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Abstract

Spike train generation in primary motor cortex (M1) and somatosensory cortex (S1) has
been studied extensively and is relatively well understood. On the contrary, the function-
ality and physiology of the dorsolateral striatum (DLS), the immediate downstream region
of M1 and S1 and a critical link in the motor circuit, still requires intensive investigation.
In the current study, spike trains of individual DLS neurons were reconstructed using a
Linear-Nonlinear-Poisson model with features from two modalities: (1) the head position
modality, which contains information regarding head movement and proprioception of the
animal’s head; (2) the spike history modality, which contains information regarding the
intrinsic physiological properties of the neuron. For the majority of the neurons examined,
viable reconstruction accuracy was achieved when the neural activity was modeled with
either feature modality or the two feature modalities combined. Subpopulations of neurons
were also identified that had better reconstruction accuracy when modeled with features
from single modalities. This study demonstrates the feasibility of spike train reconstruction
in DLS neurons and provides insights into the physiology of DLS neurons.
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1. Introduction

1.1. Dorsolateral Striatum Single Body Part Neurons

Motor commands initiated by motor neurons in M1 descend to the spinal cord and result in
the flexion or extension of their corresponding muscle groups. These motor neurons also send
an efferent copy of motor commands to the DLS (corresponds to the dorsolateral caudate-
putamen in human), the input structure for the basal ganglia. Similarly, the DLS receives
inputs from S1. Information from the DLS is further relayed through globus pallidus,
thalamus, premotor cortex and back to M1. This motor loop is thought to be involved in
monitoring and providing feedback for ongoing movements (Alexander et al., 1986; Cohen
et al., 2010). Moreover, a number of diseases involving motor or sensorimotor impairment,
including Parkinson’s and Huntington’s disease, feature disrupted DLS function (Georgiou-
Karistianis and Egan, 2011; Kordower et al., 2013). Thus, understanding DLS functionality
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may lead to new diagnostic and therapeutic methods for these diseases.

Previous studies discovered single body part correlated neurons (SBP neurons) in the DLS.
These neurons are tuned to single body parts and specific movement features (e.g. distance,
duration, velocity, and starting position) for that body part (Crutcher and DeLong, 1984;
Crutcher and Alexander, 1990; Cho and West, 1997; Tang et al., 2007; Ma et al., 2013).
Current methods for identifying movement correlates used in these studies involves defining
movement features and categorizing movements according to those features. However, if
movement features are incorrectly defined (i.e. not defined according to features the neurons
are sensitive to), or if movements were categorized into categories that are too broad, a
significant amount of information might be lost. To avoid this problem, the current study
used the raw position data without arbitrarily defining movement features and applies a
Linear-Nonlinear-Poisson Model to predict the neural activities in the DLS.

1.2. The Linear-Nonlinear-Poisson Model

The Linear-Nonlinear-Poisson Model (the LNP model) is commonly used to model the
process of spiking activity. Ample studies have reported successes in predicting single
neurons’ activities in sensory neurons by the LNP model (up to 82% accuracy) (Schwartz
et al., 2006; Pillow et al., 2008). The LNP model can simultaneously capture variables from
different modalities that may influence the spiking activity of a neuron with high efficiency.
Variables from two modalities are often considered when predicting spiking activities: (1)
the extrinsic stimulus that the neuron may respond to or encode, (2) the spike history of
the neuron. The LNP model first applies a linear filter (the linear part of the LNP) to
the extrinsic stimulus and/or spike history. Then, the filtered responses are summed and
exponentiated (the non-linear part of the LNP) to obtain an instantaneous spike rate. The
instantaneous spike rate is the parameter of the Poisson distribution that determines spiking
activity (Poisson part of the LNP). The parameters of the model were fitted with maximum
likelihood estimation.

In the present study, head position record (extrinsic stimulus) and spike history data were
used to predict spiking activities of individual neurons in the DLS, using the LNP model as
classifier. The result of the study indicated that it is possible to predict spiking activity using
the LNP model in the DLS, despite the fact that the DLS does not interact with extrinsic
stimulus (the head positions) directly, but instead only receives information from primary
motor and sensory areas. Also, results show that the head position record and spike history
data contribute differently when predicting the spiking activities for individual neurons.

2. Methods

2.1. Data Collection and Preprocessing

The current study reanalyzed data previously published in Pawlak et al. (2010), where
details regarding data collection can be found. Briefly, the dataset consists of extracellular
single neural recordings of 47 neurons from 13 rats. All neurons were histologically confirmed
to be located in the DLS. Recordings from these neurons lasted one hour, during which time
the animals were walking on a treadmill and producing head movements primarily in the
vertical direction. The position (x, y coordinates) of the animal’s head was measured by
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a video camera (60 Hz) facing the treadmill. The action potentials (spike train) were
simultaneously recorded with 50 kHz sampling frequency.

The primary goal of the present study was to determine the feasibility of reconstructing the
spike train, i.e. to predict whether or not a spike occurs in a short time interval, using head
position and spike history data as predictors. An interval of 16.7 ms was used, since the
position records of the head was obtained at a 60 Hz sampling rate. More specifically, the
neural activity was binned into 16.7 ms intervals and then converted to binary and used as
the outcome for prediction, such that equal number of observations for position record and
neural activity were obtained for a given neuron.

2.2. Experimental Design
2.2.1. PREDICTING NEURAL ACTIVITY WITH FEATURES FROM ALL MODALITIES

Firstly, features from both head position history (hp) and spike history (spkh) were used
to predict neural activity at time ¢. For this analysis, position record m time bins before
time t was used, i.e. hpt—m, hApt—m+1,..., hps—1. Similarly, spike history data was used up
to m time bins before, i.e. spkhi_p, spkhi—m+1,..., sSpkhi—1. The LNP model is expressed
as the following:

A(t) = exp(hp_filter - hp(t) + spkh_filter - spkh(t))

A(t) is the rate of the Poisson distribution that generates the spike at time t. hp_filter -
hp(t) is a linear projection of hp(t), the head position record m time bins before time ¢,
onto the receptive field of the neuron, as defined by the linear filter for the head position
hp_filter. Similarly, spkh_filter - spkh(t) is spkh(t), the spike history m time bins
before time ¢, convolved with the spike history filter.

Cross validation was utilized to select parameter m for individual neuron’s individual data
split. Data from individual neurons were split into splits of 10 minutes, resulting in 6
data splits that were consecutive in time. The model was first trained on data split s,
performance was validated on split s + 1, with s € [1,2,3,4]. Parameter m that resulted
in the best performance, as measured by AUC, on the validation set was selected. AUC is
the area under precision recall curve constructed by comparing the true occurrence of the
spike vs. the instantaneous firing rate A(¢). The LNP model was then retrained on data
from split s and s+ 1. The resulting model was tested data split s + 2. The average AUCs
over the four testing sets was obtained for every neuron. In addition, permutation tests
was conducted to determine whether the prediction performance on the testing sets were
significantly better than random for every neuron.

2.2.2. COMPARING PERFORMANCES OF DIFFERENT FEATURE MODALITIES

The relative importance of different data modalities, i.e. head position and spike history,
was then evaluated by constructing classification models with data from either modality
separately. The training, validation and testing of the models was similar as described in
Section 2.2.1. Permutation tests were conducted to determine whether the differences in
AUCs between model using head position modality vs. model using spike history modality
was significantly better than random.
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2.2.3. COMPARING PERFORMANCES OF SINGLE MODALITY VS. ALL MODALITIES

Lastly, the possible improvement of performance by combining features from multiple
modalities was examined. AUC resulting from models using features from all modalities
were compared with the best AUC resulting from models using features from any single
modality. Permutation tests was conducted to determine whether the differences in AUCs
was significantly better than random. The p values resulting from all permutation tests
were FDR adjusted globally to correct for multiple comparisons.

3. Results
3.1. Predicting Neural Activity with Features from all Modalities

When using features from all available modalities, i.e. head position and spike history, signif-
icantly better than random AUCs were achieved in 44 out of 47 neurons. The distributions
of average AUCs for individual neurons were shown in Figure 1(a). Notice that about 40%
of the neurons have AUCs between 0.5 and 0.6, the majority of which were significantly
better than random, indicating small yet significant signal.
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Figure 1: Distribution of AUCs predicted by Different Feature Modalities

3.2. Predicting Neural Activity with Features from Individual Modalities

In 32 out of 47 neurons, significantly better than random AUCs were achieved by models
using features from head position modality. In 35 out of 47 neurons, significantly better
than random AUCs were achieved by models using features from spike history modality.
The distributions of AUCs for individual neurons were shown in Figures 1(b) and 1(c¢)
respectively for models using head position features and spike history features.

The relative importance of the two feature modalities was also evaluated. This analysis was
conducted in the 41 neurons that showed better than random AUCs predicted by features
from either modalities. Out of the 41 neurons, 15 neurons showed significantly better
performance predicted by features from head position modality and 13 neurons showed
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significantly better performance predicted by features from spike history modality. The
remaining 13 neurons did not show significantly different AUC between models using the
two modalities (Figure 2).
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Figure 2: AUCs Predicted by Head Position Features vs. those Predicted by Spike History
Features: Each dot represents one neuron. Open circles represent neurons with similar
AUCs when predicted by head position features or spike history features. Grey dots
represent neurons that have significantly higher AUCs predicted by spike history. Black
dots represent neurons that have significantly higher AUCs predicted by head position.

3.3. Comparing Performances of Single Modality vs. All Modalities Combined

There are a total number of 45 neurons that showed significantly better than random AUCs
obtained from models using either single modalities or all modalities. Out of these 45
neurons, 9 of the neurons show a significant improvement in AUC when modeled with
features from all modalities.

4. Discussion

The current study illustrated the feasibility of reconstructing the neural activity in majority
of DLS neurons. One of the advantages of using the LNP model as classifier is that it implic-
itly keeps the temporal structure of the features, which is well-suited for time series data.
Another advantage of the LNP model is that the linear coefficients of the model depict the
typical sequences of head position or spike history leading to spikes. Principal component
analysis was conducted on the linear coefficients of the LNP models for individual neurons
to identify common patterns. Principal components (PCs) that explain more than 10%
variability were plotted (Figure 3). The first PC for both horizontal (x coordinates) and
vertical (y coordinates) head position indicates that one of the position sequence that trig-
gers a spike is a abrupt movement in one direction (Figures 3(a) and 3(b)). For the vertical
head position, the second PC indicates that a relatively slow movement with a change in
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direction may trigger spikes(Figure 3(b)). For the spike history, the first PC indicates a
relatively rapid change in spiking activity often precedes a spike, while the second PC indi-
cates that a slow change in spiking activity followed by a rapid reversal in spiking activity
often precedes a spike(Figure 3(c)).
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Figure 3: The Top Principal Components of the Linear Coefficients

The current study identified subpopulations of neurons that primarily correlate with dif-
ferent feature modalities. The proportion of neurons that are identified to be correlated
with head position history is higher (32 out of 47) when compared to traditional methods
(less than 25%) which require categorizing movements according to some movement features
(e.g. direction, distance, velocity, duration). Specifically, traditional methods examine neu-
ral activity for categorized movements and compare this activity to activity during both
other movement categories or non-movement (baseline control). In this method, neurons
are identified as movement related if their firing rates in one or more of the pre-defined cat-
egories are different when compared to the non-movement baseline. In contrast, the LNP
model does not arbitrarily define movement features. Instead, the LNP model uses the raw
data and maximun likelihood estimation to determine what head position sequences (i.e.
movements) are most likely to result in spiking activity. Thus, the LNP model may be able
to utilize head position data at its full resolution, leading to the identification of more head
movement correlated neurons.

The current study failed to identify improvement in prediction performance in most of the
neurons examined when using features from both modalities. It is possible that in some
cases the two data modalities contain overlapping information (e.g. the spike history may
encode the head movement history). Alternatively, it is possible that one of the modalities
does not contain any information regarding the outcome (e.g. the neuron might not be
related to the movement of the head, therefore incorporating the head movement history
data does not help the prediction).

In conclusion, the current study demonstrated the feasibility of predicting the neural ac-
tivity in DLS using the LNP model. Also, for individual neurons, the presnent data show
that specific feature modalities contribute differently when predicting neural activity. The
relative importance of feature modalities provide insights into the response characteristics
of individual neurons.

90



PREDICTING SPIKING ACTIVITIES IN DLS NEURONS

Acknowledgments

The Authors thank Dr. Alexander Statnikov and Dr. Sara Solla for their constructive input
in experimental design and Dr. Anthony Pawlak for providing the data. This work was
partially supported by NRSA grant DA 032270 and Rutgers special study award.

References

Garrett E Alexander, Mahlon R Delong, and Peter L Strick. Parallel organization of
functionally segregated circuits linking basal ganglia and cortex. Annual review of neu-
roscience, 9(1):357-381, 1986.

Jeiwon Cho and Mark O West. Distributions of single neurons related to body parts in the
lateral striatum of the rat. Brain research, 756(1):241-246, 1997.

Oren Cohen, Efrat Sherman, Nofya Zinger, Steve Perlmutter, and Yifat Prut. Getting
ready to move: transmitted information in the corticospinal pathway during preparation
for movement. Current opinion in neurobiology, 20(6):696-703, 2010.

MD Crutcher and MR DeLong. Single cell studies of the primate putamen. FExperimental
Brain Research, 53(2):244-258, 1984.

Michael D Crutcher and Garrett E Alexander. Movement-related neuronal activity selec-
tively coding either direction or muscle pattern in three motor areas of the monkey. J
Neurophysiol, 64(1):151-163, 1990.

Nellie Georgiou-Karistianis and Gary F Egan. Connectivity-based segmentation of the stria-
tum in huntington’s disease: vulnerability of motor pathways. Neurobiology of disease,
42(3):475-481, 2011.

Jeffrey H Kordower, C Warren Olanow, Hemraj B Dodiya, Yaping Chu, Thomas G Beach,
Charles H Adler, Glenda M Halliday, and Raymond T Bartus. Disease duration and
the integrity of the nigrostriatal system in parkinson’s disease. Brain, 136(8):2419-2431,
2013.

Sisi Ma, Anthony P Pawlak, Jeiwon Cho, David H Root, David J Barker, and Mark O
West. Amphetamine’s dose-dependent effects on dorsolateral striatum sensorimotor neu-
ron firing. Behavioural brain research, 244:152-161, 2013.

Anthony P Pawlak, Chris C Tang, Cathy Pederson, Martin B Wolske, and Mark O West.
Acute effects of cocaine on movement-related firing of dorsolateral striatal neurons depend

on predrug firing rate and dose. Journal of Pharmacology and Experimental Therapeutics,
332(2):667-683, 2010.

Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke,
EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations and visual sig-
nalling in a complete neuronal population. Nature, 454(7207):995-999, 2008.

Odelia Schwartz, Jonathan W Pillow, Nicole C Rust, and Eero P Simoncelli. Spike-triggered
neural characterization. Journal of Vision, 6(4):13, 2006.

91



MA BARKER

Chengke Tang, Anthony P Pawlak, Volodymyr Prokopenko, and Mark O West. Changes
in activity of the striatum during formation of a motor habit. Furopean Journal of
Neuroscience, 25(4):1212-1227, 2007.

92



	Introduction
	Dorsolateral Striatum Single Body Part Neurons
	The Linear-Nonlinear-Poisson Model

	Methods
	Data Collection and Preprocessing
	Experimental Design
	Predicting Neural Activity with Features from All Modalities
	Comparing Performances of Different Feature Modalities
	Comparing Performances of Single Modality vs. All Modalities


	Results
	Predicting Neural Activity with Features from all Modalities
	Predicting Neural Activity with Features from Individual Modalities
	Comparing Performances of Single Modality vs. All Modalities Combined

	Discussion

