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Abstract

Genome-wide association studies (GWAS) have been widely used for understanding the
associations of single-nucleotide polymorphisms (SNPs) with a disease. GWAS data are
often combined with known biological networks, and they have been analyzed using graph-
mining techniques toward a systems understanding of the biological changes caused by the
SNPs. To determine which subgraphs are associated with the disease, a statistical test on
each subgraph needs to be conducted. However, no statistically significant results were
found because multiple testing correction causes an extremely small corrected significance
level.

We introduce a method called gLAMP to enumerate subgraphs having statistically
significant associations with a diagnosis. gLAMP integrates the Limitless Arity Multiple-
testing Procedure (LAMP) with a graph-mining algorithm called COmmon Itemset Net-
work mining (COIN). LAMP gives us the smallest possible Bonferroni factor, and COIN
provides us with efficient enumeration of testable subgraphs. Theoretical results of their
combination show the potential to enumerate subgraphs statistically significantly associ-
ated with a disease.

Keywords: statistical significance, subgraph enumeration, chi-squared test, GWAS

1. Introduction

Genome-wide association study (GWAS) is a powerful analysis method of associating single-
nucleotide polymorphism with a trait and has been widely used to understand both biology
and disease analysis (Civelek and Lusis, 2014). While causal mutations of diseases have
been uncovered using GWAS, two problems remain. One is that the most of GWAS analy-
sis focused on the associations between single SNP and a disease while diseases are regularly
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Figure 1: (A) An example of IA-graph. In GWAS data, vn and im indicate a SNP at position
n and a patient having the SNP. Edges mean the relationships between SNPs.
(B) ISS with common itemset {i1, i2}. Subgraph G (bold lines) indicate the ISS
having three vertices, three edges. (C) Class of each patient. cm = 1 means that
patient im has a target trait/disease. The contingency table associated with G is
shown in Table 2.

associated with multiple SNPs (Sladek et al., 2007). The requirements of large computa-
tional time and statistical assessment of the results prohibited the genome-wide analysis
of the combinations of SNPs. The other is the difficulty to find the connection of the mu-
tations with the understanding of why the SNPs cause these diseases, which is required
to formulate new drugs and to develop new therapeutic methods. To connect the SNPs
with the systems understandings, known biological networks such as protein-protein inter-
actions (Chatr-aryamontri et al., 2013) and metabolic pathways (Kanehisa et al., 2014) are
often integrated with GWAS data. Network analyses on the data have been widely per-
formed (Barabási et al., 2011). However, only a few analysis results have been confirmed
biologically because of the lack of statistical assessment of the results. In biology and the
medical science, the statistical significance of the results of an analysis is an important
criterion of whether they are confirmed experimentally. Computational results without sta-
tistical assessments cannot be confirmed and thus will never be published in any biological
or medical journals.

Statistical assessment of the graph-mining result may lead to no significant results be-
cause of multiple testing correction. Most graph-mining algorithms check the importance
on every subgraph, which causes an enormous amount of tests and requires multiple testing
correction. When we use Bonferroni correction on the situation, the corrected significance
level would be extremely small, and no significant result might be found. This is one reason
why few studies in graph mining verified the statistical significance.

Statistically sound association discovery methods(Webb, 2003; Hamalainen, 2010; Ter-
ada et al., 2013; Webb and Vreeken, 2014) might provide us the statistical significance to
the GWAS results. However, the calculation of the statistical significance may take large
computational time because of the large size of GWAS data, and even if the calculation
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Table 1: Contingency Table of Gm.

ci = 1 ci = 0
Gm x(Gm) nm − x(Gm) nm = |I(Gm)|
Ḡm C − x(Gm) N − nm − C + x(Gm) N − nm

C N − C N

Table 2: Contingency Table of the
ISS in Fig. 1(B)
ci = 1 ci = 0

G 2 0 2
Ḡ 1 2 3

3 2 5

is finished, the corrected significance level might become too small to discover statistically
significant associations. Furthermore, no existing methods have considered statistical sig-
nificance of graph structures.

In this paper, we formalize a statistical graph-mining problem for the GWAS using
graph data, and introduce a method to solve the problem. Our solution uses the advantage
of Limitless Arity Multiple-testing Procedure (LAMP) (Terada et al., 2013) to calibrate the
Bonferroni factor to the smallest possible value, and tries to efficiently find a statistically
significant result even after multiple testing correction is performed.

We introduce a graph whose vertex has an itemset label proposed by Sese et al. (Sese
et al., 2010)

Definition:
(Itemset-associated graph and itemset-sharing subgraph) An itemset-associated (IA) graph
is an undirected graph whose vertex contains a set of items (an itemset). An itemset-sharing
subgraph (ISS) with an itemset I means a connected subgraph of a given IA graph whose
all vertices contain I. For an ISS G, we describe V (G), E(G) and I(G) are the vertices,
edges and common (largest) itemset in G.

Figure 1(A) shows an example of the IA-graph with six vertices, eight edges and five
items. Vertex vB has an itemset {i1, i5}. A subgraph indicated by bold lines in Figure 1(B)
is an ISS with vertices vA, vC and vD and common itemset {i1, i2}.

In the GWAS analysis, a vertex, an edge and an item represent a SNP, a connection
between SNPs and a patient sample, respectively. An ISS in Figure 1(B) shows that patients
i1 and i2 (common items of the graph) have SNPs vA, vC and vD (vertices in the graph).

Definition:
(P-value of an ISS) Suppose that item i is related to a class ci ∈ {0, 1}. With ISS G,
items are divided into two groups. One is in I(G), and the other is not. The status is
described as a contingency table in Table 1, where x(G) = |{i | i ∈ I(G) and ci = 1}|
and C = |{i | ci = 1}|. On the contingency table, we can calculate a P-value of G using
chi-squared test and define it as P (G).

We can perform a chi-squared test, Fisher’s exact test, etc. on the contingency table, but
the chi-squared test is widely used in GWAS analysis, and hence we used a chi-squared test
here.

A trait of a patient in the GWAS analysis is regarded as the class associated with each
item. An ISS G described in Figure 1(B) have common itemset {i1, i2}, and both of which
have class 1. Table 2 shows a contingency table for G. Its chi-squared value and P-value
are 2.22 and 0.137, respectively.
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With these definitions, we introduce a statistical graph mining problem.

Problem:
(gLAMP problem) Suppose that we have an IA graph and a class table. Given the data
and significance level α, enumerate statistically significant ISSes G in the IA graph where
P (G) ≤ δ for G ∈ G, and δ is a corrected significance level to control family-wise error rate
(FWER), the probability of at least one false discoveries, below α.

The results of the problem are related to the combinations of SNPs having statistically
significant associations with the target trait.

2. Limitless Arity Multiple-testing Procedure (LAMP)

Bonferroni correction has been used in almost all GWAS analyses to control FWER below
the significance level α. However, Bonferroni correction is too conservative to control the
FWER in practice because it assumes that any tests can cause false positive. To avoid the
problem, we here introduce LAMP (Terada et al., 2013).

Given IA-graph contains M subgraphs G1, G2, . . . , GM , a statistical test is performed
for M subgraphs to find statistically significantly associated subgraphs with a trait. Fix-
ing corrected significance level δ, Bonferroni correction calculates FWER as Mδ from the
following inequality.

FWER = 1− Pr({m | P (Gm) > δ for m ∈ {1, . . . ,M}} 6= φ)
= Pr({m | P (Gm) ≤ δ for m ∈ {1, . . . ,M}} = φ)

≤
M∑
i=1

Pr(P (Gm) ≤ δ) ≤Mδ

This value should be less than significance level α, and hence δ is set to α/M in Bonferroni
correction. Generally, M is substantial number in the graph-mining problem, causing an
extremely small corrected significance level. It may become impossible to find statistically
significant results.

LAMP (Terada et al., 2013) achieves higher sensitivity than Bonferroni correction by
rigorously calculating FWER and can enumerate statistically significant tests from mul-
tidimensional data. LAMP categorizes tests into testable and untestable since untestable
ones are safely removed from the Bonferroni factor. Untestable ones are defined as the
tests that never cause significant results under corrected significance level δ. When we have
subgraph Gm, its marginal distribution (N , C and nm in Table 1) of the contingency table
can be calculated without performing the statistical test. From contingency tables satisfy-
ing the distribution, P-values can be calculated. The smallest P-value among them is the
possible minimum P-value of Gm. If the value is larger than δ, Gm is untestable and can
be removed from Bonferroni factor because Pr(P (Gm) ≤ δ) = 0. The minimum P-value
can be calculated on the discrete statistics such as Fisher’s exact test, chi-squared test and
Mann-Whitney test.

In the GWAS problem, the minimum P-value depends only on nm because N and C
are fixed (details are in Terada et al. (2013)). Therefore, we use f(nm) to describe the
minimum P-value of Gm, and testable Gm satisfy f(nm) ≤ δ while untestable ones satisfy
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Data: associations between SNPs and patients, traits of patients, and significance level α
Result: the set of itemsets whose P-value ≤ δ in I
n← the number of patients whose classes are 1
δ ← 1.0
while n > 0 do
I ← itemsets (combinations of SNPs) that relate n or more patients.
(run the FIM algorithm)
mn ← |I|
δ ← α/mn

if δ < f(n− 1) then
break

end

end
Algorithm 1: LAMP

f(nm) > δ. f(nm) is calculated when the values in the contingency table are the most
biased, and the minimum P-value is achieved at x(Gm) = min{nm, C}. Note that f(x)
monotonically increases with decreasing x(Terada et al., 2013).

We need to solve an optimization problem to find the largest δ so that FWER keeps
below α. With the property,

FWER = Pr({m | P (Gm) ≤ δ for m ∈ {1, . . . ,M}} = φ)

≤
M∑
m=1

Pr(P (Gm) ≤ δ) ≤
∑

m∈{m|f(nm)≤δ}

Pr(P (Gm) ≤ δ)

≤ |{m | f(nm) ≤ δ for m ∈ {1, . . . ,M}}|δ = M ′δ,

where M ′ = |{m|f(n) ≤ δ}| and n is the largest value that satisfy f(n) ≤ δ. In other
words, M ′ is the number of testable tests. Hence, we can set δ to α/M ′ unless M ′δ ≤ α.
Because δ depends on n, LAMP determines the largest n to set FWER bound δmn below
α. Calculating mn from high-dimensional data can be performed using a frequent pattern
mining (FIM) algorithm (Uno et al., 2003).

The pseudo-code of LAMP procedure is described in Algorithm 1. LAMP uses the
property that f(n) monotonically increases with decreasing n when n ≤ C. n is initially
set to the possible largest value, and subsequently decreases until δ > f(n− 1). In the next
section, we use the property to address the graph mining setting.

3. Enumerating testable itemset-associated subgraphs

We here introduce the testable subgraphs that are associated with the maximal itemset-
sharing subgraphs and show that LAMP can address subgraphs using the replacement of
the FIM algorithm with a graph-mining algorithm.

We here show that the number of maximal ISSes is used as the Bonferroni factor.

Definition:
(Maximal ISS) For ISSes G, when no ISS G′ whose V (G) ⊆ V (G′), E(G) ⊆ E(G′) and
I(G) ⊆ I(G′) exists, G is defined as the maximal ISS.
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Data: IA graph G, class C, significance level α
Result: the set of itemsets whose P-value ≤ δ in G
n← |{i|ci = 1}|
δ ← 1.0
while n > 0 do
Gn ← run COIN to find maximal ISSes that relate n or more items in G
mn ← |Gn|
δ ← α/mn

if δ < f(n− 1) then
break

end
n← n− 1

end
Algorithm 2: gLAMP

Property:
Only maximal ISSes should be counted in Bonferroni factor.

Proof Suppose that G is not a maximal ISS. In this case, a maximal ISS G′ whose
I(G′) = I(G) exists from the definition. When I(G) = I(G′), the contingency table of G is
identical to the contingency table of G′, and hence we can safely remove G from Bonferroni
factor. Therefore, we need to count only maximal ISSes in Bonferroni factor.

The following property guarantees that we use the ISS enumeration technique instead
of FIM algorithm in LAMP.

Property:
(Adding a vertex decreases the size of common itemset) Let G be an ISS. Let G′ be an ISS
generated by adding node v 6∈ V (G). I(G′) ⊆ I(G) for any v.

By adding node v to G, For a maximal graph G′ having vertices V ∪ {v} where v 6∈ V ,
I(G′) ⊂ I(G).

From the property, we can conclude the following property. The property shows that the
Bonferroni factor decreases according to the increase of n, and hence the minimum P-value
associated with the subgraphs increases.

Property:
Let Gn be a set of maximal ISSes that relate n or more items. Between Gn and Gn+1,
Gn ⊇ Gn+1 holds. Hence, |Gn| ≥ |Gn+1|

These properties allow us to replace the FIM algorithm with the graph-mining algorithm
to find maximal ISSes called COmmon Itemset Network mining (COIN) (Sese et al., 2010)
in LAMP to enumerate statistically significant subgraphs (Algorithm 2). The difference
between LAMP in Algorithm 1 and gLAMP in Algorithm 2 is only at line 3, in which the
FIM algorithm is replaced with COIN.
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4. Summary and Future Work

We introduced an algorithm to a multiple testing procedure algorithm for subgraphs in a
large complex graph. The procedure uses the main framework of LAMP and replaces the
FIM algorithm in LAMP with COIN.

Minato et al. (Minato et al., 2014) introduced an efficient algorithm for LAMP, which
uses depth-first traversal instead of LAMP’s breadth-first traversal. gLAMP inherits the
LAMP’s breadth-first traversal, and the dept-first traversal would be applicable to the
proposed problem.

This paper only demonstrated the theoretical points of the statistically sound graph
mining problem. We plan on implementing this procedure, and evaluating the efficiency
and usefulness of this algorithm in the future.
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