight 1
2: VTp : Set of nodes within social diameter Tp from H0

3: Initially set VTp = {H0}
4: ETp : Set of edges in G connecting nodes in VTp

5: GTp : Graph to be pruned
6: Gstatic: Graph that will not be pruned

// Identifying Region to be Pruned

7: for all Node v ∈ V do
8: if Distance(v,H0) < (Tp + 1) then
9: Add v to VTp

10: end if
11: end for
12: ETp = {(u, v) | if u ∈ VTp or v ∈ VTp}
13: GTp = (VTp , ETp )
14: Gstatic = G−GTp

// Pruning

15: Define W as the new weight matrix of GTp

16: for all pair of connected nodes (u
′
, v

′
) ∈ GTp do

17: W
u
′
v
′ = number of common friends of u′ and v′

18: end for
19: Let G

′
= GTp

20: for each pair of connected nodes (u
′
, v

′
) ∈ GTp do

21: if W
u
′
v
′ ≤ Ts then

22: Delete edge (u
′
, v

′
) from G

′

23: end if
24: if u

′
or v

′
is isolated then

25: Delete the node from G
′

26: end if
27: end for
28: Return Gprune = Gstatic ∪G

′
;

For those disconnected identities during the pruning process, we initially mark them as Sybil
accounts. Their class labels will be further refined in the regularization phase that will be
introduced in Section 5.

The detailed pruning process is described in Algorithm 1. First, the region GTp , which
is within the pruning diameter (Tp) from the honest seeds (H0), is identified as the graph
to be pruned (Lines 1-13). The rest of the graph (Gstatic) will stay unpruned (Lines 14 and
28). Then, if the number of common friends between any two connected nodes in GTp is
smaller than or equal to the similarity threshold (Ts), the edge between the two nodes is
deleted (Lines 15-23). The final step is to remove all isolated nodes in GTp and label them
as Sybil nodes (Lines 24-26).

5. Graph Regularization

As mentioned in Sections 2.1 and 3, the existing Sybil defense mechanisms suffer from high
false detection rates due to that the fast mixing assumption does not hold in real world
social networks, and criminal accounts are difficult to detect within sophisticated structures
Yang et al. (2012); Ghosh et al. (2012). Many studies Taskar et al. (2001); Neville and
Jensen (2007) have shown that social networks conform to the relational property. This
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property is a phenomenon that linked or neighboring nodes tend to have the same class
labels in a network. Also, it has been demonstrated by those studies that this property
can be utilized to improve classification performance. Similarly, the key to the graph-based
regularization approaches in the semi-supervised setting is the cluster assumption Zhu et al.
(2003), which is consistent with the relational property. The cluster assumption refers to:
1) nearby points are likely to have the same label (local consistency); 2) nodes in the dense
region are likely to have the same label (global consistency). Hence, in the semi-supervised
setting, the ultimate goal is to seek for a classification function, which not only minimizes
classification errors on the labeled data but also should be consistent with the intrinsic
structure on unlabeled data. Inspired by this way of modeling the relational property, we
develop a domain-specific graph regularization method for Sybil defense.

5.1. Objective Function

Given the initial labeled nodes (classified by the existing Sybil defense mechanisms), a set
of honest seeds and an affinity graph, the key to our graph regularization method is to find
out an objective function f that maps each node in the graph into the class space {+1,−1}
with the minimal classification error. The objective function consists of two parts. The first
part is a smoothness score that measures local variations between nearby nodes, and the
second part is a fitting score that penalizes the difference between the predicted labels and
initial node labels.

Firstly, to be consistent with the intrinsic geometry of the data, i.e. the relational
property, the labeling function f should not change sharply between correlated nodes. This
can be well captured by the following formula:

D1(f) = fTLf =
∑

(i,j)∈E

wij ‖ fi − fj ‖2 (1)

where D1(f) denotes the smoothness constraint, measuring the sum of local variations, i.e.,
the overall changes of the labeling function between nearby points. For a good function f ,
D1(f) should be small. In this representation, L = D −W is the graph Laplacian where
W = [wij ] is the weight matrix, and wij is the similarity value of pairwise connected nodes i
and j. D is a diagonal matrix with Dii = Σjwij . To guarantee the convergence property, the
edge weight wij is calculated using the Gaussian kernel function with width σ Zhu (2006).
Note that structure-based Sybil defense mechanisms are designed based on the inherent
trust relationship within social networks. Hence we treat all existing edges equally. That
is, if nodes u and v are connected, the edge weight for (u, v) is 1 and the weight matrix is
set corresponding to the adjacency matrix A = [aij ] of the social graph.

Secondly, to be consistent with the initial labeling, the labeling function f should not
change too much from the initial labels Ĉ. So, we have:

D2(f) =
n∑

i=1

‖ fi − Ĉi ‖2 (2)

D2(f) is the fitting constraint, which penalizes the deviation between predicted labels and
initial labels. In our design, the fitting score covers all vertices. Note that, some honest

196



Sybil Detection via Graph Pruning and Regularization

seeds are given in advance for the Sybil classification process. These specific nodes are hard
labeled comparing to others. Thus, D2(f) can be represented as the sum of the following
two components:

D2(f) =
∑

i∈(V−H0)

‖ fi − Ĉi ‖2 +α ∗
∑
i∈H0

‖ fi − Li ‖2 (3)

H0 indicates the set of honest seeds, which are hard labeled nodes. Li is set to be class label
+1. Similarly, V −H0 is the set of unlabeled data before detection denoted as soft labeled
nodes. Ĉi is the initially predicted label by a selected Sybil defense mechanism. Moreover,
α is the parameter to measure different importance of these two terms.

Combing Equations (1) and (3), we can derive the discrete objective function for our
domain-specific graph regularization method as follows:

J(f) =
1

2

n∑
i=1

∑
j:vi∈N(vi)

wij ‖ fi − fj ‖2 +
1

2
λs

∑
i∈(V−H0)

‖ fi − Ĉi ‖2 +
1

2
λh
∑
i∈H0

‖ fi − Li ‖2

(4)

where N(vi) represents the neighbouring nodes of vi. The trade-off between the smoothness
score and fitting score is captured by the positive regularization parameters λs and λh,
wherein λs is the soft regularization parameter and λh is the hard regularization parameter.
Obviously, λh ≥ λs. Through the experiments in Section 6, we show that the performance
of our graph regularization method is largely governed by the parameter λs.

Furthermore, to reduce the degree bias which may impact false positives from low-degree
benign nodes and false negatives from high-degree Sybil nodes Cao et al. (2012), we modify
the first term of f by dividing the degree for each node, which is represented as follows:

J(f) =
1

2

n∑
i=1

∑
j:vi∈N(vi)

wij ‖
fi
Dii
− fj
Djj
‖2 +

1

2
λs

∑
i∈(V−H0)

‖ fi − Ĉi ‖2 +
1

2
λh
∑
i∈H0

‖ fi − Li ‖2

(5)

where Dii denotes node i’s degree, and the same for Djj .
The optimal classification function f∗ can be obtained by minimizing the objective

function J(f):
f∗ = argminfJ(f) (6)

5.2. Derivation of the Objective Function

For simplicity, Equation (5) can be expressed as the following matrix form:

J(f) =
1

2
fTLf +

1

2
(f − f0)TΛ(f − f0) (7)

L is the normalized Laplacian matrix I −D−1/2AD−1/2, where I is the identity matrix and
A is the adjacency matrix of the social graph. Recall that if nodes i and j are connected,
their edge weight is 1, D is the diagonal matrix, and Dii denotes the node i’s degree. f0
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denotes the initial class label combining both the hard and soft labels. Λ is a diagonal
matrix and can be represented as:

Λ(i, i) =

{
λs if i ∈ V −H0

λh if i ∈ H0
(8)

To find the optimal classifier, the objective function J should be minimized by explicitly
taking its derivatives with respect to the f ’s and setting them to zero. Differentiating J(f)
with respect to f , we have

∂J

∂f
|f=f∗ = Lf∗ + Λ(f∗ − f0) = 0 (9)

which derives a closed-form solution:

f∗ = (L+ Λ)−1Λf0 (10)

5.3. Sybil Classification

Since f∗ obtained in Equation (10) is a real-value function, the final class label C∗v for a
vertex v ∈ V is given by the following formula:

C∗v =

{
+1 if f∗v > 0
−1 if f∗v ≤ 0

(11)

6. Experimental Evaluation

We perform two sets of experiments to evaluate the effectiveness of our graph pruning and
regularization techniques by verifying whether they can enhance the detection accuracy on
existing Sybil defense mechanisms under both target attacks and random attacks.

6.1. Datasets

All our experiments are conducted on four datasets from popular online social networks, rep-
resenting the honest regions. Table 1 summarizes the properties of those datasets. Among
them the Facebook graph Gjoka et al. (2009) is a connected component sampled using the
similar sampling strategy in Cao et al. (2012). The rest of the social graphs have been
commonly utilized to evaluate existing Sybil defense mechanisms1.

Table 1: Dataset of social graph used in experiments
OSN Node Edge Average Degree CC

Facebook 9,943 60,870 19.88 0.221
AstroPh 18,772 396,160 22 0.3158
HepTh 9,877 51,971 5.67 0.2734

WikiVote 7,115 103,689 3 0.1250

It is widely acknowledged that obtaining an annotated Sybil attack dataset is extremely
difficult. Thus, following the common practice in the literature Danezis and Mittal (2009);
Tran et al. (2011); Cao et al. (2012), we also simulate attack regions. With additional

1. http://snap.stanford.edu/data/
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Figure 1: Performance comparison of the four Sybil defense schemes after applying graph pruning against
the ER-target attack where OriNet denotes original network, and PrunNet1, PrunNet2, Prun-
Net3 correspond to pruned graphs by setting Tp = 1, Tp = 2 and Tp = 3 respectively.

efforts, we consider two types of attacks: random attacks and target attacks. For each type
of attacks, we also consider two types of topological strictures for the attack regions, the
random graph (the ER model) and the scale-free graph (the PA model). Specifically, for each
attack type, we first generate m nodes as Sybil supporters, to establish social connections
with nodes in the honest region. Then these dummy supporters introduce ψ additional Sybil
nodes to form ER or PA topology among themselves with the average degree of d = 10.
Note that this setting has been widely adopted in the literature Danezis and Mittal (2009);
Tran et al. (2011); Cao et al. (2012). The social links between non-Sybil and Sybil regions
are called attack edges. Each experiment is repeated 100 times and the average is computed
to obtain statistically significant results.

6.2. Benchmark Approaches

Four representative structure-based Sybil defense mechanisms, Gatekeeper Tran et al. (2011),
SybilLimit Yu et al. (2008), ACL Alvisi et al. (2013) and SybilRank Cao et al. (2012), are
chosen to validate the effectiveness of our techniques. Gatekeeper and SybilLimit adopt
the random walk approach to directly partition the social graph into non-Sybil and Sybil
regions, while ACL and SybilRank utilize power iteration and degree-normalization tech-
niques, and output a ranked list according to the trustworthiness of each node. Nodes with
the lowest trustworthiness are highly likely to be Sybils. The key difference between ACL
and SybilRank is that the latter adopts an early-termination technique during the propa-
gation process while the former implements its trust propagation process iteratively until
convergence.

For honest seeds selection, we use the same honest seeds for all the Sybil defense mech-
anisms in the experiments. For SybilLimit that uses only one honest seed, we randomly
choose one node from the top-50 benign nodes with the highest degree. For other mecha-
nisms which require multiple seeds, we choose all the 50 benign nodes, including the same
node used in SybilLimit.

6.3. Evaluation Metrics

We use three metrics to measure the performance of our proposed techniques. One is the
false detection rate including false positive and false negative, which correspond to the
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misclassified number of benign and Sybil nodes respectively. To better assess the quality
of node ranking, the area under the Receiver Operation Characteristic (e.g. AUC) is used
as the evaluation metric. The AUC curve exhibits the probability that a random non-Sybil
node is ranked higher than a random Sybil node. The AUC value of 1 represents a perfect
classification results; 0.5 represents a random guess; and -1 represents the worst results.

6.4. Effectiveness against Target Attacks

In this section, we present the experimental results on the performance of our proposed
methods upon four different Sybil defense mechanisms against target attacks, and the ef-
fectiveness of our regularization model with different parameters on the Facebook dataset.

6.4.1. Performance of Graph Pruning against Target Attacks

To emulate the target attack, we let Sybil supporters intentionally connect to the top 1000
benign nodes which are the closest to the honest seeds. We set the number of attack edges
to be 200 and let the size of additional Sybil nodes ψ vary from 100 to 1000. Figure 1
summarizes the performance comparison of the four Sybil defense mechanisms after graph
pruning in terms of false positive, false negative and AUC against the ER-target attack on
the Facebook dataset. Similar results are obtained on the other three datasets. Specifically,
we choose Ts = 1 for our experiments as it is difficult for an adversary to fool both a real
user and his/her friends.

First, we can observe that SybilRank performs the best against the ER-target attack
before pruning, followed by ACL, SybilLimit, and Gatekeeper, which is consistent with those
illustrated in Cao et al. (2012). In addition, as shown in Figure 1 (c1-c3) and (d1-d3), both
ACL and SybilRank achieve improved performance after the appropriate pruning process,
and the best performance is reached when the pruning threshold Tp = 2. In this case,
few benign nodes are disconnected from the network, which largely reserves the original
network structure. However, when Tp is increased to 3, the AUC curves for both ranking
methods exhibit instability and become even worse than before pruning. By examining
the false positive and false negative, we found that by setting Tp = 3, more than 900
benign nodes are isolated from the non-Sybil region. In contrast, with the increment of
additional Sybil nodes, the false negative curves monotonously increase. We speculate the
reason is that although attack capacity is largely reduced due to the pruning procedure,
many Sybil nodes can take priority to be accepted over those disconnected benign nodes.
In addition, SybilRank outperforms all other approaches in terms of resistance to target
attacks. Although ACL is also designed relying on trust propagation, SybilRank achieves
better detection accuracy due to its early-termination strategy.

Gatekeeper performs the worst on defending against target attacks, because it relies on
a strong assumption–expander-like, which requires tight connectivity among the non-Sybil
region so that a breadth-first search starting from a benign node will highly likely stop at
a non-Sybil node after O(log(n)) steps. However, such assumption is not always true in
real-world social networks. SybilLimit performs slightly better than Gatekeeper, but still
suffers from high false positive and false negative. As illustrated in Figure 1 (a1-a3) and
(b1-b3), when varying the pruning threshold Tp from 1 to 3, the false positive increases
by a moderate percentage but the false negative decreases drastically. Hence, the overall
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Table 2: Performance of graph pruning and regularization in different social graphs against PA-target
attack, where GP and GR represent graph pruning and regularization respectively, and GR is
performed by setting λh = 0.1, λs = 0.05.

Dataset
WikiVote HelpTh Facebook AstroPh

FP FN AUC FP FN AUC FP FN AUC FP FN AUC
GK(Ori) 0.086 0.738 0.588 0.262 0.506 0.615 0.208 0.266 0.763 0.372 0.146 0.741

GK(Ori+GP) 0.095 0.388 0.779 0.329 0.094 0.789 0.244 0.056 0.850 0.380 0.028 0.796
GK(Ori+GP+GR) 0.052 0.138 0.905 0.140 0 0.930 0.073 0 0.967 0.149 0 0.926

SL(Ori) 0.021 0.102 0.939 0.077 0.736 0.594 0.089 0.514 0.699 0.030 0.663 0.654
SL(Ori+GP) 0.025 0.105 0.935 0.130 0.403 0.734 0.177 0.072 0.875 0.044 0.121 0.918

SL(Ori+GP+GR) 0 0 1 0.065 0.387 0.904 0.038 0 0.982 0.010 0 0.995

ACL(Ori) 0.003 0.017 0.992 0.086 0.738 0.588 0.045 0.444 0.756 0.039 0.699 0.631
ACL(Ori+GP) 0.006 0.039 0.978 0.055 0.388 0.779 0.016 0.163 0.910 0.017 0.307 0.838

ACL(Ori+GP+GR) 0.001 0 1 0.052 0.138 0.905 0.015 0 0.992 0.017 0 0.991

SR(Ori) 0 0 1 0.080 0.680 0.618 0.034 0.337 0.815 0.032 0.570 0.699
SR(Ori+GP) 0.006 0.039 0.978 0.040 0.344 0.808 0.007 0.074 0.959 0.006 0.102 0.946

SR(Ori+GP+GR) 0.006 0 0.997 0.030 0.043 0.964 0.003 0.007 0.995 0.006 0.006 0.994
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Figure 2: Performance after applying both graph pruning and regularization under the ER-target Attack.

quality is enhanced, which is represented by the AUC curve. Interestingly, it seems that
Gatekeeper and SybilLimit perform the best under the target attacks by setting Tp = 3
in terms of AUC curve. However, in this case, the original network structure is damaged
greatly since a large fraction of honest nodes are disconnected from the social graph. Thus,
we choose the pruning diameter such that both the preservation of original network and
detection accuracy are high. In the following experiments, we set the pruning diameter Tp
to 2 for the Facebook dataset. Furthermore, we can see that all Sybil defense mechanisms
show the similar trend that the detection performance on the original graph improves as the
number of Sybil nodes increases. The reason is that the small cut between non-Sybil and
Sybil regions becomes increasingly narrow and distinct as the Sybil group size gets larger,
which makes the Sybil group more distinguishable from the non-Sybil region.

6.4.2. Performance of Graph Regularization against Target Attacks

In the following experiments, we investigate the impact of graph regularization on the
performance of the Sybil defense mechanisms. Note that graph regularization is always
employed after performing Sybil detection on pruned graphs.

An important factor for graph regularization is to determine the regularized parameters
(λh, λs). Figure 2 shows the overall performance of the four Sybil defense mechanisms with
graph pruning and regularization against ER-target attack on the Facebook dataset. We
have the following observations. First, we can see that all the four Sybil defense mechanisms
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Figure 3: Performance after applying both graph pruning and regularization under the ER-random attack.

achieve more consistent and better performance in both false positive and false negative after
the pruning and regularization processes, compared to their original designs. Especially,
SybilRank, after graph pruning and regularization, performs the best and its AUC value is
close to 1 in all scenarios, implying that such a framework can be seen as an ideal choice for
Sybil nodes detection. Besides, the detection rates of Gatekeeper and SybilLimit are also
significantly improved, where the false positive is decreased to 500 in each scenario and the
false negative is close to 0 when the Sybil size is larger than 500. It confirms that utilizing
the relational property of social topologies can significantly improve the detection accuracy
for existing structure-based Sybil defense mechanisms.

Second, from all the results, it can be seen that Sybil classification performs worst when
λh = 0.1 and λs = 0. In this case, due to the absence of fitting constraint on soft labeled
data, the Sybil classification task tends to degenerate case where all the Sybils are assigned
with honest label +1. Thus, the AUC is meaningless here since this metric is a graphical
approach for displaying the tradeoff between true positive rate and false positive rate of a
classifier. With fixed λh, we increase λs to 0.05. It can be seen that the numbers of mis-
classified honest and Sybil nodes decrease greatly, demonstrating that graph regularization
can significantly improve the detection accuracy. When λs increases to 0.1, the false negative
continuously decreases but the false positive increases. We speculate the reason is that pure
Sybil defense mechanisms depend on the fast mixing assumption. In addition, although the
defense ability against target attacks can be improved through graph pruning, some honest
nodes which are loosely connected to the rest of graph may be mis-classified. Both of them
cause mis-classification. A higher value of λs indicates that the labeling function f strongly
relies on the predictive results which include many spurious labels. Therefore, to minimize
the cost function, nodes which are located in the periphery of graph and organized into
small but tightly-connected clusters tend to be labeled as Sybil.

Furthermore, we evaluate the effectiveness of our methods upon Sybil defense mecha-
nisms on the four datasets. Table 2 presents the representative results against PA-target
attack. For a fair comparison, we take the fraction of mistakenly classified non-Sybil and
Sybil nodes to be false positive and false negative respectively due to the different sizes of
these four datasets. As aforementioned, we intend to choose a suitable pruning threshold
such that both the coverage of original network and detection accuracy are high. Hence,
Tp is set to 1 for WikiVote, and 2 for other social graphs. It is worth noting that on these
datasets, current popular Sybil defense mechanisms can also be improved by our pruning
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and regularization techniques under PA-target attack and obtain relatively high detection
accuracy. For WikiVote, we find that graph pruning does not work since both the false
detection rates and AUC get worse than being only performed on the original graph. This
result is due to the extremely sparsity property underlying the WikiVote topology, reduc-
ing capability of target attacks. Thus, Sybil detectors can perform well to combat target
attacks on this social graph. On another hand, graph pruning will damage the network
structure somehow, leading to the disconnection of a fraction of honest nodes with lower
degree. Nevertheless, our graph regularization method can effectively address such a prob-
lem incurred by pruning and allow these Sybil defense mechanisms to consistently perform
well, which can be observed from the AUC metrics in Table 2. Besides, Gatekeeper and
SybilLimit suffer from high false positive and false negative on the original social networks.
After the pruning and regularization processes, they are able to achieve consistently much
better results similar to SybilRank and ACL. These results confirm the effectiveness of our
proposed strategies in enhancing the Sybil detectors.

6.5. Effectiveness against Random Attacks

We have shown that our proposed graph pruning and regularization techniques can signifi-
cantly improve Sybil detection accuracy under target attacks. In the following experiments
we investigate the effectiveness of the techniques against random attacks.

We let Sybil supporters randomly connect to the non-Sybil region starting from 200
attack edges and add additional 1000 fake nodes into the network. Then we gradually in-
crease the number of attack edges to a large number 1000, so that the ability of the Sybil
defense mechanisms degrades significantly. Figure 3 shows the performance comparison of
Gatekeeper, SybilLimit, ACL and SybilRank under ER-random attacks by incorporating
our pruning and regularization methods, respectively. It can be seen that the detection ac-
curacy decreases slightly when incorporating the graph pruning process. However, with the
graph regularization technique, the performance consistently outperforms the pure defense
mechanisms. The similar results are also obtained on the other three data sets, but are
not presented due to the space limitation. to know whether there exist target attacks in a
particular real-world online social network, our two methods work as one package that can
effectively enhance the performance of Sybil defense regardless of attack types.

7. Conclusion

In this paper, we focused on enhancing the performance of existing structure-based Sybil
defense mechanisms. First, we provided a novel insight that Sybil defense can be modeled as
a partially labeled classification problem. Then, based on this understanding, graph pruning
was proposed to reduce attacking capacity of target attacks by exploiting the local structural
similarity among nodes, leading to the improved robustness of Sybil detection mechanisms.
A domain-specific graph regularization technique was also proposed to enhance Sybil clas-
sification results based on the relational property in social networks. Experimentation on
popular online social network datasets confirms that our techniques can significantly im-
prove the detection accuracy over the four representative Sybil defense mechanisms.

203



Zhang Zhang Fung Xu

References

Lorenzo Alvisi, Allen Clement, Alessandro Epasto, Silvio Lattanzi, and Alessandro Panconesi. Sok: The evolution of
sybil defense via social networks. In IEEE Symposium on Security and Privacy (SP), pages 382–396, 2013.

Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts. In ICML, 2001.

Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos, Jorge Leŕıa, Jose Lorenzo, Matei Ripeanu, and Konstantin
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