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Abstract
This paper explores a surprising equivalence be-
tween two seemingly-distinct convex optimiza-
tion methods. We show that simulated anneal-
ing, a well-studied random walk algorithms, is
directly equivalent, in a certain sense, to the cen-
tral path interior point algorithm for the the en-
tropic universal barrier function. This connection
exhibits several benefits. First, we are able im-
prove the state of the art time complexity for con-
vex optimization under the membership oracle
model by devising a new temperature schedule
for simulated annealing motivated by central path
following interior point methods. Second, we
get an efficient randomized interior point method
with an efficiently computable universal barrier
for any convex set described by a membership
oracle. Previously, efficiently computable barri-
ers were known only for particular convex sets.

1. Introduction
Convex optimization is a well established field and a cor-
nerstone of the fields of algorithms and machine learning.
Poly-time methods for convex optimization belong to rel-
atively few classes: the oldest and perhaps most general
is the ellipsoid method with roots back to Kachiyan in the
50s (see Grötschel et al. (1993)). Despite its simplicity, the
ellipsoid method tends to perform poorly in practice.

A more recent family of algorithms are the celebrated
interior point methods, initially developed by Karmarkar
in the context of linear programming, and generalized
in the seminal work of Nesterov & Nemirovskii (1994).
These methods are known to perform well in practice
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and come with rigorous theoretical guarantees of polyno-
mial running time, but with a significant catch: the un-
derlying constraints must admit an efficiently-computable
self-concordant barrier function. Barrier functions satisfy
specific differential inequality conditions which facilitate
the path-following scheme developed by Nesterov & Ne-
mirovskii (1994), in particular it guarantees that the New-
ton step procedure maintains feasibility of the iterates. In-
deed the iterative path following scheme essentially re-
duces the optimization problem to the construction of a bar-
rier function, and in many nice scenarios a self-concordant
barrier is easy to obtain; for polytopes the simple logarith-
mic barrier suffices. Yet at present there is no known uni-
versal efficient construction of a barrier for any convex set.
The problem is seemingly even more difficult in the mem-
bership oracle model where our access to the convex set K
is given only via queries of the form “is x 2 K?”.

Recently proposed algorithms for optimization use random
walks, pioneered in the work of Dyer et al. (1991) and
greatly advanced by Lovász & Vempala (2006). These al-
gorithms apply in full generality of convex optimization
and require only a membership oracle. The state of the
art in polynomial time convex optimization is the random-
walk based algorithm of simulated annealing and the spe-
cific temperature schedule analyzed in the breakthrough of
Kalai & Vempala (2006). Improvements have been given
in certain cases, most notably in the work of Narayanan &
Rakhlin (2010) where barrier functions were utilized.

In this paper we tie together two of the three known
methodologies for convex optimization, give an efficiently
computable universal barrier for interior point methods,
and derive a faster algorithm for convex optimization in the
membership oracle model. Specifically,

1. We define the heat path of a simulated annealing
method as the (determinisitc) curve formed by the mean
of the annealing distribution as the temperature param-
eter is continuously decreased. We show that the heat
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path coincides with the central path of an interior point
algorithm with the entropic universal barrier function.
This intimately ties the two major convex optimiza-
tion methods together and shows they are approximately
equivalent over any convex set.
We further enhance this connection by showing that
the central path following interior point method applied
with the universal entropic barrier is a first-order ap-
proximation of simulated annealing. (See Appendix A)

2. Using the connection above, we give an efficient ran-
domized interior point method with an efficiently com-
putable universal barrier for any convex set described
by a membership oracle. Previously, efficiently com-
putable barriers were known only for particular convex
sets such as polytopes.

3. We give a new temperature schedule for simulated an-
nealing inspired by interior point methods. This gives
rise to an algorithm for general convex optimization
with running time of ˜O(

p
⌫n4

), where ⌫ is the self-
concordance parameter of the entropic barrier for the
convex set K. The previous state of the art was ˜O(n4.5

)

by (Kalai & Vempala, 2006). Our random walk does
not need explicit access to the entropic barrier, it is used
only implicitly in the analysis of the temp. schedule.

Our work leans on the recent result Bubeck & Eldan
(2014), where it was shown that the entropic barrier sat-
isfies all require self-concordance properties and that the
associated barrier parameter satisfies ⌫  n(1 + o(1)),
although this parameter may not in general be the tight-
est possible. Our analysis improves the previous annealing
run time by a factor of ˜O(

p

n

⌫

) which in many cases is
o(1). For example, in the case of semi-definite program-
ming over matrices in Rd⇥d, n = d2, the entropic barrier
is identically the standard log-determinant barrier (Güler,
1996), exhibiting a parameter ⌫ = O(

p
n), rather than n,

which an improvement of O(

p
n) compared to the state-

of-the-art. A notable property of the entropic barrier for
convex cones is that its Fenchel conjugate corresponds to
the universal barrier proposed by (Nesterov & Nemirovskii,
1994). More details on this connection are in section E.

The Problem of Convex Optimization For the remainder
of the paper, we will be considering the following algorith-
mic optimization problem. Assume we are given access to
an arbitrary bounded convex set K ⇢ Rn, and we shall as-
sume without loss of generality that K lies in a 2-norm ball
of radius 1. Assume we are also given as input a vector
ˆ✓ 2 Rn. Our goal is to solve the following:

min

x2K
ˆ✓>x. (1)

We emphasize that this is, in a certain sense, the most gen-
eral convex optimization problem one can pose. While

the objective is linear in x, we can always reduce non-
linear convex objectives to the problem (1). If we want
to solve min

x2K f(x) for some convex f : K ! R,
we can instead define a new problem as follows. Letting
K0

:= {(x, c) 2 K ⇥ R : f(x) � c  0}, this non-
linear problem is equivalent to solving the following prob-
lem whose objective is now linear: min{(x,c)2K0} c. Note
that an efficient membership oracle for K immediately pro-
vides a membership oracle for K0.

1.1. Preliminaries

This paper ties together notions from probability theory and
convex analysis, most definitions are deferred to where they
are first used. We try to follow the conventions of inte-
rior point literature as in the excellent text of Nemirovski
(1996), and the simulated annealing and random-walk no-
tation of (Kalai & Vempala, 2006).

For some constant C, we say a distribution P is C-isotropic
if for any vector v 2 Rd we have, for the Euclidean norm,

1

C
kvk2  E

X⇠P

[(v>X)

2

]  Ckvk2.

Let P, P 0 be two distributions on Rn with means µ, µ0, re-
spectively. We say P is C-isotropic with respect to P 0 if

1

C
E

X⇠P

0
[(v>X)

2

]  E
X⇠P

[(v>X)

2

]  C E
X⇠P

0
[(v>X)

2

].

One measure of the distance between two distributions, of-
ten referred to as the `

2

norm, is given by
�

�

�

µ

⇡

�

�

�

2

⌘ E
x⇠µ

✓

µ(x)

⇡(x)

◆

=

Z

x⇠µ

✓

µ(x)

⇡(x)

◆

dµ(x).

We note that this distance is not symmetric in general.

For a differentiable convex function f : Rn ! R, the Breg-
man divergence D

f

(x, y) between points x, y 2 dom(f) is

D
f

(x, y) ⌘ f(x)� f(y)�rf(y)>(x� y).

Further, we can always define the Fenchel conjugate f⇤
(·)

of f(·) (Rockafellar, 1970), defined as

f⇤
(✓) := sup

x2dom(f)

✓>x� f(x). (2)

It is easy to see that f⇤
(·) is also convex, and under weak

conditions one has f⇤⇤
= f . A classic duality result (see

e.g. Rockafellar (1970)) states that when f⇤ is smooth and
strictly convex on its domain and tends to infinity at the
boundary, we have a characterization of the gradients of f
and f⇤ in terms of maximizers:

rf⇤
(✓) = argmax

x2dom(f)

✓>x� f(x) (3)

rf(x) = argmax

✓2dom(f

⇤
)

✓>x� f⇤
(✓).
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1.2. Structure of this paper

We start by an overview of random-walk methods for op-
timization in the next section, and introduce the notion of
the heat path for simulated annealing. The following sec-
tion surveys the important notions from interior point meth-
ods for optimization and the entropic barrier function. In
section 4 we tie the two approaches together formally by
proving that the heat path and central path are the same for
the entropic barrier. We proceed to give a new tempera-
ture schedule for simulated annealing as well as prove its
convergence properties. In the appendix we describe the
Kalai-Vempala methodology for analyzing simulated an-
nealing and its main components for completeness.

2. An Overview of Simulated Annealing
Consider the following distribution over the set K for an
arbitrary input vector ✓ 2 Rn.

P
✓

(x) := exp(�✓

>
x)R

K exp(�✓

>
x

0
) dx

0 . (4)

This is often referred to as the Boltzmann distribution and is
a natural exponential family parametrized by ✓. It was ob-
served by (Kalai & Vempala, 2006) that the optimization
objective (1) can be reduced to sampling from these distri-
butions. That is, if we choose some scaling quantity t > 0,
usually referred to as the temperature, then any sample X
from the distribution P

ˆ

✓/t

must be nt-optimal in expecta-
tion. More precisely, (Kalai & Vempala, 2006) show that

E
X⇠P✓̂/t

[

ˆ✓>X]�min

x2K
ˆ✓>x  nt. (5)

As we show later, our connection implies an even stronger
statement, replacing n above by the self-concordant param-
eter of the entropic barrier, as we will define in the next
section equation (10).

It is quite natural that for small temperature parameter
t 2 R, samples from the P ✓

t
are near-optimal solutions

to the objective (1) – the exponential nature of the distri-
bution will eventually concentrate all probability mass on a
small neightborhood around the minimizing point x⇤ 2 K.
The problem, of course, is that sampling from a point mass
around x⇤ is nearly as hard as finding x⇤.

This brings us to the technique of so-called simulated an-
nealing, originally introduced by Kirkpatrick et al. (1983)
for solving generic problems of the form min

x2K f(x), for
arbitrary (potentially non-convex) functions f . At a very
high level, simulated annealing would begin by sampling
from a “high-entropy” distribution (t very close to 0), and
then continue by slowly “turning down the temperature” on
the distribution, i.e. decreasing t, which involves sampling
according to the pdf Q

f,t

(x) / exp(� 1

t

f(x)). The intu-

ition behind annealing is that, as long as t0/t is a small con-
stant, then the distributions Q

f,t

0 and Q
f,t

will be “close”
in the sense that a random walk starting from the initial
distribution Q

f,t

0 will “mix quickly” towards its stationary
distribution Q

f,t

.

Since its inception, simulated annealing is generally re-
ferred to as a heuristic for optimization, as polynomial-
time guarantees have been difficult to establish. How-
ever, the seminal work of Kalai & Vempala (2006) ex-
hibited a poly-time annealing method with formal guaran-
tees for solving linear optimization problems in the form
of (1). Their technique possessed a particularly nice fea-
ture: the sampling algorithm utilizes a well-studied ran-
dom walk (Markov chain) known as HITANDRUN (Smith,
1984; Lovász, 1999; Lovász & Vempala, 2006), and the
execution of this Markov chain requires only access to a
membership oracle on the set K. That is, HITANDRUN
relies not on a full description of K but only the ability to
answer queries “x 2 K?” for arbitrary x 2 Rd.

Let us now describe the HITANDRUN algorithm in detail.
We note that this Markov chain was first introduced by
Smith (1984), a poly-time guarantee was given by Lovász
(1999) for uniform sampling, and this was generalized to
arbitrary log-concave distributions by Lovász & Vempala
(2003). HITANDRUN requires several inputs, including:
(a) the distribution parameter ✓, (b) an estimate of the co-
variance matrix ⌃ of P

✓

, (c) the membership oracle OK, for
K, (d) a starting point X

0

, and (e) the number of iterations
N of the random walk.

Algorithm 1 HITANDRUN(✓,OK, N,⌃, X
0

) for approxi-
mately sampling P

✓

Inputs: parameter vector ✓, oracle OK for K, covariance
matrix ⌃, #iterations N , initial X

0

2 K.
for i = 1, 2, . . . , N do

Sample a random direction u ⇠ N(0,⌃)
Querying OK, determine the line segment R =

{X
i�1

+ ⇢u : ⇢ 2 R} \K
Sample a point X

i

from R according to the distribu-
tion P

✓

restricted to R
end for
Return X

N

The first key fact of HITANDRUN(✓) is that the stationary
distribution of this Markov chain is indeed the desired P

✓

;
a proof can be found in (Vempala, 2005). The difficulty
for this and many other random walk techniques is to show
that the Markov chain “mixes quickly”, in that one needs
only few steps N in terms of the dimension n. This issue
has been the subject of much research will be discussed
below. Before proceeding, we note that a single step of HI-
TANDRUN can be executed quite efficiently. Sampling a
random gaussian vector with covariance ⌃ (line 2) can be
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Figure 1. The progression of two Hit-and-Run random walks for
a high temperature (red squares) and a low temperature (black
circles). Notice that at low temperature the walk coverges very
quickly to a corner of K.

achieved by simply sampling a standard gaussian vector z
and returning ⌃

1/2z. Computing the line segment R (line
2) requires simply finding the two locations where the line
{X

i�1

+ ⇢u : ⇢ 2 R} intersects with the boundary of K,
but an ✏-approximation of these points can be found via bi-
nary search using O

�

log

1

✏

�

queries to OK. Sampling from
P
✓

restricted to the line segment R can also be achieved
efficiently, and we refer the reader to Vempala (2005).

The analysis for simulated annealing in (Kalai & Vempala,
2006) proceeds by imagining a sequence of distributions
P
✓k = P

ˆ

✓/tk
where t

1

= R is the diameter of the set K
and t

k

:=

⇣

1� 1p
n

⌘

k

. Let k = O(

p
n log

n

✏

), then sam-
pling from P

✓k is enough to achieve the desired optimiza-
tion guarantee. That is, via Equation 5, we see a sample
from P

✓k is ✏-optimal in expectation.

To sample from P
✓k , (Kalai & Vempala, 2006) construct

a recursive sampling oracle using HITANDRUN. The idea
is that samples from P

✓k+1 can be obtained from a warm
start by sampling from P

✓k according to a carefully chosen
temperature schedule. The details are given in Algorithm 2.

The Kalai & Vempala (2006) analysis leans on a number
of technical but crucial facts which they prove. The tem-
perature update schedule that they devise, namely t

k

=

(1� 1p
n

)

k, is shown to satisfy these iterative rules and thus
return an approximate solution.

Theorem 1 (Key result of Kalai & Vempala (2006) and
Lovász & Vempala (2003)). Fix k and consider the
HITANDRUN walk used in Algorithm 2 to compute X

k

and
Y j

k

for each j. Assume we choose the temperature schedule
in order that successive distributions P

✓k , P✓k�1 are close
in `

2

:

max

⇢

�

�

�

P✓k
P✓k�1

�

�

�

2

,
�

�

�

P✓k�1

P✓k

�

�

�

2

�

 10. (6)

Algorithm 2 SIMULATEDANNEALING WITH HITAN-
DRUN – Kalai & Vempala (2006)

Input: temperature schedule {t
k

, k 2 [T ]}, objective ˆ✓
Set X

0

= 0, ⌃
1

= I , t
1

= R
for k = 1, ..., T do
✓
k

 ˆ

✓

tk

X
k

 HITANDRUN(✓
k

,OK, N,⌃
k

, X
k�1

)

for j = 1, .., n do
Y j

k

= HITANDRUN(✓
k

,OK, N,⌃
k

, Y j

k�1

)

end for
Estimate covariance: ⌃

k+1

:= CovMtx(Y k

1

, . . . , Y k

n

)

end for
Return X

T

Then, as long as the warm start samples X
k�1

and Y j

k�1

are (approximately) distributed according to P
✓k�1 , the

random walk HITANDRUN mixes to P
✓k with N =

˜O(n3

)

steps. That is, the output samples X
k

and Y j

k

are dis-
tributed according to P

✓k up to error  ✏.

In the appendix we sketch the proof of this theorem for
completeness.

Corollary 1. The temperature schedule t
k

:=

(1� 1/
p
n)

k

t
1

satisfies condition (6), and thus Al-
gorithm 2 with this schedule returns an ✏-approximate
solution in time ˜O(n4.5

).

Proof. By equation (5), to achieve ✏ error it suffice that
1

t

� n

✏

, or in other words k needs to be large enough such
that (1 � 1p

n

)

k  ✏

n

for which k = 8

p
n log

n

✏

suffices:

(1� 1p
n

)

k  e
� k

2
p

n
= e�4 log

n
✏  ✏

n

. Hence the tempera-
ture schedule need be applied with T =

˜O(

p
n) iterations.

Each iteration requires O(n) applications of HITANDRUN
that cost O(n3

), for the total running time of ˜O(n4.5

).

In later sections we give a more refined temperature sched-
ule that satisfies the Kalai-Vempala conditions, and thus
results in a faster algorithm. Our temperature schedule is
based on new observations in interior point methods, which
we describe next.

2.1. The heat path for simulated annealing

Our main result follow from the observation that the path-
following interior point method has an analogue in the ran-
dom walk world. Simulated annealing incorporates a care-
fully chosen temperature schedule to reach its objective
from a near-uniform distribution. We can think of all tem-
perature schedules as performing a random process whose
changing mean is a single well-defined curve. For a given
convex set K ✓ Rd and objective ˆ✓, define the heat path
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as the following set of points, parametrized by the temper-
ature t 2 (0,1) as follows:

HEATPATH(t) = E
x⇠P✓̂/t

[x].

We can now define the heat path as HEATPATH =

[
t�0

{HEATPATH(t)}. At this point it is not yet clear why
this set of points is even a continuous curve in space, let
alone equivalent to an analogous notion in the interior point
world. We will return to this equivalence in section 4.

3. An Overview of Interior Point Methods for
Optimization

Let us now review the vast literature on Interior Point Meth-
ods (IPMs) for optimization, and in particular the use of
the Iterative Newton Step technique. The first instance of
polynomial time algorithms for convex optimization using
interior point machinery was the linear programming algo-
rithm of Karmarkar (1984). The pioneering book of Nes-
terov & Nemirovskii (1994) brought up techniques in con-
vex analysis that allowed for polynomial time algorithms
for much more general convex optimization. This is re-
viewed in great detail and clarity in (Nemirovski, 1996) .

The goal remains the same, to solve the linear optimiza-
tion problem posed in Equation (1). The intuition behind
IPMs is that iterative update schemes such as gradient de-
scent for solving (1) can fail because the boundary of K
can be difficult to manage, and “moving in the direction
of descent” will fail to achieve a fast rate of convergence.
Thus one needs to “smooth out” the objective with the help
of an additional function. In order to produce an efficient
algorithm, a well-suited type of function is known as a self-
concordant barrier.

A self-concordant barrier function ' : int(K) ! R, with
barrier parameter ⌫, is a convex function satisfying two
differential conditions as follows. For any h 2 Rn and any
x 2 K,

r3'[h, h, h]  2(r2'[h, h])3/2, and

r'[h] 
p

⌫r2'[h, h]. (7)

In addition, the barrier function should approach infinity
when approaching the boundary of K. Such function pos-
sess very desirable properties from the perspective of op-
timization, several of which we discuss in the present sec-
tion. The existence of such a self-concordant barrier func-
tion ' for general sets K has been given by Nesterov & Ne-
mirovskii (1994), and called the universal barrier with pa-
rameter parameter ⌫ = O(n). We discuss this construction
in more detail in Appendix E. However, their construction
was not efficient—to compute the Hessian and gradient of
� can take exponential time in the worst case. Constructing

a universal self-concordant barrier function whose Hessian
and gradients can be computed in polynomial time has re-
mained elusive and was considered an important question
in convex optimization.

This indeed suggests that the annealing results we previ-
ously outlined are highly desirable, as HITANDRUN re-
quires only a membership oracle on K. However, one of
the central results of the present work is the equivalence be-
tween annealing and IPMs, where we show that sampling
gives one implicit access to a particular barrier function
thereby resolving this question in optimization. This will
be discussed at length in Section 4.

Let us now assume we are given such a function ' with
barrier parameter ⌫. A standard approach to solving (1) is
to add the function '(x) to the primary objective, scaling
the linear term by a “temperature” parameter t > 0:

min

x2K
{tˆ✓>x+ '(x)}. (8)

As the the temperature t tends to1 the solution of (8) will
tend towards the optimal solution to 1. This result is proved
for completeness in Theorem 2.

Towards developing in detail the iterative Newton algo-
rithm, let us define the following for every positive int. k:

t
k

:=

⇣

1 +

cp
⌫

⌘

k

for some c > 0, (9)

�

k

(x) := t
k

ˆ✓>x+ '(x)

x̄
k

:= argmin

x

�

k

(x)

We give a visual description of the sequence of “regular-
ized” objective functions �

k

(·) in Figure 2.

As ' is a barrier function, it is clear that x̄
k

is in the
interior of K and, in particular, r�

k

(x̄
k

) = 0 =)
r'(x̄

k

) = t
k

ˆ✓. It is shown in (Nemirovski, 1996) (Equa-
tion 3.6) that any ⌫-SCB (Self-Concordant Barrier) ' satis-
fiesr'(x)>(y�x)  ⌫, whence we can bound the differ-
ence in objective value between x̄

k

and the optimal point
x⇤:

ˆ✓>(x⇤ � x̄
k

) =

r'(x̄
k

)

>
(x⇤ � x̄

k

)

t
k

 ⌫

t
k

. (10)

We see that the approximation point x̄
k

becomes expo-
nentially better as k increases. Indeed, setting k =

d
p
⌫

c

log(⌫/✏)e guarantees that the error is bounded by ✏.

The iterative Newton’s method technique actually involves
approximating x̄

k

with x̂
k

, a near-optimal maximizer of
�

k

, at each iteration k. For an arbitrary v 2 Rn, x 2
int(K), and any k � 1, following (Nemirovski, 1996) we
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Figure 2. A visual display of the objective �
k

(·) for increasing
values of t

k

.

define:

kvk
x

:=

q

v>r2'(x)v,

kvk⇤
x

:=

q

v>r�2'(x)v,

�(x, t
k

) := kr�
k

(x)k⇤
x

We refer to kvk
x

as the “local norm” of v w.r.t x. Note
that, for a fixed point x 2 K, the norms k · k

x

and k · k⇤
x

are dual to each other.1 Also, we refer to �(x, t
k

) as the
Newton decrement of x for temperature t

k

. Indeed �(x, t
k

)

will be used both as a quantity in the algorithm, and as an
important potential that we need to be controlled.

In Algorithm 3, we describe the damped newton update al-
gorithm, henceforth called ITERATIVENEWTONSTEP.

Algorithm 3 ITERATIVENEWTONSTEP

Input: ˆ✓ 2 Rd, K and barrier function '
Solve: x̂

0

= argmax

x2K ˆ✓>x+ '(x)
for k = 1, 2, . . . do
x̂
k

 x̂
k�1

� 1

1+�(x̂k�1,tk)
r�2'(x̂

k�1

)r�
k

(x̂
k�1

)

end for

The most difficult part of the analysis is in the following
two lemmas, which are crucial elements of the ITERATIVE-
NEWTONSTEP analysis. A full exposition of these results
is found in the excellent survey (Nemirovski, 1996). The
first lemma tells us that when we update the temperature,
we don’t perturb the Newton decrement too much. The
second lemma establishes the quadratic convergence of the
Newton Update for a fixed temperature.

1Technically, for k ·k
x

and its dual to be a norm, we need r2
'

to be positive definite and ' to be strictly convex. One can verify
this is the case for bounded sets, which is the focus of this paper.

Lemma 1. Let c be the constant chosen in the definition
(9). Let t > 0 be arbitrary and let t0 = t

⇣

1 +

cp
⌫

⌘

. Then
for any x 2 int(K), we have �(x, t0)  (1 + c)�(x, t) + c.

Lemma 2. Let k be arbitrary and assume we have some
x̂
k�1

such that �(x̂
k�1

, t
k

) is finite. The Newton update
x̂
k

satisfies �(x̂
k

, t
k

)  2�2

(x̂
k�1

, t
k

).

The previous two lemmas can be combined to show that
the following invariant is maintained. Neither the constant
bound of 1/3 on the Newton decrement nor the choice of
c = 1/20 are particularly fundamental; they are convenient
for the analysis but alternative choices are possible.

Lemma 3. Assume we choose c = 1/20 for the parameter
in (9). Then for all k we have �(x̂

k

, t
k

) < 1

3

.

Proof. We give a simple proof by induction. The base case
is satisfied since we assume that �(x̂

0

, t
0

) = 0, as t
0

= 1.2
For the inductive step, assume �(x̂

k�1

, t
k�1

) < 1/3. Then

�(x̂
k

, t
k

)  2�2

(x̂
k�1

, t
k

)

 2((1 + c)�(x̂
k�1

, t
k�1

) + c)2

< 2(0.4)2 < 1/3.

The first inequality follows by Lemma 2 and the second by
Lemma 1.

Theorem 2. Let x⇤ be a solution to the objective (1). For
every k, x̂

k

is an ✏
k

-approximate solution to (1), where
✏
k

=

⌫+

p
⌫/4

tk
. In particular, for any ✏ > 0, as long as

k >
p
⌫

c

log(2⌫/✏) then x̂
k

is an ✏-approximation solution.

Proof. Let k be arbitrary. Then,

ˆ✓>(x̂
k

� x⇤
) =

ˆ✓>(x̄
k

� x⇤
) +

ˆ✓>(x̂
k

� x̄
k

)

(By (10))  ⌫

tk
+

ˆ✓>(x̂
k

� x̄
k

)

(Hölder’s Inequality)  ⌫

tk
+ kˆ✓k⇤

x̄k
kx̄

k

� x̂
k

k
x̄k

(Nemirovski (1996) Eqn. 2.20)  ⌫

tk
+ kˆ✓k⇤

x̄k

�(x̂k,tk)

1��(x̂k,tk)

(Applying Lemma 3)  ⌫

tk
+

�

�

�

r'(x̄k)

tk

�

�

�

⇤

x̄k

1

4

(Applying (11))  ⌫ +

p
⌫/4

t
k

The last equation utilizes a fact that derives immediately
from the definition (7), namely

kr'⇤
(x)k⇤

x

= kr'⇤
(x)k

✓(x)

 p⌫ (11)

holds for any ⌫-SCBF ' and any x 2 K.
2As stated, Algorithm 3 requires finding the minimizer of '(·)

on K, but this is not strictly necessary. The convergence rate can
be established as long as a “reasonable” initial point x̂0 can be
computed—e.g. it suffices that �(x̂0, 1) < 1/2.
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We proceed to give a specific barrier function that applies
to any convex set and gives rise to an efficient algorithm.

4. The Equivalence of IterativeNewton and
SimulatedAnnealing

We now show that the previous two techniques, Iterative
Newton’s Method and Simulated Annealing, are in a cer-
tain sense two sides of the same coin. In particular, with the
appropriate choice of barrier function ' the task of com-
puting the sequence of Newton iterates x̂

1

, x̂
2

, . . . may be
viewed precisely as estimating the means for each of the
distributions P

✓1 , P✓2 , . . .. This correspondence helps to
unify two very popular optimization methods, but also pro-
vides three additional novel results:

1. We show that the heat path for simulated annealing is
equivalent to the central path with the entropic barrier.

2. We show that the running time of Simulated Anneal-
ing can be improved to O(n4

p
⌫) from the previous

best of O(n4.5

). In the most general case we know that
⌫ = O(n), but there are many convex sets in which the
parameter ⌫ is significantly smaller. Notably such is the
case for the positive-semi-definite cone, which is the ba-
sis of semi-definite programming. Further examples are
surveyed in section E.

3. We show that Iterative Newton’s Method, which previ-
ously required a barrier function on the set K, can now
be executed efficiently where the only access to K is
through a membership oracle. This method relies heav-
ily on previously-developed sampling techniques (Kalai
& Vempala, 2006). Discussion is deferred to Appendix
D.

In Appendix E, we also give a brief overview the work re-
lating the so-called universal barrier to the entropic barrier,
and we discuss what is known when the underlying set K
is a cone. For a number of very natural cones—e.g. the
PSD cone, the positive orthant, the Lorentz cone—the en-
tropic barrier coincides exactly with the typical logarithmic
barriers used in practice.

4.1. The Duality of Optimization and Sampling

We begin by rewriting our Boltzmann distribution for ✓ in
exponential family form,

P
✓

(x) := exp(�✓>x�A(✓)) (12)

where A(✓) := log

Z

K

exp(�✓>x0
)dx0.

The function A(·) is known as the log partition function
of the exponential family, and it has several very natural

properties in terms of the mean and variance of P
✓

:

rA(✓) = � E
X⇠P✓

[X] (13)

r2A(✓) = E
X⇠P✓

[(X � EX)(X � EX)

>
]. (14)

We can also appeal to Convex (Fenchel) Duality (Rockafel-
lar, 1970) to obtain the conjugate

A⇤
(x) := sup

✓

✓>x�A(✓). (15)

It is easy to establish that A⇤ is smooth and strictly convex.
The domain of A⇤

(·) is precisely the space of gradients of
A(·), and it is straightforward to show that this is the set
int(�K), the interior of the reflection of K about the origin.
However we want a function defined on (the interior of) K,
not its reflection, so let us define a new function A⇤

�(x) :=
A⇤

(�x) whose domain is int(K). We now present a recent
result of Bubeck & Eldan (2014).
Theorem 3 ((Bubeck & Eldan, 2014)). The function A⇤

� is
a ⌫-self-concordant barrier function on K with ⌫  n(1 +
o(1)).

One of the significant drawbacks of barrier/Newton tech-
niques is the need for a readily-available self-concordant
barrier function. In their early work on interior point meth-
ods, Nesterov & Nemirovskii (1994) provided such a func-
tion, often referred to as the “universal barrier”, yet the ac-
tual construction was given implicitly without oracle access
to function values or derivatives. Bubeck & Eldan (2014)
refer to function A⇤

�(·) as the entropic barrier, a term we
will also use, as it relates to a notion of differential entropy
of the exponential family of distributions.

It is important to note that when our set of interest is a
cone K, the entropic barrier on K corresponds exactly
to the Fenchel dual of the universal barrier on the dual
cone K⇤ (Güler, 1997). This fact immediately establishes
self-concordance. Indeed, many beautiful properties of the
entropic barrier on cones have been developed, and for a
number of special cases A⇤

�(·) corresponds exactly to the
canonical barrier used in practice; e.g. A⇤

�(·) on the PSD
cone corresponds to the log-determinant barrier. In many
such cases one obtains a much smaller barrier parameter ⌫
than the n(1+o(1)) bound. We defer a complete discussion
to Section E.

In order to utilize A⇤
�(·) as a barrier function as in (8) we

must be able to approximately solve objectives of the form
min

x2K{✓>x + A⇤
�(x)}. One of the key observations of

the paper, given in the following Proposition, is that solv-
ing this objective correponds to computing the mean of the
distribution P

✓

.
Proposition 1. Let ✓ 2 Rn be arbitrary, and let P

✓

be
defined as in (12). Then we have

E
X⇠P✓

[X] = argmin

x2int(K)

�

✓>x+A⇤
�(x)

 

. (16)
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Proof. Let ✓ be an arbitrary input vector. As we mentioned
in (3), standard Fechel duality theory gives us

rA(✓) = argmax

x2dom(A

⇤
)

�

✓>x�A⇤
(x)
 

= argmin

x2dom(A

⇤
)

��✓>x+A⇤
(x)
 

.

It can be verified that the domain of A⇤ is precisely the
interior of �K, the reflection of K. Thus we have

rA(✓) = argmin

x2int(�K)

��✓>x+A⇤
(x)
 

= �
 

argmin

x2int(K)

�

✓>x+A⇤
�(x)

 

!

.

In addition, we noted in (13) that rA(✓) = �E
X⇠P✓ [X].

Combining the latter two facts gives the result.

We now have a direct connection between sampling meth-
ods and barrier optimization. For the remainder of this
section, we shall assume that our chosen '(·) is the en-
tropic barrier A⇤

(·), and the quantities �
k

(·), k · k
x

,�(·, ·)
are defined accordingly. We shall also use the notation
x(✓) := E

X⇠P✓ [X] = �rA(✓).
Lemma 4. Let ✓, ✓0 be such that kx(✓0) � x(✓)k

x(✓)

 1

2

.
Then we have

D
A

⇤
�
(x(✓0), x(✓)) = KL(P 0

✓

, P
✓

) = D
A

(✓, ✓0)

 2kx(✓0)� x(✓)k2
x(✓)

Proof. The duality relationship of the Bregman divergence,
and its equivalence to Kullback-Leibler divergence, is clas-
sical and can be found in, e.g., (Wainwright & Jordan,
2008) equation (5.10) The final inequality follow as a direct
consequence of (Nemirovski, 1996), Equation 2.4.

4.2. Equivalence of the heat path and central path

The most appealing observation on the equivalence be-
tween random walk optimization and interior point meth-
ods is the following geometric equivalence of curves. For
a given convex set K ✓ Rd and objective ˆ✓, define the heat
path as the following set of points:

HEATPATH = [
t�0

{HEATPATH(t)} = [
t�0

{ E
x⇠P ✓̂

t

[x]}

To see that this set of points is a continuous curve in space,
consider the central path w.r.t. barrier function '(x):

CENTRALPATH(') = [
t�0

{argmin

x2K
tˆ✓>x+ '(x)}

It is well known that the central path is a continuous curve
in space for any self-concordant barrier function �. We now
have the following immediate corollary of Proposition 1:

Figure 3. For a set of seven different temperatures t, we used Hit-
and-Run to generate and scatter plot several samples from P

✓/t

using colored circles. We also computed the true means for each
distribution, plotted with squares, giving a curve representing the
HEATPATH across the seven temperatures. Of course via Corol-
lary 2 this corresponds exactly to the CENTRALPATH for the en-
tropic barrier.

Corollary 2. The central path corresponding to the self-
concordant barrier A⇤ over any set K is equivalent to the
heat path over the same set, i.e.

HEATPATH ⌘ CENTRALPATH(A⇤
)

This mathematical equivalence is demonstrated in figure 3
generated by simulation over a polytope.

4.3. IPM techniques for sampling and the new schedule

We now prove our main theorem, formally stated as:

Theorem 4. The temperature schedule of ✓
1

= R where
R = diam(K) and ✓

k

:=

⇣

1� 1

4

p
⌫

⌘

✓
k�1

, for ⌫ being
the self-concordance parameter of the entropic barrier for
the set K, satisfies condition (6) of theorem 1. Therefore
algorithm 2 with this schedule returns an ✏-approximate
solution in time ˜O(

p
⌫n4

).

Condition (6) is formally proved in the following lemma,
which crucially uses the interior point methodology,
namely Lemma 3.

Lemma 5. Consider distributions P
✓

and P
✓

0 where ✓0 =
(1 + �)✓ for � < 1

6

p
⌫

. Then we have the following bound
on the `

2

distance between distributions:

max

(

�

�

�

�

P
✓

P
(1+�)✓

�

�

�

�

2

,

�

�

�

�

P
(1+�)✓

P
✓

�

�

�

�

2

)

 10

The proof of this lemma is of the primary technical contri-
butions of the present work, and we defer it to Appendix C
due to space considerations.
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