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Abstract
Many classical algorithms are found until several
years later to outlive the confines in which they
were conceived, and continue to be relevant in
unforeseen settings. In this paper, we show that
SVRG is one such method: being originally de-
signed for strongly convex objectives, it is also
very robust in non-strongly convex or sum-of-
non-convex settings.

More precisely, we provide new analysis to im-
prove the state-of-the-art running times in both
settings by either applying SVRG or its novel
variant. Since non-strongly convex objectives in-
clude important examples such as Lasso or logis-
tic regression, and sum-of-non-convex objectives
include famous examples such as stochastic PCA
and is even believed to be related to training deep
neural nets, our results also imply better perfor-
mances in these applications.1

1. Introduction
The fundamental algorithmic problem in optimization is
to design efficient algorithms for solving certain classes
of problems. By distinguishing between smooth and non-
smooth functions, between weakly-convex and strongly-
convex functions, between proximal and non-proximal
functions, or even between convex and non-convex func-
tions, the number of classes grows exponentially and it may
be unrealistic to design a new algorithm for each specific
class. Taking into account such “design complexity”, it is
beneficial to design a single method the works for multiple
classes, or perhaps even more beneficial if this method is

1The full version of this paper can be found on http://
arxiv.org/abs/1506.01972.
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already widely used and happens to outlive the confines
it was originally designed for. Easier done in practice,
providing a support theory unifying the underlying classes
for a specific method is particularly exciting, challenging,
and sometimes even enlightening: the theoretical findings
may further suggest experimentalists regarding how such a
method should be best tuned in practice.

In this paper, we revisit the SVRG method by Johnson and
Zhang (Johnson & Zhang, 2013) and explore its applica-
tions to either a non-strongly convex objective, or a sum-
of-non-convex objective, or even both. We show faster con-
vergence results for minimizing such objectives by either
directly applying SVRG or modifying it in a novel manner.

Consider the following composite convex minimization:

min
x∈Rd

{
F (x)

def
= f(x) + Ψ(x)

def
=

1

n

n∑
i=1

fi(x) + Ψ(x)
}
.

(1.1)
Here, f(x) = 1

n

∑n
i=1 fi(x) is a convex function that

is written as a finite average of n smooth functions
fi(x),2 and Ψ(x) is a relatively simple (but possibly non-
differentiable) convex function, sometimes referred to as
the proximal function. Suppose we are interested in find-
ing an approximate minimizer x ∈ Rd satisfying F (x) ≤
F (x∗) + ε, where x∗ is a minimizer of F (x).

Examples. Problems of this form arise in many places
in machine learning, statistics, and operations research.
For instance, many regularized empirical risk minimiza-
tion (ERM) problems fall into this category with convex
fi(·). In such problems, we are given n training examples
{(a1, `1), . . . (an, `n)}, where each ai ∈ Rd is the feature
vector of example i, and each `i ∈ R is the label of exam-
ple i. The following classification and regression problems
are well-known examples of ERM:

• Ridge Regression: fi(x) = 1
2 (〈ai, x〉 − `i)2 + σ

2 ‖x‖22
and Ψ(x) = 0.

2In fact, even if each fi(x) is not smooth but only Lipschitz
continuous, standard smoothing techniques such as Chapter 2.3
of (Hazan, 2015) can make each fi(x) smooth without sacrificing
too much accuracy.

http://arxiv.org/abs/1506.01972
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• Lasso: fi(x) = 1
2 (〈ai, x〉 − `i)2 and Ψ(x) = σ‖x‖1.

• `1-Regularized Logistic Regression: fi(x) = log(1 +
exp(−`i〈ai, x〉)) and Ψ(x) = σ‖x‖1.

Another important problem that falls into this category is
the principle component analysis (PCA) problem. Sup-
pose we are given n data vectors a1, . . . , an ∈ Rd, de-
noting by A = 1

n

∑n
i=1 aia

T
i the normalized covariance

matrix, Garber and Hazan (Garber & Hazan, 2015) showed
that approximately finding the principle component of A
is equivalent to minimizing f(x) = 1

2x
T (µI − A)x for

some suitably chosen parameter µ > 0. Therefore, defin-
ing fi(x)

def
= 1

2x
T (µI − aiaTi )x and Ψ(x) = 0, this falls

into Problem (1.1) with non-convex functions fi(·).
Background of SVRG. Stochastic first-order methods
perform the following updates to solve Problem (1.1):

xt+1 ← arg min
y∈Rd

{ 1

2η
‖y − xt‖22 + 〈ξt, y〉+ Ψ(y)

}
,

where η is the step length, and ξt is a random vector satis-
fying E[ξt] = ∇f(xt) which is referred to as the stochastic
gradient. If the proximal function Ψ(y) equals zero, the
update simply reduces to xt+1 ← xt − ηξt.
Given the “finite average” structure f(x) = 1

n

∑n
i=1 fi(x),

a classical choice is to set ξt = ∇fi(xt) for some random
index i ∈ [n] per iteration. Methods based on this choice
are known as stochastic gradient descent (SGD).
More recently, the convergence speed of SGD has
been further improved with the variance-reduction tech-
nique (Johnson & Zhang, 2013; Shalev-Shwartz & Zhang,
2013; Schmidt et al., 2013; Shalev-Shwartz & Zhang,
2012; Xiao & Zhang, 2014; Defazio et al., 2014; Mairal,
2015). In all of these cited results, the authors have, in one
way or another, shown that SGD can converge much faster
if one makes a better choice of the stochastic gradient ξt, so
that its variance E[‖ξt −∇f(xt)‖22] reduces as t increases.
One particular way to reduce the variance is the SVRG
method described as follows (Johnson & Zhang, 2013).
Keep a snapshot x̃ = xt after every m stochastic up-
date steps (where m is some parameter), and compute the
full gradient ∇f(x̃) only for such snapshots. Then, set
ξt = ∇fi(xt) − ∇fi(x̃) +∇f(x̃) as the stochastic gradi-
ent. One can verify that, under this choice of ξt, it satisfies
E[ξt] = ∇f(xt) and limt→∞ E[‖ξt −∇f(xt)‖22] = 0.
Non-Strongly Convex Objectives. Although many
variance-reduction based methods have been proposed,
most of them, including SVRG, only has convergence guar-
antee of Problem (1.1) when the objective F (x) is strongly
convex. However, in many machine learning applications,
F (x) is simply not strongly convex. This is particularly
true for Lasso (Tibshirani, 1996) and `1-Regularized Lo-
gistic Regression (Ng, 2004), two cornerstone problems ex-
tensively used for feature selections.
One way to get around this is to add a dummy regularizer

λ
2 ‖x‖22 to F (x), and then apply any of the above methods.
However, the weight of this regularizer, λ, needs to be cho-
sen before the algorithm starts. This adds a lot of difficulty
when applying such methods to real life: (1) one needs to
tune λ by repeatedly executing the algorithm, and (2) the
error of the algorithm does not converge to zero as time
goes (in fact, it converges to O(λ) so one needs to know
the desired accuracy before the algorithm starts). Perhaps
more importantly, adding the dummy regularizer hurts the
performance of the algorithm both in theory and practice.

Another possible solution is to tackle the non-strongly con-
vex case directly (Schmidt et al., 2013; Defazio et al.,
2014; Mairal, 2015), without using any dummy regularizer.
These methods are the so-called anytime algorithms: they
can be interrupted at any time, and the training error tends
to zero as the number of iterations increases.

While direct methods are much more convenient for prac-
tical uses, existing direct methods are much slower than
indirect methods (i.e., methods via dummy regularization)
at least in theory. More specifically, if the desired accuracy
is ε and the smoothness of each fi(x) is L, then the gra-
dient complexities 3 of the best known direct and indirect
methods are respectively

O
(n+ L

ε

)
and O

(
(n+

L

ε
) log

1

ε

)
.

Therefore in theory, when n is usually dominating, indirect
methods are faster but less convenient, while direct meth-
ods are slower but more convenient.

In this paper, we propose SVRG++, a new method that
solves the non-strongly convex case of Problem (1.1) di-
rectly with gradient complexity O(n log 1

ε + L
ε ), outper-

forming both known direct and indirect methods. In par-
ticular, our complexity outperforms known direct methods
(e.g., SAGA or SAG) by a factor Ω̃(n/L) in the case when
L ≤ n. Since L is usually on the order of O(s) for large-
scale machine learning problems where s is the sparsity
of feature vectors and s can be much smaller than n, we
claim that this outperformance may be significant in theory.
On the practical side, SVRG++ is a direct, anytime method,
which is convenient to use. We describe SVRG++ and the
main techniques we use in Section 4.

Sum-of-Non-Convex Objectives. If f(x) is σ-strongly
convex while each fi(x) is non-convex but L-smooth,
Shalev-Shwartz discovered that the SVRG method admits
a gradient complexity of O

(
(n + L2

σ2 ) log 1
ε

)
for minimiz-

ing F (x) (Shalev-Shwartz, 2015) in the case of Ψ(x) = 0.
A similar result has been independently re-discovered by
Garber and Hazan (Garber & Hazan, 2015) and applied to

3Throughout this paper, we will use gradient complexity as an
effective measure of an algorithm’s running time. Usually, the
total running time of an algorithm isO(d) multiplied with its gra-
dient complexity, because each∇fi(x) can be computed in O(d)
time.
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the PCA problem. This setting is also believed to be hap-
pening (at least locally) on training deep neural nets (John-
son & Zhang, 2013; Shalev-Shwartz, 2015; Allen-Zhu &
Hazan, 2016a).

Despite the missing proximal term Ψ(x) in their analysis,
the running time above is imperfect for two reasons.

• First, this complexity is not stable: even if we mod-
ify only one of fi(x) from convex to (a little bit)
non-convex, the best known gradient complexity for
SVRG immediately worsens toO

(
(n+ L2

σ2 ) log 1
ε

)
from

O
(
(n+L

σ ) log 1
ε

)
. In contrast, one should expect a more

graceful decay of the performance as a function on the
“magnitude” of the non-convexity, or perhaps even a
threshold where the performance is totally unaffected if
the magnitude is “below” this threshold.

• Second, the complexity does not take into account the
asymmetry in smoothness. For instance, in PCA ap-
plications, each fi(x) can be very non-convex and its
Hessian has eigenvalues between −l < 0 and L > 0
where l can be significantly larger than L. Can we take
advantage of this asymmetry to get better running time?

In this paper, we prove that if each fi(x) is L-upper smooth
and l-lower smooth (which means the Hessian of fi(x) has
eigenvalues bounded between [−l, L]), the same SVRG
method admits a gradient complexity of O

(
(n + L

σ +
Ll
σ2 ) log 1

ε

)
. This resolves both our aforementioned con-

cerns. First, if l = O(σ), our new result suggests that the
convergence of SVRG is asymptotically the same as the
convex case, meaning there is a threshold O(δ) that SVRG
allows each fi(x) to be non-convex below this threshold
for free. Second, in the l > L case, our result implies a
linear dependence on the non-convexity parameter l, rather
than the quadratic one O

(
(n + l2

σ2 ) log 1
ε

)
shown by prior

work (Shalev-Shwartz, 2015; Garber & Hazan, 2015). To
the best of our knowledge, this is the first time that upper
and lower smoothness parameters are distinguished in or-
der to prove convergence results for minimizing (1.1).

Our improvement on SVRG immediately leads to faster
stochastic algorithms for PCA (Shamir, 2015; Garber &
Hazan, 2015). Assume that A = 1

n

∑n
i=1 aia

T
i is a nor-

malized covariance matrix where each ai ∈ Rd has Eu-
clidean norm at most 1. Let λ ∈ [0, 1] be the largest eigen-
value of A. Garber and Hazan showed that computing
the leading eigenvector of A is, up to binary search pre-
processing, equivalent to the sum-of-non-convex form of
Problem (1.1), with upper smoothness L = λ and lower
smoothness l = 1.4 Garber and Hazan further applied

4Suppose that the eigengap between largest and second largest
eigenvalues of A is δ = λ − λ2. Garber and Hazan showed that
computing the principle component of A is, up to binary search
preprocessing, equivalent to minimizing the objective f(x) def

=
1
2
xT (µI − A)x + bTx where µ = λ + δ. If one defines

SVRG to minimize this objective and proved an overall
running time O

(
(nd+ d

δ2 ) log 1
ε

)
. Our result improves this

running time to O
(
(nd + λd

δ2 ) log 1
ε

)
. Since λ may be as

small as 1/d, this speed up is significant in theory.5

Since the original publication of this paper, our above
PCA speed-up has also been translated to k-SVD, which
is to compute the first k singular vectors of a given ma-
trix (Allen-Zhu & Li, 2016).

Our results above are non-accelerated for the sum-of-non-
convex setting. One can apply Catalyst (Lin et al., 2015;
Frostig et al., 2015) to further improve its running time
when σ is very small. Not surprisingly, our performance
improvement carries to the accelerated setting as well.

Finally, we also prove that our proposed improvements on
SVRG (for non-strongly convex objectives and for sum-
of-non-convex objectives) can be put together, leading to a
new algorithm SVRG++

nc that works for both non-strongly
convex and sum-of-non-convex objectives. This gives
faster algorithms and can be found in the full paper.

Roadmap. We discuss related work in Section 2 and
provide notational background in Section 3. We state
our result for non-strongly convex objectives in Section 4,
for sum-of-non-convex objectives in Section 5 and 6. In
Section 7 we perform experiments supporting our theory.
Most of the technical proofs, as well as our SVRG++

nc

method for solving both non-strongly convex and sum-of-
non-convex objectives, are included in the full paper.

2. Other Related Work
The first published variance-reduction method is
SAG (Schmidt et al., 2013). SAG obtains an O(log(1/ε))
convergence (i.e., linear convergence) for strongly convex
and smooth objectives, comparing to the O(1/ε) rate of
SGD (Hazan et al., 2007; Shalev-Shwartz & Singer, 2007).
This O(log(1/ε)) rate has also been obtained by several
concurrent or subsequent works, such as SVRG, MISO and
SAGA (Johnson & Zhang, 2013; Mairal, 2015; Defazio
et al., 2014). SDCA (Shalev-Shwartz & Zhang, 2013) has
also been discovered to be intrinsically performing some
“variance reduction” procedure (Shalev-Shwartz, 2015).

Among the variance-reduction algorithms, only SAG,
MISO, and SAGA can provide theoretical guarantees for
directly solving non-strongly convex objectives (i.e., with-
out adding a dummy regularizer). The best gradient com-
plexity for direct methods before our work is O(n+L

ε ) due

fi(x)
def
= 1

2
xT (µI − aiaTi )x + bTx, this minimization problem

falls into the sum-of-non-convex setting of Problem (1.1), with
upper smoothness L = µ ≈ λ and lower smoothness l = 1.

5Garber and Hazan also applied acceleration schemes on top
of SVRG, and obtained a running time Õ(n

3/4d√
δ

). We can do the

same thing here and improve their running time to Õ(n
3/4λ1/4d√

δ
)

in the accelerated setting.
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to SAG and SAGA. On the other hand, if one uses indirect
methods, the best gradient complexity isO

(
(n+ L

ε ) log 1
ε

)
,

where the asymptotic dependence on ε is weakened to
log(1/ε)

ε .

We work directly with smooth functions fi(x) rather than
the more structured fi(x)

def
= φi(〈x, ai〉). In the struc-

tured case, AccSDCA (Shalev-Shwartz & Zhang, 2014),
along with subsequent works (Lin et al., 2014; Zhang &
Xiao, 2015), obtains a slightly better gradient complexity
O
((
n+min

{
L/ε,

√
nL/ε

})
log 1

ε

)
for non-strongly con-

vex objectives. This class of methods require one to work
with the dual of the objective, require one to add dummy
regularizer for non-strongly convex objectives (i.e., are in-
direct), and run only faster than the variance-reduction
based methods when n <

√
L/ε.

Since the original submission of this paper, we learned
several other related works from the anonymous review-
ers. First, the SVRG method was independently discovered
and published also by (Zhang et al., 2013). Second, the
result of (Mahdavi et al., 2013) also uses doubling-epoch
technique and can partially infer our results on SVRG++

with a slightly more complicated proof and different algo-
rithm.6 Third, in a concurrent accepted paper to this ICML,
Garber et al. (Garber et al., 2016) improved the original
Garber-Hazan PCA result (Garber & Hazan, 2015) and thus
solved a special case of our Theorem 6.1; their result has
nothing to do with other theorems in this paper, especially
Theorem 5.1 and D.1.7

In some concurrent works, the authors of (Allen-Zhu &
Hazan, 2016b) obtained our same running time on SVRG++

through reductions. However, their algorithm is not a direct
one so cannot be practically as good as SVRG++. Also after
this paper is accepted, the author of (Allen-Zhu, 2016) pro-
vided a direct method for solving (1.1) but in an accelerated
speed. As mentioned in (Allen-Zhu, 2016), his method can
be combined with the technique in this paper to obtain a
non-strongly convex accelerated running time.

3. Notations
Throughout this paper, we denote by ‖ · ‖ the Euclidean
norm. We assume that each fi(·) is differentiable and Ψ(·)
is convex and lower semicontinuous.

We say that a differentiable function fi(·) is L-smooth (or

6Mahdavi et al. studied an oracle model where there are two
gradient oracles, a stochastic one and a full-gradient one. Then,
they prove comparable bounds to SVRG++ but without support-
ing proximal terms and therefore do not directly apply to ERM
problems such as Lasso or logistic regression.

7For the PCA problem, they produced the same O
(
(nd +

λd
δ2

) log 1
ε

)
running time as we do; however, their result is only

about PCA so does not solve general sum-of-non-convex objec-
tives; they also did not introduce upper or lower smoothness like
we do.

has L-Lipschitz continuous gradient) if:

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rd .

The above definition has several equivalent forms, and one
of them says for all x, y ∈ Rd:

−L
2
‖y−x‖2 ≤ f(y)−

(
f(x)+〈∇f(x), y−x〉

)
≤ L

2
‖y−x‖2 .

In this paper, we say fi(·) is L-upper smooth if it satisfies

f(y)−
(
f(x)+〈∇f(x), y−x〉

)
≤ L

2
‖y−x‖2 ∀x, y ∈ Rd ,

and fi(·) is l-lower smooth if it satisfies

f(y)−
(
f(x)+〈∇f(x), y−x〉

)
≥ − l

2
‖y−x‖2 ∀x, y ∈ Rd .

Let us give a few examples: a convex differentiable func-
tion is 0-lower smooth; an L-smooth function is L-upper
and L-lower smooth; a convex L-smooth function is L-
upper and 0-lower smooth.

We say a function f(·) is σ-strongly convex if

f(y)−
(
f(x)+〈∇f(x), y−x〉

)
≥ σ

2
‖y−x‖2 ∀x, y ∈ Rd .

Note that for a twice differentiable function f , the above
definitions are equivalent to the corresponding statements
about the eigenvalues of∇2f(x). Indeed, L-upper smooth-
ness is equivalent to saying all eigenvalues are no more than
L, l-lower smoothness is equivalent to saying all eigenval-
ues are no less than −l, and σ-strong convexity is saying
all eigenvalues are at least σ.

4. SVRG++ for Non-Strongly Convex Objectives
In this section we consider the case of Problem (1.1) when
each fi(x) is a convex function and the objective is not nec-
essarily strongly convex. Recall that this class of problems
include Lasso and logistic regression as notable examples.

We propose our SVRG++ algorithm for solving this case,
see Algorithm 1. Given an initial vector xφ, our algorithm
is divided into S epochs. The s-th epoch consists of ms

stochastic gradient steps (see Line 8 of SVRG++), where
ms doubles between every consecutive two epochs. This
“doubling” feature distinguishes our method from all of the
cited variance-reduction based methods.

Within each epoch, similar to SVRG, we compute the full
gradient µ̃s−1 = ∇f(x̃s−1) where x̃s−1 is the average
point of the previous epoch. We then use µ̃s−1 to define
the variance-reduced stochastic gradient ξ, see Line 7 of
SVRG++. Unlike SVRG, our starting vector xs0 of each
epoch is set to be the ending vector xs−1

ms−1
of the previous

epoch, rather than the average of the previous epoch.8

8The theoretical convergence of SVRG relies on its Option II,
that is to set the beginning vector of each epoch to be the average
(or a random) vector of the previous epoch. However, the authors
of SVRG conduct their experiment using the last vector rather
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Algorithm 1 SVRG++(xφ,m0, S, η)

1: x̃0 ← xφ, x1
0 ← xφ

2: for s← 1 to S do
3: µ̃s−1 ← ∇f(x̃s−1)
4: ms ← 2s ·m0

5: for t← 0 to ms − 1 do
6: Pick i uniformly at random in {1, · · · , n}.
7: ξ ← ∇fi(xst )−∇fi(x̃s−1) + µ̃s−1

8: xst+1 = arg miny∈Rd
{

1
2η‖xst − y‖2 + Ψ(y) +

〈ξ, y〉
}

9: end for
10: x̃s ← 1

ms

∑ms
t=1 x

s
t

11: xs+1
0 ← xsms

12: end for
13: return x̃S .

We state our main result for SVRG++ as follows:

Theorem 4.1. If each fi(x) is convex in Problem (1.1),
then SVRG++(xφ,m0, S, η) satisfies ifm0 and S are pos-
itive integers and η = 1/(7L), then

E[F (x̃S)− F (x∗)] ≤ O
(
F (xφ)−F (x∗)

2S
+ L‖xφ−x∗‖2

2Sm0

)
.

(4.1)
In addition, SVRG++ has a gradient complexity of O(S ·
n+ 2S ·m0).

As a result, given an initial vector xφ satisfying ‖xφ −
x∗‖2 ≤ Θ and F (xφ) − F (x∗) ≤ ∆ for parameters
Θ,∆ ∈ R+, by setting S = log2(∆/ε), m0 = LΘ/∆, and
η = 1/(7L), we obtain an O(ε) approximate minimizer of
F (·) with a total gradient complexity O

(
n log

(
∆
ε

)
+ LΘ

ε

)
.

Our proof of Theorem 4.1 is included in the full paper.

4.1. Additional Improvements
Inspired by SVRG++, we also introduce SVRG Auto Epoch,
a variant of SVRG++ where epoch length is automatically
determined instead of doubled every epoch. Auto epoch
is an attractive feature in practice because it enables the
algorithm to perform well for different types of objectives.

The criterion we use to determine the termination of epoch
s in SVRG Auto Epoch is based on the quality of the snap-
shot full gradient ∇f(x̃s−1). Intuitively, if epoch length
is too long, an algorithm may move too far from the snap-
shot point, meaning that the gradient estimator ξ may have
a large variance. Following this intuition, for every itera-
tion t, we record difft = ‖∇fi(xst ) − ∇fi(x̃s−1)‖22 be-
cause Ei[difft] is a very tight upper bound on the variance
of the gradient estimator (see the proof of Lemma A.2).

than the average because it is more “natural”. This present paper
partially shows that this natural choice also has competitive per-
formance, and therefore confirms the empirical finding of SVRG.
(Similar result can also be obtained for the strongly convex case,
which we exclude for simplicity.)

Under this notion, we decide the epoch termination of
SVRG Auto Epoch as follows. Each epoch has a mini-
mum length of n/4. From iteration t = n/4 onwards,
we keep track of the average difft in the last n/4 itera-
tions, i.e.,

∑t
j=t−n/4+1 diffj . If this quantity is greater

than half of the average diffj recorded from the previ-
ous epoch, we terminate the current epoch and start a new
one.9 SVRG Auto Epoch shows good performance in our
experiments, and we leave it as an open question to prove a
complexity result for this method.

In addition to auto epoch, SVRG++ can also be combined
with other enhancements proposed for SVRG. For exam-
ple, (Harikandeh et al., 2015) saves the time to compute
full gradients at snapshot points by making them less accu-
rate in the first a few epochs. (Konecný et al., 2014) uses
mini-batch gradients per iteration to further decrease the
variance. These ideas are orthogonal to our proposed tech-
niques and therefore can be applied to further improve the
performance of SVRG++.

5. SVRG for Sum-of-Non-Convex Objectives
I: Small Lower Smoothness

In this section we consider Problem (1.1) when each fi(x)
is not necessarily convex, L-upper smooth, and l-lower
smooth for some 0 ≤ l ≤ L. We assume that f(·) is
σ-strongly convex. For this class of objectives, the best
known gradient complexity for stochastic gradient meth-
ods is O

(
(n + L2

σ2 ) log 1
ε

)
due to SVRG (Shalev-Shwartz,

2015).

This gradient complexity is essentially a factor L/σ greater
than that for the convex case, that is O

(
(n + L

σ ) log 1
ε

)
.

Following the intuition discussed in the introduction, we
improve it to O

(
(n + L

σ + Ll
σ2 ) log 1

ε

)
, a quantity that is

asymptotically the same as the convex setting when l ≤
O(σ), and linearly degrades as l increases.

Recall that the original SVRG (Option II) works as follows
(see Algorithm 2 for completeness). Given an initial vector
xφ, SVRG is divided into S epochs, each of length m for
the samem across epochs. Within each epoch, SVRG com-
putes the full gradient µ̃s−1 = ∇f(x̃s−1) where x̃s−1 is
the average point of the previous epoch. Then, SVRG uses
µ̃s−1 to define the variance-reduced version of the stochas-
tic gradient ξ, see Line 6 of Algorithm 2. The starting vec-
tor xs0 of each epoch is set to be the average vector of the
previous epoch.10

We state our main result for SVRG in this section as follows:
9We always set the first epoch to be of length n/4 and the

second to be of length n/2.
10This choice of the starting vector is different from SVRG++,

but was the original choice made by SVRG. Similar result can
also be obtained using the choice from SVRG++.
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Algorithm 2 SVRG(xφ,m, S, η) (Johnson & Zhang, 2013)

1: x̃0 ← xφ, x1
0 ← xφ

2: for s← 1 to S do
3: µ̃s−1 ← ∇f(x̃s−1)
4: for t← 0 to m− 1 do
5: Pick i uniformly at random in {1, · · · , n}.
6: ξ ← ∇fi(xst )−∇fi(x̃s−1) + µ̃s−1

7: xst+1 = arg miny∈Rd
{

1
2η‖xst − y‖2 + Ψ(y) +

〈ξ, y〉
}

8: end for
9: x̃s ← 1

m

∑m
t=1 x

s
t

10: xs+1
0 ← x̃s

11: end for
12: return x̃S .

Theorem 5.1. If each fi(x) is L-upper and l-lower
smooth in Problem (1.1) for 0 ≤ l ≤ L, f(x) is σ-
strongly convex, η = min{ 1

21L ,
σ

63Ll} and m ≥ 10
ση =

Ω(max{Lσ , Llσ2 }), then SVRG(xφ,m, S, η) satisfiesa

E[F (x̃s)− F (x∗)] ≤ 3

4

(
F (x̃s−1)− F (x∗)

)
. (5.1)

Therefore, by setting S = log4/3

(F (xφ)−F (x∗)
ε

)
, in a to-

tal gradient complexity of

O
((
n+

L

σ
max

{
1,
l

σ

})
log

F (xφ)− F (x∗)
ε

)
,

we obtain an output x̃S satisfying E[F (x̃s)−F (x∗)] ≤ ε.
aHere we have assumed that the first s− 1 epochs are fixed

and the only randomness comes from epoch s.

The full proof of Theorem 5.1 is included in the full paper.

6. SVRG for Sum-of-Non-Convex Objectives
II: Large Lower Smoothness

In this section we consider Problem (1.1) when each fi(x)
is not necessarily convex, L-upper smooth, and l-lower
smooth function for some l ≥ L. We assume f(·) is
σ-strongly convex. For this class of objectives, the best
known gradient complexity for stochastic gradient methods
is O

(
(n+ l2

σ2 ) log 1
ε

)
due to (Shalev-Shwartz, 2015).

This known gradient complexity is essentially a factor
l2/L2 ≥ 1 worse than that of the symmetric case (i.e., the
case when l = L). In this section, we improve this factor to
l/L which is quadratically faster than l2/L2. As we have
explained in the introduction, this result improves the con-
vergence for the best known stochastic algorithm for PCA.

We state our main result for SVRG in this section as follows,
and its proof is included in the full paper.

Theorem 6.1. If each fi(x) is L-upper and l-lower
smooth in Problem (1.1) for l ≥ L ≥ 0, f(x) is σ-
strongly convex, η = σ

25Ll and m ≥ 4
ση = Ω(Llσ2 ), then

SVRG(xφ,m, S, η) satisfies

E[F (x̃s)− F (x∗)] ≤ 3

4

(
F (x̃s−1)− F (x∗)

)
. (6.1)

Therefore, by setting S = log4/3

(F (xφ)−F (x∗)
ε

)
, in a to-

tal gradient complexity of

O
((
n+

Ll

σ2

)
log

F (xφ)− F (x∗)
ε

)
,

we obtain an output x̃S satisfying E[F (x̃s)−F (x∗)] ≤ ε.

7. Experiments on ERM
We confirm our theoretical findings using four real-life
datasets: (1) the Adult dataset (32, 561 examples and 123
features), (2) the Covtype dataset (581, 012 examples and
54 features), (3) the Ijcnn1 dataset (49990 examples and
22 features), and (4) the 2nd class of the MNIST dataset
(60, 000 examples and 780 features) (Fan & Lin). In or-
der to make easy comparisons between different datasets,
we scale each data vector down by the average Euclidean
norm of the whole data set. This step is for comparison
only and not necessary in practice.

We perform 3 classification tasks: Lasso, ridge regres-
sion, and `1-regularized logistic regression. As described
in the introduction, Lasso and logistic regression do not
admit strongly convex objectives, while the ridge objec-
tive is strongly convex. We consider four different val-
ues σ ∈ {10−3, 10−4, 10−5, 10−6}, where σ is either the
weight in regularizer σ2 ‖x‖22 for ridge, or that in regularizer
σ‖x‖21 for Lasso and logistic regression.

We have implemented the following algorithms:

• SVRG++ with initial epoch length m0 = n/4.
• SVRG Auto Epoch as we described in Section 4.1.
• SVRG (Johnson & Zhang, 2013; Xiao & Zhang, 2014)

with (their suggested) epoch length m = 2n. (Recall
that, in theory, SVRG is not designed for non-strongly
convex objectives and F (·) needs to be added by a
dummy regularizer for Lasso and logistic regression.
However, in our experiments, we observed that this
dummy regularizer is not necessary, so have neglected
the regularized version of SVRG for a clean comparison.)

• SAGA (Defazio et al., 2014).
• SDCA (Shalev-Shwartz & Zhang, 2013; 2012) with Op-

tion I (steepest descent). Since SDCA works only with
strongly convex objectives, a dummy regularizer has to
be introduced for Lasso and Logistic regression.

For each algorithm above except SDCA, we tune the
step length carefully from the set {a × 10−k : a ∈
{1, 2, . . . , 9}, k ∈ Z} for each plot. For SDCA on Lasso and
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(a) Adult, Lasso σ = 10−4
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(b) Covtype, Lasso σ = 10−6
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(c) Covtype, Logistic σ = 10−6
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(d) Ijcnn1, Lasso σ = 10−5
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(e) Ijcnn1, Logistic σ = 10−5
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(f) Mnist, Logistic σ = 10−4

Figure 1. Selected performance comparisons for lasso and logistic regression using Tuning Type I. Our comprehensive comparisons for
(1) other regularizer weights, (2) both lasso and ridge regression, and (3) both parameter tuning types can be found in the full paper.

logistic regression, we also tune the weight of its dummy
regularizer from the set {10−k, 2× 10−k, 5× 10−k : k ∈
Z}. To make our comparison stronger, we adopt an anony-
mous reviewer’s suggestion and consider two types of pa-
rameter tuning. In Tuning Type I, we select the best curve
based on the training objective performance in the entire
30 passes to the dataset. In Tuning Type II, we select the
best parameter only based on method’s performance in the
first 4 passes to the dataset. Tuning Type II might be more
realistic for experimentalists who need to quickly pick the
best parameters of the algorithms.

In each plot, we run 10 times the experiments and plot both
the mean and the variance. Since our plots are in log scale,
we only keep the upper error bar to make the plots easier
to read. In other words, the lower end of each error bar
represents the mean of each data point.

Performance Comparison. We have picked a representa-
tive regularizer weight σ for each of the eight analysis tasks
(lasso or logistic regression on one of the four datasets),
and presented the performance plots using Tuning Type I
in Figure 1. For the results on other values of σ as well as
those for ridge regression, see Figure 3, 4, 5, and 6 in the
appendix. We have also included plots using Tuning Type
II in Figure 7, 8, 9, and 10 in the appendix.

In all of our plots, the y-axis represents the training objec-
tive value minus the minimum, and the x-axis represents

the number of passes to the dataset. Here, following the tra-
dition, one iteration of each algorithm counts as 1/n pass
of the dataset, and the snapshot full-gradient computation
of SVRG, SVRG++, and SVRG Auto Epoch counts as one
additional pass.

In the legend of each plot, we use SDCA(r = r0) to denote
that r0 is the weight of the best-tuned dummy regularizer.
For every other algorithm, we use Alg(η) to denote that η
is the best-tuned step length for algorithm Alg.

We make the following observations from this experiment:

• SVRG++ and SVRG Auto Epoch consistently outper-
form SVRG in all the plots, indicating that they do im-
prove over SVRG in non-strongly convex settings.

• SVRG++ and SVRG Auto Epoch outperform SAGA in
most cases, and are at least comparable to SAGA in the
rest cases. This is not surprising because SAGA is also a
direct algorithm for non-strongly convex objectives.
• SVRG++ and SVRG Auto Epoch significantly outper-

form indirect methods via dummy regularization (i.e.,
SDCA) in the non-strongly convex settings. For ridge re-
gression which is strongly convex, SDCA is comparable
to other methods (see the figures in the appendix).

8. Experiments for Sum-of-Non-Convex
Objectives

To verify our theoretical findings in Section 5 and 6, we run
SVRG on a sum-of-non-convex objective built from synthet-
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Figure 2. Performance analysis on sum-of-non-convex objectives. Note that the curves for δ = 0.001, 0.01, 0.02 have overlapped in (a).

ically generated data. We generate n = 500 random vec-
tors a1, . . . , a500 ∈ Rd from the d = 200 dimensional unit
cube and then normalize them to have Euclidean norm 1.
Define the covariance matrix A def

= 1
n

∑n
i=1 aia

T
i , and we

consider the minimization problem11

min
x∈Rd

{
f(x)

def
=
xTAx

2
+ bx

}
for some randomly generated vector b.

The matrix A we generated has minimum eigenvalue equal
to 7.02 × 10−4, and thus f(x) is strongly convex with pa-
rameter 7.02 × 10−4. Next, we decompose f(x) into an
average of fi(x), each being non-convex with upper and
lower smoothness parameters that we can control.

More specifically, given n diagonal matrices D1, · · · , Dn

satisfying D1 + · · · + Dn = 0, by setting fi(x)
def
=

xT (aTi ai+Di)x
2 + bx, we have f(x) = 1

n

∑
i fi(x). Under

this construction, each fi is non-convex if Di has negative
entries in the diagonals. We now consider two different
ways to build D1, . . . , Dn.

Remark 8.1. We do not perform real-life PCA experi-
ments for the following reason. Recall Garber and Hazan
reduced PCA to minimizing f(x) = 1

2x
T (µI−A)x+bTx.

For all interesting choices of µ, our result in Theorem 6.1 is
faster than theirs by the same constant factor λ ∈ [1/d, 1],
which is the largest eigenvalue of A. Therefore, by vary-
ing µ and comparing the plots, it is impossible to observe
anything interesting: in particular, one cannot conclude our
theoretical bound is tighter in practice. In contrast, our
carefully designed synthetic experiment allows us to con-
trol the upper and lower smoothness parameters, and there-
fore to observe the improvements of our theorems directly.

Our first experiment is parameterized by a given value δ ∈
11Since x∗ = A−1b this is a linear system problem.

[0, 1]. For each j ∈ [d], we randomly select half of the
indices i ∈ [n] and assign its j-th diagonal (Di)jj to be δ;
for the other half of the indices i we assign (Di)jj to be
−δ. In this way, we satisfy D1 + · · · + Dn = 0 and for
each i ∈ [n], we have −δI ≤ ∇2fi(x) ≤ (1 + δ)I . In
other words, each function fi(x) is L ≈ 1 upper smooth
and exactly l = δ lower smooth. This corresponds to the
l ≤ L regime studied by Section 5.

Our second experiment is parameterized by a given value
k ∈ [1, n]. For each j ∈ [d], consider the j-th diagonal
entry of all the matrices, (D1)jj , (D2)jj , . . . (Dn)jj . We
randomly select one of these entries and set it to be −k,
and the rest n− 1 of them to be k

n−1 . Under this definition,
we have D1 + · · ·+Dn = 0 and for each i ∈ [n], we have
−kI ≤ ∇2fi(x) ≤ (1 +k/(n−1))I . In other words, each
function fi(x) is approximately L ≈ 1 upper smooth and
l = k lower smooth. This corresponds to the l ≥ L regime
studied by Section 6.

We run SVRG (with the best tuned step length) for both ex-
periments, and plot the performance in Figure 2. We make
the following observations from the plots:

• In Figure 2(a), we observe that the performance SVRG

is approximately linearly proportional to lL = O(δ)
for large δ, as compared to L2 = O(1) from prior
work. More importantly, SVRG is robust against small
non-convexity parameter l. Indeed, for l = δ ≤ 0.02,
the convergence of SVRG is as fast as the convex case
(i.e., δ = 0 case). This confirms our theoretical finding
in Section 5 and particularly confirms the existence of
a threshold O(σ) where the performance of SVRG only
starts to degrade when l is above this threshold.

• In Figure 2(b), we see that the performance of SVRG is
approximately linearly proportional to lL = O(k), as
compared to l2 = O(k2) from prior work. This con-
firms our finding in Section 6.
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Scott. Stopwasting my gradients: Practical svrg. In
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 28, pp. 2242–2250. Curran Asso-
ciates, Inc., 2015.

Hazan, Elad. DRAFT: Introduction to online convex opti-
mimization. Foundations and Trends in Machine Learn-
ing, XX(XX):1–168, 2015.

Hazan, Elad, Agarwal, Amit, and Kale, Satyen. Loga-
rithmic regret algorithms for online convex optimiza-
tion. Machine Learning, 69(2-3):169–192, August 2007.
ISSN 0885-6125.

Johnson, Rie and Zhang, Tong. Accelerating stochas-
tic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems,
NIPS 2013, pp. 315–323, 2013.
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