
JMLR: Workshop and Conference Proceedings 46:37–44, 2015 ECML 2014

Supervised Neural Network Structure Recovery

Ildefons Magrans de Abril Ildefons.Magrans.de.Abril@vub.ac.be

Ann Nowé Ann.Nowe@vub.ac.be

Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Editors: Demian Battaglia, Isabelle Guyon, Vincent Lemaire, Jordi Soriano

Abstract

This paper presents our solution to the European Conference of Machine Learning Neural
Connectomics Discovery Challenge. The challenge goal was to improve the performance of
existing methods for recovering the neural network structure given the time series of neural
activities. We propose to approximate a function able to combine several connectivity
indicators between neuron pairs where each indicator is the result of running a feature
engineering pipeline optimized for a particular noise level and firing synchronization rate
among neurons. We proved the suitability of our solution by improving the state of the
art prediction performance more than 6% and by obtaining the third best score on the test
dataset out of 144 teams.

Keywords: Neural Network, Structure Recovery, Causality, Time Series

1. Introduction

Most advanced neuroimaging techniques, based on calcium sensitive organic dyes (Tsien,
1981), are able to capture the in vivo activity of thousands of neurons. This represents
a huge improvement with respect to the highly invasive neurophysiology multi-electrode
recording tools barely capable of recording on the order of 100 neurons. The full poten-
tial development of this new instrumentation still requires analysis tools able to infer the
underlying topology based on time-series of neuronal activity. The goal of the European
Conference of Machine Learning Neural Connectomics Challenge (ChaLearn, 2014) was to
encourage the application of machine learning techniques to recover the neural network
structure using neural activity time-series recordings as input. This paper presents our
method1 to train a regression model that can predict the connectivity between neuron pairs
given the time series of neural activities obtained from fluorescence signals. With this
solution we obtained the third best score on the test dataset out of 144 teams.

The challenge setup consists of several neural network datasets for both training and
testing purposes, an evaluation process, detailed information about the problem and sam-
ple code to get started. Neural network datasets consists of one hour time series of neural
activities obtained from fluorescence signals sampled at 20ms intervals with values normal-
ized in the interval [0, 1], information about the position of each neuron in a square area of
1mm2 and the inter-neuron connectivity labels. The setup evaluation process is built upon
the Area Under the ROC Curve (AUC) as evaluation metric and a real-time leaderboard
showing the ranking of all teams according to the score obtained on an evaluation dataset.

1. https://github.com/ildefons/connectomics.

c© 2015 I. Magrans de Abril & A. Nowé.

https://github.com/ildefons/connectomics


Magrans de Abril Nowé

The score on a separated test dataset defined the final ranking of teams. This score was
not visible and therefore could not be used to overfit the final model.

There are three major difficulties to detect connectivity among neuron pairs (Stetter
et al., 2012): 1) episodes of synchronous bursting conveying low connectivity information,
2) a typical frame video rate is 20ms which is slower than the neuron’s firing dynamic by
one order of magnitude and 3) the background has noise.

The challenge sample code has two non-supervised methods: a simple solution based on
correlation and a state of the art solution based on the Generalized Transfer Entropy (GTE)
indicator (Orlandi et al., 2014; Stetter et al., 2012). The correlation based solution computes
the connectivity indicators among 1000 neurons in few minutes without taking into account
the causal direction. This naive example was meant uniquely to get as many people as
possible started. The C++ implementation of the GTE-based solution is a directional
connectivity indicator and it runs in about 12 hours on a high-end server. This second
solution requires a careful parameter selection and it is a good example of how to score
directed connections between neuron pairs taking into account the three major difficulties.

2. Model

The main observation that guided our work was that optimizing a single connectivity in-
dicator, as suggested by the state of the art, may be a limiting strategy because it will
tend to work optimally just on a particular regime (i.e. noise level and firing synchroniza-
tion rate among neurons). Therefore, a function approximation able to optimally combine
several indicators, computed using different parameters, should deliver an enhanced perfor-
mance. This section describes the details of our solution. It consists of a feature engineering
pipeline to compute the many connectivity scores according to different parameter values
and a suitable model fitting strategy able to combine these features. Figure 1 shows the
main components of our solution. The following sub-sections describe in detail each of the
building blocks.

2.1. Spike inference

The first step in our feature engineering pipeline is the spike inference module. It is re-
sponsible for inferring spike trains out of time series of neural activities. We have evaluated
two approaches: a naive method based on computing the difference between any two con-
secutive time steps, and a state of the art method (Vogelstein et al., 2009) based on the
sequential Monte Carlo framework (a generatlization of the Baum-Welch algorithm to fit
Hidden Markov Models) that finds the probability of the neuron spiking in each time step.

In both cases, spike trains are post-processed to remove background noise. A parameter
named Noise Level (NL) defines the lower limit of a valid spike. Spikes below NL are zeroed.
The evaluation of both spike inference methods was performed using the complete solution
pipeline outlined in Figure 1 on a training network (Normal1) constructed similarly to the
test network. We analyzed the performance delivered by each method using many different
parameters. We finally chose the Monte Carlo framework based method because it delivered
a maximum AUC of 0.932 and an average AUC over all parameters of 0.909 while the naive
method delivered a maximum AUC of 0.929 and an average AUC over all parameters of
0.902.

38



Supervised Neural Network Structure Recovery

����������	�
�� �
�
�����
���

���
���������

����	�
��

����
����

�
���	�������


	
���������������

�������
���

����
���

��	
��
����
�
���
����

�����������
����

 !!!�����
�
�"�

 !!!������
����


����
����
�� ����
�����
��

�
�
�������
�����

���	#�����
�����

$
�

��
�����%�� &������

������

'����������%���	
���	���������(��

)
����*���������

�+*,�-�)�

.��������+* ,�+*/,�

-�) ,�-�)/�
�
����
�

Figure 1: Solution block Diagram. It consists of a feature engineering pipeline to compute
several connectivity indicators between each neuron pairs and a model fitting strategy to
combine these features.

2.2. Connectivity indicators

Right after the noise removal module and before the computation of the inter-neuron con-
nectivity indicators, the burst regime detector and removal module is responsible for identi-
fying and removing time steps that contain a portion of neurons larger than the parameter
Synchronization Rate (SR) firing at the same time. This step is required because only
signals recorded during inter-burst periods convey elevated information about the neu-
ral net topology (Stetter et al., 2012). Formally, we remove all time steps t such that∑N

i=1 1{STit 6= 0} > SR.N , where N is the number of neurons and STit is the value of
the spike train of neuron i at time t generated by the spike inference module described in
Section 2.1.

We need to compute a connectivity indicator on each neuron pair and for each parameter
combination (i.e. NL, SR), and all these computations have to be executed for several train-
ing networks, the evaluation and the test networks. Therefore, the computation efficiency
is a key requirement for this module. Plain correlation was a suitable candidate according
to this requirement. Performance-wise, correlation between spike trains delivered a perfor-
mance equivalent to GTE between pairs of raw time series of neural activity (Orlandi et al.,
2014; Stetter et al., 2012).

Correlation is a simple enough connectivity indicator to be able to compute the many
indicators using reasonable resources. However, a limitation of using correlation as con-
nectivity indicator is that it is unable to identify directed connections. Therefore, it may
not be appropriate when the goal is to identify causal relationships. Fortunately, when
the performance evaluation metric is the Area Under the ROC Curve, the added value of
distinguishing the connectivity direction is low.

39



Magrans de Abril Nowé

2.3. Network deconvolution

The final step of the feature engineering pipeline is the network deconvolution module. This
module implements a recent network deconvolution algorithm (Feizi et al., 2013) meant to
eliminate the combined effect of indirect paths of arbitrary length from an observed correla-
tion matrix containing both direct and indirect effects. This step improves the quality of the
connectivity indicators between neuron pairs by taking into account the whole connectivity
matrix. This method has been able to improve the performance of state of the art solutions
in other network reconstruction application scenarios (Feizi et al., 2013).

This method consists of the following steps: 1) to normalize in the interval [-1,1] the
connectivity indication matrix described in Section 2.2, 2) to decompose with SVD the
normalized matrix, 3) to compute the eigenvalues of the deconvolved matrix according to
λdi = λi

λi+1 with λi being the ith eigenvalue of the normalized matrix, 4) to compose the

direct dependency matrix according to Cdir = UDU−1 where U is a matrix of eigen-vectors
and D is a diagonal matrix whose ith diagonal is λdi .

A Z-normalization post-processing delivers a connectivity matrix with a distribution
almost identical across different networks using the same parameters (i.e. NL, SR). This
additional step is not part of the original deconvolution algorithm. It is motivated by the
observation that the deconvolved matrix from any two different neural networks, computed
with the same parameter set, had different distributions and therefore they cannot be used
directly to train a supervised model.

The evaluation of the network deconvolution step was performed using again the com-
plete solution pipeline outlined in Figure 1 on a training network (Normal1) constructed
similarly to the test network. We analyzed the performance using many different parame-
ters. The deconvolution step improved the maximum performance from 0.911 to 0.932 and
the average performance improved from 0.893 to 0.909.

2.4. Modeling approach

To overcome the limitation of using a single connectivity indicator optimized for a particular
noise level and bursting synchronization rate, we propose to approximate a function able
to combine several connectivity indicators between neuron pairs. More precisely, given a
training network, the set of samples is defined by all possible combinations of different
non-directed neuron pairs (e.g. N:Number of network neurons = 1000, number of samples

= N(N−1)
2 = 499500). Each sample consists of a set of connectivity indicators computed with

the feature engineering pipeline described in the previous sections using different parameter
values (i.e. NL, SR). Our modeling approach does not try to learn self-loops.

Fitting this function requires a method able to capture complex relationships among
several very similar features. Gradient Boosting Machines (GBM) (Ridgeway, 2013) and
Random Forest (Breiman et al., 2013) have been successfully used in other challenges with
similar feature space complexity (Magrans de Abril and Sugiyama, 2013). Further concerns
were the heterogeneity of the network topologies and the highly imbalanced training network
datasets where only approximately 1% of neuron pairs were connected. We minimized the
training network topology bias by 1) using a large minimum size for the tree leafs, and
2) averaging four models: two random forest fitted according to two training networks
constructed similarly to the test network and two gradient boosting machines models fitted

40



Supervised Neural Network Structure Recovery

according to the same two networks. We addressed the data imbalance problem by sub-
sampling the training samples of non-connected neuron pairs down to 5 times the number
of connected neuron pair samples.

3. Evaluation

During the model validation phase, we used three training networks (Normal1, Normal2 and
Normal3), the evaluation network and the test network. All networks consists of 1000 neu-
rons and approximately 1% of neuron pairs were connected. According to the challenge data
description, all these networks were constructed similarly. For each network we extracted
a number of connectivity indicator matrices. Each connectivity matrix was computed run-
ning the feature engineering pipeline described in Section 2 with a given parameter set
(i.e. NL,SR). More precisely, for each network we computed 252 matrices according to all
possible parameters set combinations where:

NL ∈ {.07, .075, .08, .085, .09, .1, .11, .12, .13, .14, .15, .16, .17, .18}
SR ∈ {25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800}
For each training network (e.g. Normal1), we trained a RF and a GBM. To cope with

inconsistencies among networks, we used a large minimum size for the tree leafs (450 for
RF, 400 for GBM).

Table 1: Performance results when using the training networks for both model fitting and
testing purposes. The row labels define the network under test and column labels define
the predictive model (e.g. GTE ∼ Generalized Transfer Entropy, R1+G1 ∼ average of RF
and GBM both fitted with network1, ALL ∼ average of RF and GBM both fitted with the
two other networks not being tested as proposed in Section 2.4).

T GTE R1 G1 R2 G2 R3 G3 R1+G1 R2+G2 R3+G3 ALL

N1 0.885 NA NA .9392 .9388 .9394 .9386 NA .9398 .9398 .9401
N2 0.889 .9399 .9401 NA NA .9403 .9399 .9409 NA .9409 .9413
N3 0.884 .9393 .9396 .9392 .9396 NA NA .9402 .9402 NA .9405

Table 1 shows the performance results when using the training networks for both model
fitting and testing purposes. Column 1 shows the performance obtained with the state of
the art solution (i.e. Generalized Transfer Entropy indicator (Orlandi et al., 2014; Stetter
et al., 2012)). Column 2 to 7 show the prediction performance when we use a single RF or
GBM trained with one training network. It shows that our supervised modeling approach is
able to reliably deliver a superior performance compared to the best individual connectivity
indicator. For instance, RF2 to predict the connectivity of Normal1 network delivers a
prediction performance of .9392 while the best individual connectivity indicator computed
with our feature engineering pipeline delivers a performance of 0.932 and an optimized
connectivity indicator computed with GTE delivers a performance of 0.889.

Column 8 to 10 show the prediction performance when we average the predictions deliv-
ered by RF and GBM trained with one training network. They show experimental evidence
that by averaging the predictions of several models we were able to further improve the
prediction performance. From these 3 columns we can also conclude that there is not a

41



Magrans de Abril Nowé

training network that provides a superior performance (e.g. training on Normal1 and test-
ing on Normal2 delivers a performance of .9409 and training on Normal3 and testing on
Normal2 delivers the same performance of 0.9409). Finally, column 11 shows the prediction
performance when we average the predictions delivered by RF and GBM trained with the
two other training networks as proposed in Section 2.4.

Table 2: Performance results when using the training networks for both model fitting and
testing purposes. The row labels define the network under test and column labels define
the the random seed used to sub-sample training samples of non-connected neuron pairs.
All prediction models are computed according to Section 2.4.

Test Seed1 Seed2 Seed3

Normal1 .94007 .94009 .94009
Normal2 .94134 .94129 .94121
Normal3 .94051 .94053 .94048

Table 3 presents the performance results when using the training networks to fit a
complete model according to the description of Section 2.4 (i.e. last column of Table 1) and
using different random seeds before the sub-sampling of non-connected neuron pair samples.
The row labels define the network under test and the column labels define the random seed
applied before sub-sampling. It shows that sub-sampling has a very small effect on the
model performance. Therefore, we are unlikely losing much information.

Finally, a model trained with Normal1 and Normal2 delivered a performance on the test
network of .9406 which is .06 higher than the performance obtained with the best known
solution before the challenge started (i.e. Generalized Transfer Entropy (GTE) indicator
(Orlandi et al., 2014; Stetter et al., 2012)).

4. Conclusions and future work

Our modeling hypothesis is that by approximating a function able to optimally combine
several indicators, computed using different parameters (i.e. noise level and firing synchro-
nization rate among neurons), we could deliver an enhanced performance. The feature
engineering pipeline is responsible for the computation of the connectivity indicators. It
is based on a modular design able to separately address the different difficulties to de-
tect connectivity among neuron pairs: 1) episodes of synchronous bursting conveying low
connectivity information, 2) a typical frame video rate is 20ms which is slower than the
neuron’s firing dynamic by one order of magnitude and 3) the background has noise. We
have proven the suitability of our solution by improving the state of the art prediction per-
formance (AUC) in more than 6% and by obtaining the third best score on the test dataset
out of 144 teams.

However, we believe that there is still room for improvement. For instance, important
functional limitations of our model are that it is unable to identify the connectivity directions
and self-loops. We also believe that there exist possibilities to improve our model such as
using a finer grained grid of parameters or by using semi-supervised variants of RF (Leistner
et al., 2009) and GBM (Dai et al., 2007).

42



Supervised Neural Network Structure Recovery

Another limitation of our method is a high computational cost mainly due to the large
number of connectivity indicators on several training networks and the test network. More
precisely, the many correlation matrix and the SVD step during the network deconvolution
have a computational complexity on the order of O(MKNn2) and O(MKn3) respectively,
where n is the number of neurons (1000), N is the number of time steps (180000), K is the
number of connectivity indicators (252) and M is the number of networks (3). Running on
an i7 quad core laptop with 32 Gbytes of RAM, it takes 48 hours to compute the connectivity
indicators for all networks, just below 5 hours to compute the spike trains and just above
2 hours to fit the random forest and the GBM models.

Acknowledgments

Ildefons Magrans de Abril and Ann Nowé were supported by EU FP7 framework’s Marie
Curie Industry-Academia Partnerships and Pathways (IAPP) project SCANERGY, under
grant agreement number 324321.

Appendix A. Result table

Table 3: Summary table with team name, final private leaderboard performance and per-
formance of the winner.

Team name Ildefons Magrans
Private leaderboard performance 0.94063
Performance of the winner 0.94161

References

Leo Breiman, Adele Cutler, Andy Liaw, and Matthew Wiener. R package randomforest:
Breiman and cutlers random forests for classication and regression. Version 4.6-7, 2013.

ChaLearn. Connectomics challenge. http://connectomics.chalearn.org/, 2014.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning.
In Proceedings of the 24th international conference on Machine learning, pages 193–200.
ACM, 2007.

Soheil Feizi, Daniel Marbach, Muriel Mdard, and Manolis Kellis. Network deconvolution as
a general method to distinguish direct dependencies in networks. Nature Biotechnology,
31:726–733, July 2013.

Christian Leistner, Amir Saffari, Jakob Santner, and Horst Bischof. Semi-supervised random
forests. In Computer Vision, 2009 IEEE 12th International Conference on, pages 506–
513. IEEE, 2009.

43

http://connectomics.chalearn.org/


Magrans de Abril Nowé

Ildefons Magrans de Abril and Masashi Sugiyama. Winning the kaggle algorithmic trading
challenge with the composition of many models and feature engineering. IEICE Trans-
actions on Information and Systems, 96(3):742–745, 2013.

Javier G. Orlandi, Olav Stetter, Jordi Soriano, Theo Geisel, and Demian Battaglia. Trans-
fer entropy reconstruction and labeling of neuronal connections from simulated calcium
imaging. arXiv:1309.4287v2, May 2014.

Greg Ridgeway. R package gbm: Generalized boosted regression models. Version 2.1, 2013.

Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. Model-free reconstruction
of excitatory neuronal connectivity from calcium imaging signals. PLOS Computational
Biology, 8(8), August 2012.

R.Y. Tsien. A non-disruptive technique for loading calcium buffers and indicators into cells.
Nature, 290:527–528, April 1981.

Joshua T. Vogelstein, Brendon O. Watson, Adam M. Packer, Rafael Yuste, Bruno Jedynako,
and Liam Paninski. Spike inference from calcium imaging using sequential monte carlo
methods. Biophysical journal, 97(2):636–655, 2009.

44


	Introduction
	Model
	Spike inference
	Connectivity indicators
	Network deconvolution
	Modeling approach

	Evaluation
	Conclusions and future work
	Result table

