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Abstract

Policy gradient algorithms are widely used in reinforcement learning problems with con-
tinuous action spaces, which update the policy parameters along the steepest direction of
the expected return. However, large variance of policy gradient estimation often causes
instability of policy update. In this paper, we propose to suppress the variance of gradient
estimation by directly employing the variance of policy gradients as a regularizer. Through
experiments, we demonstrate that the proposed variance-regularization technique combined
with parameter-based exploration and baseline subtraction provides more reliable policy
updates than non-regularized counterparts.

Keywords: Reinforcement learning; Policy gradients; Variance-regularization.

1. Introduction

Reinforcement learning (RL), which studies how an agent ought to act in an unknown
environment so as to maximize the cumulative rewards (Sutton and Barto, 1998), is a
powerful machine learning paradigm for sequential decision making. Two popular branches
of RL research are: policy iteration and policy search.

Policy iteration iteratively goes through the value function estimation based on the
current policy and policy updates based on the estimated value function (Kaelbling et al.,
1996). It was demonstrated to work well in many real-world problems, particularly in
those with discrete states and actions (Tesauro, 1994; Abe et al., 2010). Policy iteration
can also handle continuous states via function approximation (Lagoudakis and Parr, 2003).
However, dealing with continuous actions is not straightforward due to the difficulty of
finding a maximizer of the value function with respect to continuous actions.

Policy search can overcome the above limitation by directly learning the policy pa-
rameter without using the value function. Consequently, it has been widely applied to
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more complex problems with continuous action spaces (Ng and Jordan, 2000; Abbeel et al.,
2007; Xie et al., 2012). Among policy search methods, the policy gradient (PG) method
(Williams, 1992; Sehnke et al., 2010) demonstrated remarkable successes in robotics (Peters
and Schaal, 2006; Deisenroth et al., 2013; Sugimoto et al., 2014).

Nevertheless, the PG method still has a weakness that estimation of policy gradients
can be unreliable in practice. In order to reduce the variance of gradient estimation, useful
techniques have been proposed, including, the natural gradient (Kakade, 2002; Peters and
Schaal, 2008), parameter-based exploration (Sehnke et al., 2010; Miyamae et al., 2010), and
the optimal baseline (Weaver and Tao, 2001; Greensmith et al., 2004; Zhao et al., 2012).
While all of these methods were shown to stabilize the policy update to some extent, none
of them directly take the variance of gradient estimates into account in the objective. Thus,
further stabilization is necessary to efficiently solve challenging RL problems.

In this paper, we explore a more explicit way for further variance reduction, by directly
employing the variance of policy gradients as a regularizer. Our idea is motivated by risk-
sensitive RL (Mihatsch and Neuneier, 2002), which includes an additional risk term, i.e.,
the variance of the return, in the objective; for risk-sensitive RL, see also return density
estimation (Morimura et al., 2010), the risk-sensitive PG method (Tamar et al., 2012),
the actor-critic method (Prashanth and Ghavamzadeh, 2013), and the temporal difference
method (Tamar et al., 2013). However, our goal is not to consider the risk, but to improve
the stability of PG algorithms so that policy updates can be performed more reliably. Thus,
we design a new framework for PG algorithms by directly incorporating the variance of
policy gradients in the objective function. The proposed variance-regularized framework can
naturally increase the expected return, but also reduce the variance of gradient estimates.

In practice, we combine our variance-regularization technique with parameter-based
exploration (Sehnke et al., 2010; Miyamae et al., 2010) and the optimal baseline (Weaver
and Tao, 2001; Greensmith et al., 2004) for further variance reduction. More specifically, we
implement a state-of-the-art PG method, policy gradient with parameter based exploration
(PGPE) with optimal baseline subtraction (Zhao et al., 2012), in our proposed variance-
regularized framework. The effectiveness of our proposed approach is demonstrated through
experiments using benchmark and real-world problems.

2. Framework and Formulation

In this section, we introduce the framework of policy gradients and review various stabi-
lization techniques.

2.1. Policy Gradient Algorithm
Let us consider a Markov decision process (MDP) specified by

(S?A’PTWPI?T”Y)’
where

e S is a set of (possibly continuous) states,

o A is a set of (possibly continuous) actions,
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e Pr(siy1|st,ar) is the transition probability density from current state s; to next state
St+1 when action a; is taken,

e Pj(s) is the probability density of initial states sq,

o (8¢, a4, 8441) is an immediate reward for transition from current state s; to next state
si+1 by taking action ay,

e 0 <y <1 is the discount factor for future rewards.

Let m(a|s, @) be a stochastic policy of an agent parameterized by @, which is the condi-
tional probability density of taking action a € A at state s € S. Let h := [s1,a1,...,S7,ar]
be a trajectory, which is a sequence of states and actions with finite length T'. The discounted
cumulative rewards along h, called the return, is given by R(h) := Zthl Ve (sg, ag, Si41)-
The expected return for policy parameter 6 is defined by J(0) := Eg[R(h)], where Eg de-
notes the expectation over h with respect to p(h|@) = p(s1) Hthl p(St41|8¢, ar)m(at|se, 0).
The goal of RL is to find optimal policy parameter @ that maximizes the expected return
J(0):

0" == arg max J(0). (1)

In the policy gradient method (Williams, 1992), the policy parameters are learned via
the gradient ascent: 6 «— 0 + eV J(0), where £ > 0 is the learning rate, and the gradient
of the expected return with respect to the policy parameter is given by

Vo (0) = Eo[R(h)Vologp(h|6)). (2)

However, this algorithm is often unreliable due to the large variance of the policy gradi-
ent estimator particularly when the trajectory length T is large, which is caused by the
stochasticity of policies (Zhao et al., 2012; Deisenroth et al., 2013).

2.2. Parameter-Based Exploration

To mitigate the large variance problem, an alternative method called policy gradients with
parameter based exploration (PGPE) was proposed (Sehnke et al., 2010). The basic idea of
PGPE is to use a deterministic policy and introduce stochasticity by drawing parameters
from a prior distribution. More specifically, parameters are sampled from the prior distri-
bution at the start of each trajectory, and thereafter the controller is deterministic. Thanks
to this per-trajectory formulation, the variance of the gradient estimator in PGPE does not
increase with respect to trajectory length 7' (Zhao et al., 2012).

PGPE uses a deterministic policy with typically a linear architecture: a = 0'¢(s),
where ¢(s) is an /-dimensional basis function vector, and | denotes the transpose. The
policy parameter 6 is drawn from a prior distribution p(8|p) with hyper-parameter p.

The expected return in the PGPE formulation is defined in terms of expectations over
both h and € as a function of hyper-parameter p: J(p) := E,[R(h)], where E, denotes
the expectation with respect to p(h,8|p) = p(h|0)p(@|p). In PGPE, the hyper-parameter
p is optimized so as to maximize J(p), i.e., the optimal hyper-parameter p* is given by
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*

p* := argmax, J(p). The gradient method is used to find p*: p «— p+¢eV,T(p), where
the gradient of the expected return with respect to p is given by

VT (p) = Ep[R(R)V ) log p(6]p)]. 3)

In practice, the expectation included above is estimated from data samples collected at the
current iteration: D = {(0,, h,)}2_,, where each trajectory sample h,, is drawn indepen-

dently from p(h|6,) and parameter 8,, is drawn from p(8,|p). Then the gradient of the
expected return can be estimated by using collected samples D as
1N
VT (p) = > Vplog p(6n|p) R(hn). (4)
n=1
The Gaussian distribution with hyper-parameter p = (n,7) is often used as a policy
prior (Sehnke et al., 2010), where 7 is the mean vector and 7 is the vector consisting of the
standard deviation in each element:
0. —n)2
exp <_(z772)> _ (5)

p(Bilpi) = =

1
TiN 21

Then the derivatives of log p(8|p) with respect to n; and 7; are given as follows:

0;i —ni
Vy, log p(0]p) = T277 ;

0i —m)* — 17
vn logp(e\p) = (7,77_231

i
2.3. Baseline Subtraction

The gradient estimation can be further stabilized by subtracting a baseline b (Zhao et al.,
2012):

N
~ 1
VoJ'(p) = N > (R(hy) = b)V 5 10g p(6,]p).
n=1
The optimal baseline is given by
b* = arg mbin Varp[ijb(p)}, (6)
where Var, denotes the trace of the covariance matrix, i.e., for A = (Aq,... JADT,

Var,[A] = tr(E,[(A — E,[A])(A ~ E,[A])")

l
= > (4 — E,[A)%). (7)
=1

Solving Eq. (6) for b gives the optimal baseline for PGPE:

Ep[R(h)[|V, log p(8]p)|]
Ep[[Vplogp(8]p)|?]

which is approximated from collected samples D as

& Yont R(hn) [V log p(Balp)
¥ 2onet 1V log p(Bn ) |2

b* =

b=
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3. Variance-Regularization for Policy Gradients

PGPE with baseline subtraction was demonstrated to provide the state-of-the-art perfor-
mance (Zhao et al., 2012). However, it can still be unstable in challenging RL problems.
In this section, we propose a more explicit method to reduce the variance of the gradient
estimator.

Our basic idea is to regularize the objective function as

d(p) = T(p) — \V(p), 9)

where A > 0 is the regularization parameter and V' (p) is the variance of the gradient of the
return with respect to p(h, 8|p):

V(p) = Var,[R(h)V, log p(0|p)].
Then the gradient update rule is given as
p— p+eV,2(p), (10)
where the gradient is given by
Vp®(p) =VpT(p) — AV, V(p).
According to Eq. (7), the variance of the gradient of the return can be expressed as

V(p) = Vary,g)0) [R(h)V 5 log p(6]p)]
l

l
= B [(R(h)V,, logp(8]p))2] — > (E,[R(1)V,, log p(8]p)))>
i=1 =1
l

l
=Y Eol(R()V,, logp(8]p)*] = D (V. T ().
1=1

i=1
The gradient of V(p) with respect to p is the vector given by
VpV(p) = (vplv(p)v try Vpr(p))T

Below, we derive the ith element of the gradient of the variance regularization term:

v,V (p)
v, {E,l( <h>vpz log p(6]p))?] — (VT (p))%}
v, / / 2(9,,, log p(6]p))*p(h, 01| pi)Ahd0; — V(¥ . T (p))?

— [ [ (RD?129, 105 0(610) 3, log 61p)p(0,6103) + (Vo2 (619 *p(1, 1],

—2V,.J(p)V3,T (p)
=E,,[(R(1)*((V,, log p(8]p))” + 2V, log p(8]p) V3, log p(8]p))] — 2V, T (p)V5,T (p);
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where V,, 7 (p) is the gradient of the expected return with respect to p; given by

VeI (p) = Ep[V,, logp(6]p) R(h)], (11)
V%ij (p) is the second-order derivative of expected return with respect to p; given by
V3. T (p) = Eo[R(B)((V,, log p(6]p))* + V3, log p(8]p))], (12)

and V%i log p(6|p) is the second-order derivative of log p(6|p) with respect to p;.
Finally, the expectations are approximated by sample averages as

Vo ®(p) =V, T (p) = AV, V (p),

where
N 1 X
vpiv(p) = N Z[(R(hn))2((vpi 10gp(9n|p))3 + 2V, Ing(on’p)v,%i log p(0,|p))]
n=1
~2V,. 7 (p)VE T (p),

N
~ 1
vpij(p) = N E R(hn)vm logp(en’p),
n=1

N
V2.3(p) = - O RV, 08p(8ul0))? + V2, 105 p(6: )]
n=1

Note that, for the Gaussian prior expressed in Eq. (5), the second-order derivatives of
log p(@|p) with respect to 7; and 7; are given by

1
2
72 —3(0; — n;)?
V2, logp(6]p) = - (4 )

T

In practice, we may further subtract the baseline b from R(hy) in the above gradient
estimator, which will be experimentally demonstrated to achieve the best performance in
the next section.

4. Experimental Results

In this section, we experimentally evaluate the usefulness of our proposed method.

4.1. Illustration

First, we evaluate our proposed variance-regularized PGPE method through an illustrative
experiment. The state space is one-dimensional and continuous, and the initial state is
randomly chosen from the standard normal distribution. The action space is also one-
dimensional and continuous. The state transition function is defined as s;y1 = s¢ + a¢ + €,
where € ~ N(0,0.3%) is the noise and N(u,0?) denotes the Gaussian distribution with
mean g and variance o2. The reward function is defined as r = exp(—s%/2 —a?/2) + 1. The
following 4 methods are compared:
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Figure 1: Trajectories of parameter updates over 20 iterations.

PGPE: The plain PGPE method.

e PGPEpp: PGPE with the optimal baseline.

R-PGPE: PGPE with our proposed variance regularization.
e R-PGPEpg: PGPEpp with the proposed variance regularization.

We use the linear policy a = 0s for all methods. The initial prior mean 7 is chosen
randomly following the standard normal distribution, and the initial prior deviation 7 is
set at 1. The discount factor is set at v = 0.99, and the trajectory length T is set at
10. The regularization weight A in the variance-regularized methods (R-PGPE and R-
PGPEog) is initially set at A\g = 1075. Then A is increased by factor of 10 if policy search
is making progress, and otherwise \ is decreased by factor of 10. The range of A is kept in
[1072,1078] during the policy learning process. Note that higher regularization causes the
next optimization to stay closer to the current parameters. Thus, by adaptively adjusting
A, we can control the optimization close to the regions where the policy is better, or deviate
the regions where the policy does not make progress. The learning rate for PGPE and
PGPEop is set at ¢ = 1/|V,J (p)]|, and the learning rate for R-PGPE and R-PGPEqp is
set at € = 1/||V,®(p)|.

Parameter Trajectories First, we investigate how policy parameters change over 20
iterations. Here we observe three different parameter update trajectories by setting three
different starting points, where three different initial mean parameters are set at: n = —1.6,
n = —0.8, and n = —0.1, respectively, and the initial deviation parameter is set at 7 = 1. We
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Figure 2: Ilustration of one step policy parameter updates by 4 compared methods: the
green arrows denote PGPE, the black arrows denote R-PGPE, the blue arrows
denote PGPE@g, and the red arrows denote R-PGPEgg.

collect N = 10 trajectory samples at each policy update iteration for this demonstration.
Fig. 1 shows the contour of the expected return, where the maximum return is located at
the middle bottom.

From Fig. 1(a), we can see that plain PGPE cannot update the parameters to the
large return areas within 20 iterations, R-PGPE at least leads one trajectory to the middle
bottom as shown in Fig. 1(b), which indicates the usefulness of our proposed variance-
regularization. On the other hand, Fig. 1(c¢) shows that PGPEpp can find fairly reliable
update directions, but with some detours. Fig. 1(d) shows that R-PGPEogp gives stable and
reliable parameter update directions, where three trajectories converge to the middle bottom
within 20 iterations. This result illustrates the rapid convergence and reliable parameter
updates by our proposed variance-regularization combined with the optimal baseline.

Evaluation of Updated Parameters Next, we illustrate the expected return J(p) and
the variance of the gradient of return V' (p) in the objective function with the updated pol-
icy parameters by variance-regularized methods and non-regularized counterparts. In the
experiment, we fix the initial policy parameters pg at three different points: (—1.6,0.5),
(—0.8,0.5), and (—0.1,0.5), then update the policy parameters with one step by the com-
pared 4 methods. We collect N = 10 trajectory samples at each iteration to estimate the
gradients, then update parameters. The updated parameters by 4 compared methods are
shown in Fig. 2.

The expected return and the variance of the gradient of the return with updated parame-
ters p1, i.e., J(p1) and V(p1) are calculated by 100 newly collected trajectory samples. The
numerical results of J(p1) and V (p;) shown in Fig. 3 are obtained over 100 runs, where the
error bars denote standard errors. The results in Fig. 3(a) show that the expected return
with parameters updated by our proposed variance-regularized methods is larger than non-
regularized methods, i.e., p; learned by R-PGPEgp provides larger J(p1) than PGPEopg,
and also J(p1) obtained by R-PGPE is larger than plain PGPE. On the other hand, re-
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Figure 3: Average estimated expected returns and estimated variance of policy gradients of
the updated policy parameters over 100 runs. Error bars denote standard errors.
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25
Iteration

Figure 4: Average expected returns over 20 runs for the illustrative data. Error bars denote
standard errors.

sults in Fig. 3(b) show that the variance of the gradient of return V' (p;) with parameters
learned by variance-regularized methods is smaller than non-regularized methods. Overall,
this experiment demonstrates that our proposed variance-regularized methods can lead the
learned parameters to the regions with large returns but small variance of gradients, which
is consistent with our motivation.

Performance of Learned Policies The performance of each method is measured by the
average return over 20 runs. In each run, policy parameters are updated for 50 iterations.
At each iteration, we collect N = 2 trajectory samples to estimate the gradient of the
objective function. The expected return at each run is computed over 100 newly-drawn test
episodic samples (which are not used for policy learning).

The results are summarized in Fig. 4, showing that our proposed variance-regularized
methods outperform the plain counterparts, i.e., R-PGPE outperforms the plain PGPE and
R-PGPEg@p outperforms PGPEop. PGPE@pp works better than PGPE, which demonstrates
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Figure 5: Average expected returns over 20 runs for the mountain car task. Error bars
denote standard errors.

the advantage of the baseline subtraction technique. This well agrees with the results shown
in Zhao et al. (2012). The combination of the baseline subtraction technique with our
proposed variance-regularization achieves the best performance.

4.2. Mountain Car

Next, we evaluate our proposed method on the standard mountain car task, whose goal is
to guide the car to the top of the right-hill. The landscape of the two hills is described by
sin(3x).

The state space § is two-dimensional and continuous, which consists of the horizon-
tal position x[m] € [~1.2,0.5] and the velocity [m/s] € [~1.5,1.5], ie., s = (x,4)".
This is non-linearly transformed to a feature space via a basis function vector ¢(s). We
use 12 Gaussian kernels with mean ¢ and unit standard deviation as the basis functions,

¢(s) = exp (—M) , where the kernel centers ¢ are distributed over the following grid

points: {—1.2,—-0.35,0.5} x {—1.5,—0.5,0.5,1.5}. The action space A is one-dimensional
and continuous, which corresponds to the force applied to the car. Note that the force of
the car is not strong enough to climb up the slope to directly reach the goal. The dynamics
of the car are given by xy11 = z; + &4+1 At and 441 = T + (—9.8wcos(3:1;t) + & - ka'ct) At,
where a; is the action taken at time t. We set the problem parameters as follows: The
mass of the car w = 0.2[kg], the friction coefficient £ = 0.3, and the simulation time step
At = 0.1[s]. The reward +1 is given if the car achieves the goal, i.e., x; 11 > 0.45; otherwise,
the reward —1 is given. The initial state of the car is set at the bottom of the mountain
with velocity £ = 0. The discount factor is set at v = 0.95.

We again compare the same 4 methods: PGPE, PGPEqpgp, R-PGPE, and R-PGPEgg.
The regularization parameter \ is initially set at 107, and it is updated in the same way
as the previous experiment. Each element of the initial prior mean 7 is chosen randomly
following the standard normal distribution, and each element of the initial prior deviation
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T is set at 1. The learning rate for PGPE and PGPEog is set at ¢ = 1/||V,J (p)||, and for
R-PGPE and R-PGPEog is set at ¢ = 1/||V,®(p)].

We investigate average expected returns over 20 trials, where the expected return at
each trial is computed over 100 newly-drawn test episodic samples. In each trial, the policy
parameters are updated for 50 iterations, and the agent collects N = 10 episodic samples
with trajectory length T" = 40 at each iteration.

The experimental results are plotted in Fig. 5, showing that the variance-regularized
methods consistently outperform the non-regularized counterparts, i.e., R-PGPE outper-
forms PGPE and R-PGPEpg outperforms PGPEgg. The combination of baseline subtrac-
tion and variance-regularization, R-PGPEqgp, performs the best, demonstrating that our
proposed variance-regularized idea is promising.

4.3. Sumi-e Stroke based Rendering System

Finally, we apply our proposed variance-regularized PGPE method to the problem of stroke-
based rendering (Hertzmann, 2003) for non-photorealistic rendering in computer graphics.
The aim is to learn the optimal policy to control the brush agent to cover the given shapes
as smoothly as possible. This task involves high-dimensional and complex decision making,
so it is much more challenging than standard RL benchmark tasks such as the mountain
car.

We essentially follow the PG formulation for this stroke based rendering system proposed
in Xie et al. (2012), which is briefly explained below. The state space is expressed by six
features s = (w, ¢, d, k1, k2,1) ", where w € (—m, 7] denotes the angle of the velocity vector,
¢ € (—m, | means the heading direction of the footprint relative to the medial axis of the
drawing shape, d € [—2,2] is the ratio of the offset distance from the center of the footprint
to the nearest point on the medial axis over the radius of the footprint, k1 and k2 € (—1,1)
provide the relative curvatures of the nearest current point and the next point on the medial
axis, and | € {0,1} is the binary signal of the reverse drawing or not. The action space is
defined as a 3-dimensional vector, including lifting motion, dragging motion, and pushing
motion. Therefore, we deal with multi-dimensional action spaces in this task. The reward
measures the quality of the agent’s movement after taking an action, i.e., the smoother the
brush stroke is, the higher the reward is. If the brush is blocked by a boundary or the
brush is going backward to a region that has already been covered by previous footprints,
the reward is 0; otherwise, the reward is given by

1+ |k1()] + |ra(t)]
g® 50 ’

location posture

(8¢, at, Sp41) =

where the curvature |k1(t)| + |k2(t)| affects the difficulty of the current shape; El((fiation
indicates whether the agent moves out the region or moves backward from the correct
direction; E}()Qsture measures whether the agent moves smoothly.

The advantage of the optimal baseline over plain PGPE has been investigated throughly
in the previous research by Zhao et al. (2012), thus, we compare two best performed methods
on this real-world problem: PGPEgp and R-PGPEgpg. The regularization parameter \ is
initially set at 1075, and it is updated in the same way as the previous experiment. Each

element of the initial prior mean 7 is set at 0, and each element of the initial prior deviation
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Figure 6: Samples of real strokes in our training data set.
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Figure 7: Average expected returns over 20 runs for stroke based rendering. Error bars
show standard errors.

T is set at 1. The learning rate for PGPEop is set at e = 1/|V,J7 (p)]|, and for R-PGPEop
is set at € = 1/\|Vp<i>(p)||. The discount factor is set at v = 0.99.

We investigate average expected returns over 20 trials, where the expected return at
each trial is computed over 60 newly-drawn test episodic samples. In each trial, the policy
parameters are updated for 50 iterations, and the agent collects N = 60 episodic samples
with trajectory length 7' = 30 at each iteration. We provide a wide variety of shapes of
strokes to the agent as training examples, which are illustrated in Fig. 6. For the test
process, we evaluate the performance on the most difficult strokes, i.e., oblique strokes.
Fig. 7 depicts the progress of return over policy iterations which shows that PGPEop is
outperformed by R-PGPEqg, and R-PGPE@p achieves more reliable policy updates. Fig. 8
shows an example of stroke drawing by the policy obtained by R-PGPEgp. This indicates
that the proposed variance-regularized method produces smooth and natural brush strokes.
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(a) (b)

Figure 8: (a) Example of a simple stroke drawn by the policy learned by R-PGPEqpg. (b)
Its brush trajectory.

Figure 9: Rendered simple strokes in different colors and textures.

As illustrated in Fig. 9, the learned policy allows non-expert users to produce high-
quality brush strokes in their own personal styles, such as their favorite color, texture, and
shape. Fig. 10 shows a more complex drawing example by the policy learned by R-PGPEggp:
the logo of ACML2015. Fig. 11 shows the result of converting a real photo of sun flowers into
a brush painting, which further shows that the policy obtained by R-PGPEgp can produce
smooth and natural brush strokes in various unlearned shapes. This demonstrates the high
generalization ability of our learned policy. Also, the resulting drawing well expresses the
attractive effect of this sumi-e stroke based rendering application.
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acml 20/

Figure 10: ACML2015 logo rendered by the policy learned by R-PGPEgg.

(a) Real photo (b) Rendered result

Figure 11: Sun flowers rendered by the policy learned by R-PGPEqg.

5. Conclusion and Discussion

We propose to directly regularize the variance of policy gradients to improve the stability of
policy gradient algorithms. Our proposed method, which combines the variance regulariza-
tion idea with parameter-based exploration and baseline subtraction, was experimentally
shown to provide more reliable policy update than non-regularized counterparts. We further
demonstrated the usefulness of the proposed method on a real-world digital artist system:
sumi-e stroke based rendering.

Through the paper, we focused on the on-policy policy gradients scenario. Extending
the proposed approach to the off-policy scenario is technically straightforward. Theoretical
analysis of the proposed variance-regularized PG method, especially in terms of its conver-
gence and sample complexity is important for our future work. Also, the comparison and
relation to the other regularized PG method, such as mixing-time regularized PG method
(Morimura et al., 2014), is worth to be investigated in the future work.
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