Model-Free Trajectory Optimization for Reinforcement Learning (Supplementary Material)

Riad Akrour ${ }^{1}$
Abbas Abdolmaleki ${ }^{3}$
Hany Abdulsamad ${ }^{2}$
Gerhard Neumann ${ }^{1}$
1: CLAS, 2: IAS, TU Darmstadt, Darmstadt, Germany
3: IEETA, University of Aveiro, Aveiro, Portugal

AKROUR@IAS.TU-DARMSTADT.DE
ABBAS.A@UA.PT
ABDULSAMAD@IAS.TU-DARMSTADT.DE
NEUMANN@IAS.TU-DARMSTADT.DE

1. Dual Function

Recall the quadratic form of the Q-Function $\tilde{Q}_{t}(s, a)$ in the action a and state s

$$
\begin{equation*}
\tilde{Q}_{t}(s, a)=\frac{1}{2} a^{T} Q_{a a} a+a^{T} Q_{a s} s+a^{T} q_{a}+q(s) \tag{1}
\end{equation*}
$$

The new policy $\pi_{t}^{\prime}(a \mid s)$ solution of the constrained maximization problem is again of linear-Gaussian form and given by

$$
\pi_{t}^{\prime}(a \mid s)=\mathcal{N}\left(a \mid F L s+F f, F\left(\eta^{*}+\omega^{*}\right)\right)
$$

such that the gain matrix, bias and covariance matrix of π_{t}^{\prime} are function of matrices F and L and vector f where

$$
\begin{aligned}
& F=\left(\eta^{*} \Sigma_{t}^{-1}-Q_{a a}\right)^{-1}, \quad L=\eta^{*} \Sigma_{t}^{-1} K_{t}+Q_{a s} \\
& f=\eta^{*} \Sigma_{t}^{-1} k_{t}+q_{a}
\end{aligned}
$$

With η^{*} and ω^{*} the optimal Lagrange multipliers related to the KL and entropy constraints, obtained by minimizing the dual function

$$
\begin{aligned}
& g_{t}(\eta, \omega)=\eta \epsilon-\omega \beta+(\eta+\omega) \int \tilde{\rho}_{t}(s) \\
& \log \left(\int \pi(a \mid s)^{\eta /(\eta+\omega)} \exp \left(\tilde{Q}_{t}(s, a) /(\eta+\omega)\right)\right) \mathrm{d} \mathbf{s}
\end{aligned}
$$

From the quadratic form of $\tilde{Q}_{t}(s, a)$ and by additionally assuming that the state distribution is approximated by $\tilde{\rho}_{t}(\mathbf{s})=\mathcal{N}\left(\mathbf{s} \mid \mu_{\mathbf{s}}, \Sigma_{\mathbf{s}}\right)$, the dual function simplifies to
$g_{t}(\eta, \omega)=\eta \epsilon-\omega \beta+\mu_{\mathbf{s}}^{T} M \mu_{\mathbf{s}}+\operatorname{tr}\left(\Sigma_{s} M\right)+\mu_{\mathbf{s}}^{T} m+m_{0}$.
Where M, m and m_{0} are defined by

$$
\begin{aligned}
& M=\frac{1}{2}\left(L^{T} F L-\eta K_{t}^{T} \Sigma_{t}^{-1} K_{t}\right), m=L^{T} F f-\eta K_{t}^{T} \Sigma_{t}^{-1} k_{t} \\
& m_{0}=\frac{1}{2}\left(f^{T} F f-\eta k_{t}^{T} \Sigma_{t}^{-1} k_{t}-\eta \log \left|2 \pi \Sigma_{t}\right|\right. \\
& \\
& \quad+(\eta+\omega) \log |2 \pi(\eta+\omega) F|)
\end{aligned}
$$

