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Abstract
We introduce the Dynamic Capacity Network
(DCN), a neural network that can adaptively
assign its capacity across different portions of
the input data. This is achieved by combin-
ing modules of two types: low-capacity sub-
networks and high-capacity sub-networks. The
low-capacity sub-networks are applied across
most of the input, but also provide a guide to
select a few portions of the input on which to
apply the high-capacity sub-networks. The se-
lection is made using a novel gradient-based at-
tention mechanism, that efficiently identifies in-
put regions for which the DCN’s output is most
sensitive and to which we should devote more
capacity. We focus our empirical evaluation on
the Cluttered MNIST and SVHN image datasets.
Our findings indicate that DCNs are able to
drastically reduce the number of computations,
compared to traditional convolutional neural net-
works, while maintaining similar or even better
performance.

1. Introduction
Deep neural networks have recently exhibited state-of-the-
art performance across a wide range of tasks, including ob-
ject recognition (Szegedy et al., 2014) and speech recog-
nition (Graves & Jaitly, 2014). Top-performing systems,
however, are based on very deep and wide networks that
are computationally intensive. One underlying assumption
of many deep models is that all input regions contain the
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same amount of information. Indeed, convolutional neural
networks apply the same set of filters uniformly across the
spatial input (Szegedy et al., 2014), while recurrent neu-
ral networks apply the same transformation at every time
step (Graves & Jaitly, 2014). Those networks lead to time-
consuming training and inference (prediction), in large part
because they require a large number of weight/activation
multiplications.

Task-relevant information, however, is often not uniformly
distributed across input data. For example, objects in im-
ages are spatially localized, i.e. they exist only in specific
regions of the image. This observation has been exploited
in attention-based systems (Mnih et al., 2014), which can
reduce computations significantly by learning to selectively
focus or “attend” to few, task-relevant, input regions. At-
tention employed in such systems is often referred to as
“hard-attention”, as opposed to “soft-attention” which inte-
grates smoothly all input regions. Models of hard-attention
proposed so far, however, require defining an explicit pre-
dictive model, whose training can pose challenges due to
its non-differentiable cost.

In this work we introduce the Dynamic Capacity Network
(DCN) that can adaptively assign its capacity across dif-
ferent portions of the input, using a gradient-based hard-
attention process. The DCN combines two types of mod-
ules: small, low-capacity, sub-networks, and large, high-
capacity, sub-networks. The low-capacity sub-networks
are active on the whole input, but are used to direct the
high-capacity sub-networks, via our attention mechanism,
to task-relevant regions of the input.

A key property of the DCN’s hard-attention mechanism is
that it does not require a policy network trained by rein-
forcement learning. Instead, we can train DCNs end-to-end
with backpropagation. We evaluate a DCN model on the
attention benchmark task Cluttered MNIST (Mnih et al.,
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2014), and show that it outperforms the state of the art.

In addition, we show that the DCN’s attention mechanism
can deal with situations where it is difficult to learn a task-
specific attention policy due to the lack of appropriate data.
This is often the case when training data is mostly canoni-
calized, while at test-time the system is effectively required
to perform transfer learning and deal with substantially dif-
ferent, noisy real-world images. The Street View House
Numbers (SVHN) dataset (Netzer et al., 2011) is an exam-
ple of such a dataset. The task here is to recognize multi-
digit sequences from real-world pictures of house fronts;
however, most digit sequences in training images are well-
centred and tightly cropped, while digit sequences of test
images are surrounded by large and cluttered backgrounds.
Learning an attention policy that focuses only on a small
portion of the input can be challenging in this case, un-
less test images are pre-processed to deal with this discrep-
ancy 1. DCNs, on the other hand, can be leveraged in such
transfer learning scenarios, where we learn low and high
capacity modules independently and only combine them
using our attention mechanism at test-time. In particular,
we show that a DCN model is able to efficiently recog-
nize multi-digit sequences, directly from the original im-
ages, without using any prior information on the location
of the digits.

Finally, we show that DCNs can perform efficient region
selection, in both Cluttered MNIST and SVHN, which
leads to significant computational advantages over standard
convolutional models.

2. Dynamic Capacity Networks
In this section, we describe the Dynamic Capacity Network
(DCN) that dynamically distributes its network capacity
across an input.

We consider a deep neural network h, which we decom-
pose into two parts: h(x) = g(f(x)) where f and g rep-
resent respectively the bottom layers and top layers of the
network h while x is some input data. Bottom layers f
operate directly on the input and output a representation,
which is composed of a collection of vectors each of which
represents a region in the input. For example, f can output
a feature map, i.e. vectors of features each with a specific
spatial location, or a probability map outputting probability
distributions at each different spatial location. Top layers g
consider as input the bottom layers’ representations f(x)
and output a distribution over labels.

DCN introduces the use of two alternative sub-networks
for the bottom layers f : the coarse layers fc or the fine

1This is the common practice in previous work on this dataset,
e.g. (Goodfellow et al., 2013; Ba et al., 2014; Jaderberg et al.,
2015)

Figure 1. DCN overview. Our model applies the coarse layers on
the whole image to get fc(x), chooses a set of salient patches
Xs, applies the fine layers only on the salient patches Xs to ob-
tain a set of few fine representation vectors ff (X

s), and finally
combines them to make its prediction.

layers ff , which differ in their capacity. The fine lay-
ers correspond to a high-capacity sub-network which has
a high-computational requirement, while the coarse layers
constitute a low-capacity sub-network. Consider applying
the top layers only on the fine representation, i.e. hf (x) =
g(ff (x)). We refer to the composition hf = g ◦ ff as
the fine model. We assume that the fine model can achieve
very good performance, but is computationally expensive.
Alternatively, consider applying the top layers only on the
coarse representation, i.e. hc(x) = g(fc(x)). We refer to
this composition hc = g ◦ fc as the coarse model. Concep-
tually, the coarse model can be much more computationally
efficient, but is expected to have worse performance than
the fine model.

The key idea behind DCN is to have g use representations
from either the coarse or fine layers in an adaptive, dynamic
way. Specifically, we apply the coarse layers fc on the
whole input x, and leverage the fine layers ff only at a few
“important” input regions. This way, the DCN can leverage
the capacity of ff , but at a lower computational cost, by ap-
plying the fine layers only on a small portion of the input.
To achieve this, DCN requires an attentional mechanism,
whose task is to identify good input locations on which to
apply ff . In the remainder of this section, we focus on
2-dimensional inputs. However, our DCN model can be
easily extended to be applied to any type of N-dimensional
data.

2.1. Attention-based Inference

In DCN, we would like to obtain better predictions than
those made by the coarse model fc while keeping the com-
putational requirement reasonable. This can be done by
selecting a few salient input regions on which we use the
fine representations instead of the coarse ones. DCN in-
ference therefore needs to identify the important regions in
the input with respect to the task at hand. For this, we use
a novel approach for attention that uses backpropagation in
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the coarse model hc to identify few vectors in the coarse
representation to which the distribution over the class label
is most sensitive. These vectors correspond to input regions
which we identify as salient or task-relevant.

Given an input image x, we first apply the coarse layers
on all input regions to compute the coarse representation
vectors:

fc(x) = {ci,j | (i, j) ∈ [1, s1]× [1, s2]}, (1)

where s1 and s2 are spatial dimensions that depend on the
image size and ci,j = fc(xi,j) ∈ RD is a representation
vector associated with the input region (i, j) in x, i.e. cor-
responds to a specific receptive field or a patch in the input
image. We then compute the output of the model based
completely on the coarse vectors, i.e. the coarse model’s
output hc(x) = g(fc(x)).

Next, we identify a few salient input regions using an at-
tentional mechanism that exploits a saliency map generated
using the coarse model’s output. The specific measure of
saliency we choose is based on the entropy of the coarse
model’s output, defined as:

H = −
C∑
l=1

o(l)
c log o(l)

c , (2)

where oc = g(fc(x)) is the vector output of the coarse
model and C is the number of class labels. The saliency M
of an input region position (i, j) is given by the norm of the
gradient of the entropy H with respect to the coarse vector
ci,j :

Mi,j = ||∇ci,j
H||2

=

√√√√ D∑
r=1

(
∂

∂c
(r)
i,j

−
C∑
l=1

o
(l)
c log o

(l)
c

)2

,
(3)

where M ∈ Rs1×s2 . The use of the entropy gradient as
a saliency measure encourages selecting input regions that
could affect the uncertainty in the model’s predictions the
most. In addition, computing the entropy of the output dis-
tribution does not require observing the true label, hence
the measure is available at inference time. Note that com-
puting all entries in matrix M can be done using a single
backward pass of backpropagation through the top layers
and is thus efficient and simple to implement.

Using the saliency map M, we select a set of k input re-
gion positions with the highest saliency values. We denote
the selected set of positions by Is ⊆ [1, s1] × [1, s2], such
that |Is| = k. We denote the set of selected input regions
by Xs = {xi,j | (i, j) ∈ Is} where each xi,j is a patch
in x. Next we apply the fine layers ff only on the selected

patches and obtain a small set of fine representation vec-
tors:

ff (X
s) = {fi,j | (i, j) ∈ Is}, (4)

where fi,j = ff (xi,j). This requires that fi,j ∈ RD, i.e. the
fine vectors have the same dimensionality as the coarse vec-
tors, allowing the model to use both of them interchange-
ably.

We denote the representation resulting from combining
vectors from both fc(x) and ff (Xs) as the refined repre-
sentation fr(x). We discuss in Section 4 different ways in
which they can be combined in practice. Finally, the DCN
output is obtained by feeding the refined representation into
the top layers, g(fr(x)). We denote the composition g ◦ fr
by the refined model.

2.2. End-to-End Training

In this section, we describe an end-to-end procedure for
training the DCN model that leverages our attention mech-
anism to learn ff and fc jointly. We emphasize, however,
that DCN modules can be trained independently, by train-
ing a coarse and a fine model independently and combining
them only at test-time using our attention based inference.
In Section 4.2 we show an example of how this modular
training can be used for transfer learning.

In the context of image classification, suppose we have a
training set D = {(x(i), y(i)); i = 1 . . .m}, where each
x(i) ∈ Rh×w is an image, and y(i) ∈ {1, . . . , C} is its cor-
responding label. We denote the parameters of the coarse,
fine and top layers by θc, θf , and θt respectively. We
learn all of these parameters (denoted as θ) by minimizing
the cross-entropy objective function (which is equivalent to
maximizing the log-likelihood of the correct labels):

J = −
m∑
i=1

log p
(
y(i) | x(i); θ

)
, (5)

where p(· | x(i); θ) = g(fr(x
(i))) is the conditional multi-

nomial distribution defined over the C labels given by the
refined model (Figure 1). Gradients are computed by stan-
dard back-propagation through the refined model, i.e. prop-
agating gradients at each position into either the coarse or
fine features, depending on which was used.

An important aspect of the DCN model is that the final
prediction is based on combining representations from two
different sets of layers, namely the coarse layers fc and the
fine layers ff . Intuitively, we would like those representa-
tions to have close values such that they can be interchange-
able. This is important for two reasons. First, we expect the
top layers to have more success in correctly classifying the
input if the transition from coarse to fine representations
is smooth. The second is that, since the saliency map is
based on the gradient at the coarse representation values
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and since the gradient is a local measure of variation, it is
less likely to reflect the benefit of using the fine features if
the latter is very different from the former.

To encourage similarity between the coarse and fine repre-
sentations while training, we use a hint-based training ap-
proach inspired by Romero et al. (2014). Specifically, we
add an additional term to the training objective that mini-
mizes the squared distance between coarse and fine repre-
sentations: ∑

xi,j∈Xs

‖fc(xi,j)− ff (xi,j)‖22. (6)

There are two important points to note here. First, we use
this term to optimize only the coarse layers θc. That is, we
encourage the coarse layers to mimic the fine ones, and let
the fine layers focus only on the signal coming from the top
layers. Secondly, computing the above hint objective over
representations at all positions would be as expensive as
computing the full fine model; therefore, we encourage in
this term similarity only over the selected salient patches.

3. Related Work
This work can be classified as a conditional computation
approach. The goal of conditional computation, as put for-
ward by Bengio (2013), is to train very large models for the
same computational cost as smaller ones, by avoiding cer-
tain computation paths depending on the input. There have
been several contributions in this direction. Bengio et al.
(2013) use stochastic neurons as gating units that activate
specific parts of a neural network. Our approach, on the
other hand, uses a hard-attention mechanism that helps the
model to focus its computationally expensive paths only
on important input regions, which helps in both scaling to
larger effective models and larger input sizes.

Several recent contributions use attention mechanisms
to capture visual structure with biologically inspired,
foveation-like methods, e.g. (Larochelle & Hinton, 2010;
Denil et al., 2012; Ranzato, 2014; Mnih et al., 2014; Ba
et al., 2014; Gregor et al., 2015). In Mnih et al. (2014); Ba
et al. (2014), a learned sequential attention model is used
to make a hard decision as to where to look in the image,
i.e. which region of the image is considered in each time
step. This so-called “hard-attention” mechanism can re-
duce computation for inference. The attention mechanism
is trained by reinforcement learning using policy search.
In practice, this approach can be computationally expen-
sive during training, due to the need to sample multiple
interaction sequences with the environment. On the other
hand, the DRAW model (Gregor et al., 2015) uses a “soft-
attention” mechanism that is fully differentiable, but re-
quires processing the whole input at each time step. Our ap-
proach provides a simpler hard-attention mechanism with

computational advantages in both inference and learning.

The saliency measure employed by DCN’s attention mech-
anism is related to pixel-wise saliency measures used in
visualizing neural networks (Simonyan et al., 2013). These
measures, however, are based on the gradient of the classifi-
cation loss, which is not applicable at test-time. Moreover,
our saliency measure is defined over contiguous regions of
the input rather than on individual pixels. It is also task-
dependent, as a result of defining it using a coarse model
trained on the same task.

Other works such as matrix factorization (Jaderberg et al.,
2014; Denton et al., 2014) and quantization schemes (Chen
et al., 2010; Jégou et al., 2011; Gong et al., 2014) take the
same computational shortcuts for all instances of the data.
In contrast, the shortcuts taken by DCN specialize to the
input, avoiding costly computation except where needed.
However, the two approaches are orthogonal and could be
combined to yield further savings.

Our use of a regression cost for enforcing representations
to be similar is related to previous work on model com-
pression (Bucilu et al., 2006; Hinton et al., 2015; Romero
et al., 2014). The goal of model compression is to train
a small model (which is faster in deployment) to imitate a
much larger model or an ensemble of models. Furthermore,
Romero et al. (2014) have shown that middle layer hints
can improve learning in deep and thin neural networks. Our
DCN model can be interpreted as performing model com-
pression on the fly, without the need to train a large model
up front.

4. Experiments
In this section, we present an experimental evaluation of
the proposed DCN model. To validate the effectiveness
of our approach, we first investigate the Cluttered MNIST
dataset (Mnih et al., 2014). We then apply our model in
a transfer learning setting to a real-world object recogni-
tion task using the Street View House Numbers (SVHN)
dataset (Netzer et al., 2011).

4.1. Cluttered MNIST

We use the 100× 100 Cluttered MNIST digit classification
dataset (Mnih et al., 2014). Each image in this dataset is
a hand-written MNIST digit located randomly on a 100 ×
100 black canvas and cluttered with digit-like fragments.
Therefore, the dataset has the same size of MNIST: 60000
images for training and 10000 for testing.

4.1.1. MODEL SPECIFICATION

In this experiment we train a DCN model end-to-end,
where we learn coarse and fine layers jointly. We use 2
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Model Test Error

RAM 8.11%
DRAW 3.36%
Coarse Model 3.69%
Fine Model 1.70%
DCN w/o hints 1.71%
DCN with hints 1.39%

Table 1. Results on Cluttered MNIST

Figure 2. The effect of using the hints objective. We show the
squared distance between coarse and fine features over salient re-
gions during training in two cases: with and without using the
hints objective. We observe that this regularizer helps in mini-
mizing the distance and improves the model’s generalization.

convolutional layers as coarse layers, 5 convolutional lay-
ers as fine layers and one convolutional layer followed by
global max pooling and a softmax as the top layers. De-
tails of their architectures can be found in the Appendix 6.1.
The coarse and fine layers produce feature maps, i.e. fea-
ture vectors each with a specific spatial location. The set of
selected patches Xs is composed of eight patches of size
14× 14 pixels. We use here a refined representation of the
full input fr(x) in which fine feature vectors are swapped
in place of coarse ones:

fr(x) = {ri,j | (i, j) ∈ [1, s1]× [1, s2]} (7)

ri,j =

{
ff (xi,j), if xi,j ∈ Xs

fc(xi,j), otherwise.
(8)

4.1.2. BASELINES

We use as baselines for our evaluation the coarse model
(top layers applied only on coarse representations), the
fine model (top layers applied only on fine representa-
tions), and we compare with previous attention-based mod-
els RAM (Mnih et al., 2014) and DRAW (Gregor et al.,
2015).

4.1.3. EMPIRICAL EVALUATION

Results of our experiments are shown in Table 1. We get
our best DCN result when we add the hint term in Eq. (6)

Figure 3. Patch selection on Cluttered MNIST. (left) Sample of
selected patches. (right) Test error vs. number of patches: taking
more patches yields lower error, but with diminishing returns.

in the training objective, which we observe to have a regu-
larization effect on DCN. We can see that the DCN model
performs significantly better than the previous state-of-the-
art result achieved by RAM and DRAW models. It also
outperforms the fine model, which is a result of being able
to focus only on the digit and ignore clutter. In Figure 2 we
explore more the effect of the hint objective during train-
ing, and confirm that it can indeed minimize the squared
distance between coarse and fine representations. To show
how the attention mechanism of the DCN model can help
it focus on the digit, we plot in Figure 3(a) the patches it
finds in some images from the validation set, after only 9
epochs of training.

The DCN model is also more computationally efficient. A
forward pass of the fine model requires the computation
of the fine layers representations on whole inputs and a
forward pass of the top layers leading to 84.5M multipli-
cations. On the other hand, DCN applies only the coarse
layers on the whole input. It also requires the computation
of the fine representations for 8 input patches and a forward
pass of the top layers. The attention mechanism of the DCN
model requires an additional forward and backward pass
through the top layers which leads to approximately 27.7M
multiplications in total. As a result, the DCN model here
has 3 times fewer multiplications than the fine model. In
practice we observed a time speed-up by a factor of about
2.9. Figure 3(b) shows how the test error behaves when we
increase the number of patches. While taking additional
patches improves accuracy, the marginal improvement be-
comes insignificant beyond 10 or so patches. The number
of patches effectively controls a trade-off between accuracy
and computational cost.

4.2. SVHN

We tackle in this section a more challenging task of tran-
scribing multi-digit sequences from natural images using
the Street View House Numbers (SVHN) dataset (Netzer
et al., 2011). SVHN is composed of real-world pictures
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Figure 4. The 4 left images are samples from the extra subset, and
the 4 right images are samples from the test subset. We notice
that extra images are well-centred and have much less background
compared to test images.

containing house numbers and taken from house fronts.
The task is to recognize the full digit sequence correspond-
ing to a house number, which can be of length 1 to 5 digits.
The dataset has three subsets: train (33k), extra (202k) and
test (13k). In the following, we trained our models on 230k
images from both the train and extra subsets, where we take
a 5k random sample as a validation set for choosing hyper-
parameters.

The typical experimental setting in previous literature, e.g.
(Goodfellow et al., 2013; Ba et al., 2014; Jaderberg et al.,
2015), uses the location of digit bounding boxes as extra
information. Input images are generally cropped, such that
digit sequences are centred and most of the background
and clutter information is pruned. We argue that our DCN
model can deal effectively with real-world noisy images
having large portions of clutter or background information.
To demonstrate this ability, we investigate a more general
problem setting where the images are uncropped and the
digits locations are unknown. We apply our models on
SVHN images in their original sizes and we do not use
any extra bounding box information. 2

An important property of the SVHN dataset is the large
discrepancy between the train/extra sets and the test set.
Most of the extra subset images (which dominate the train-
ing data) have their digits well-centred with little cluttered
background, while test images have more variety in terms
of digit location and background clutter. Figure 4 shows
samples of these images. We can tackle this training/test
dataset discrepancy by training a DCN model in a trans-
fer learning setting. We train the coarse and fine layers of
the DCN independently on the training images that have
little background-clutter, and then combine them using our
attention mechanism, which does not require explicit train-
ing, to decide on which subsets of the input to apply the
fine layers.

4.2.1. MULTI-DIGIT RECOGNITION MODEL

We follow the model proposed in (Goodfellow et al., 2013)
for learning a probabilistic model of the digit sequence

2The only pre-processing we perform on the data is converting
images to grayscale.

given an input image x. The output sequence S is defined
using a collection ofN random variables, S1, . . . , SN , rep-
resenting the elements of the sequence and an extra ran-
dom variable S0 representing its length. The probability of
a given sequence s = {s1, . . . , sn} is given by:

p(S = s | x) = p(S0 = n | x)
n∏

i=1

p(Si = si | x), (9)

where p(S0 = n | x) is the conditional distribution of
the sequence length and p(Si = si | x) is the conditional
distribution of the i-th digit in the sequence. In particular,
our model on SVHN has 6 softmaxes: 1 for the length of
the sequence (from 1 to 5), and 5 for the identity of each
digit or a null character if no digit is present (11 categories).

4.2.2. MODEL SPECIFICATION

The coarse and fine bottom layers, fc and ff , are fully-
convolutional, composed of respectively 7 and 11 layers.
The representation, produced by either the fine or coarse
layers, is a probability map, which is a collection of in-
dependent full-sequence prediction vectors, each vector
corresponding to a specific region of the input. We de-
note the prediction for the i-th output at position (j, k) by
p(j,k)(Si | x).

The top layer g is composed of one global average pool-
ing layer which combines predictions from various spatial
locations to produce the final prediction p(S | x).

Since we have multiple outputs in this task, we modify the
saliency measure used by the DCN’s attention mechanism
to be the sum of the entropy of the 5 digit softmaxes:

H = −
5∑

i=1

11∑
j=1

p(Si = sj | x) log p(Si = sj | x). (10)

When constructing the saliency, instead of using the gradi-
ent with respect to the probability map, we use the gradient
with respect to the feature map below it. This is necessary
to avoid identical gradients as g, the top function, is com-
posed by only one average pooling.

We also use a refined model that computes its output by
applying the pooling top layer g only on the k independent
predictions from fine layers, ignoring the coarse layers. We
have found empirically that this results in a better model,
and suspect that otherwise the predictions from the salient
regions are drowned out by the noisy predictions from un-
informative regions.

We train the coarse and fine layers of DCN independently
in this experiment, minimizing log p(S | x) using SGD.
For the purposes of training only, we resize images to 64×
128. Details on the coarse and fine architectures are found
in Appendix 6.2.
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4.2.3. BASELINES

As mentioned in the previous section, each of the coarse
representation vectors in this experiment corresponds to
multi-digit recognition probabilities computed at a given
region, which the top layer g simply averages to obtain the
baseline coarse model:

p(Si | x) =
1

d1 × d2

∑
j,k

p(j,k)(Si | x). (11)

The baseline fine model is defined similarly.

As an additional baseline, we consider a “soft-attention”
coarse model, which takes the coarse representation vec-
tors over all input regions, but uses a top layer that per-
forms a weighted average of the resulting location-specific
predictions. We leverage the entropy to define a weighting
scheme which emphasizes important locations:

p(Si | x) =
∑
j,k

wi,j,kp
(j,k)(Si | x). (12)

The weight wi,j,k is defined as the normalized inverse en-
tropy of the i-th prediction by the (j, k)-th vector, i.e. :

wi,j,k =
∑
q,r

H−1i,j,k

H−1i,q,r

, (13)

where Hi,j,k is defined as:

Hi,j,k = −
C∑
l=1

pj,k(Si = sl | x) log pj,k(Si = sl | x),

(14)
and C is either 5 for S0 or 11 for all other Si. As we’ll see,
this weighting improves the coarse model’s performance in
our SVHN experiments. We incorporate this weighting in
DCN to aggregate predictions from the salient regions.

To address scale variations in the data, we extend all mod-
els to multi-scale by processing each image several times
at multiple resolutions. Predictions made at different scales
are considered independent and averaged to produce the fi-
nal prediction.

It is worth noting that all previous literature on SVHN dealt
with a simpler task where images are cropped and resized.
In this experiment we deal with a more general setting, and
our results cannot be directly compared with these results.

4.2.4. EMPIRICAL EVALUATION

Table 2 shows results of our experiment on SVHN. The
coarse model has an error rate of 40.6%, while by using our
proposed soft-attention mechanism, we decrease the error
rate to 31.4%. This confirms that the entropy is a good mea-
sure for identifying important regions when task-relevant
information is not uniformly distributed across input data.

Model Test Error

Coarse model, 1 scale 40.6%
Coarse model, 2 scales 40.0%
Coarse model, 3 scales 40.0%

Fine model, 1 scale 25.2%
Fine model, 2 scales 23.7%
Fine model, 3 scales 23.3%

Soft-attention, 1 scale 31.4%
Soft-attention, 2 scales 31.1%
Soft-attention, 3 scales 30.8%

DCN, 6 patches, 1 scale 20.0%
DCN, 6 patches, 2 scales 18.2%
DCN, 9 patches, 3 scales 16.6%

Table 2. Results on SVHN dataset without using bounding box
information.

Figure 5. Number of multiplications in the Coarse, Fine and DCN
models given different image input sizes.

The fine model, on the other hand, achieves a better er-
ror rate of 25.2%, but is more computationally expensive.
Our DCN model, which selects only 6 regions on which to
apply the high-capacity fine layers, achieves an error rate
of 20.0%. The DCN model can therefore outperform, in
terms of classification accuracy, the other baselines. This
verifies our assumption that by applying high capacity sub-
networks only on the inputs most informative regions, we
are able to obtain high classification performance. Figure 6
shows a sample of the selected patches by our attention
mechanism.

An additional decrease of the test errors can be obtained by
increasing the number of processed scales. In the DCN
model, taking 3 patches at 2 scales (original and 0.75
scales), leads to 18.2% error, while taking 3 patches at 3
scales (original, 0.75 and 0.5 scales) leads to an error rate of
16.6%. Our DCN model can reach its best performance of
11.6% by taking all possible patches at 3 scales, but it does
not offer any computational benefit over the fine model.

We also investigate the computational benefits of the DCN
approach as the dimensions of the input data increase. Ta-
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Figure 6. A sample of the selected patches in SVHN images. The
images are processed by the DCN inference procedure in their
original sizes. They are resized here for illustration purposes.

ble 5 reports the number of multiplications the fine model,
coarse model and the DCN model require, given different
input sizes. We also verify the actual computational time of
these models by taking the largest 100 images in the SVHN
test set, and computing the average inference time taken by
all the models. 3 The smallest of these images has a size of
363×735 pixels, while the largest has a size of 442×1083
pixels. On average, the coarse and the soft-attention mod-
els take 8.6 milliseconds, while the fine model takes 62.6
milliseconds. On the largest 100 SVHN test images, the
DCN requires on average 10.8 milliseconds for inference.

5. Conclusions
We have presented the DCN model, which is a novel ap-
proach for conditional computation. We have shown that
using our visual attention mechanism, our network can
adaptively assign its capacity across different portions of
the input data, focusing on important regions of the in-
put. Our model achieved state-of-the-art performance on
the Cluttered MNIST digit classification task, and provided
computational benefits over traditional convolutional net-
work architectures. We have also validated our model in a
transfer learning setting using the SVHN dataset, where we
tackled the multi-digit recognition problem without using
any a priori information on the digits’ location. We have
shown that our model outperforms other baselines, yet re-
mains tractable for inputs with large spatial dimensions.

6. Appendix
6.1. Cluttered MNIST Experiment Details

• Coarse layers: 2 convolutional layers, with 7 × 7 and
3× 3 filter sizes, 12 and 24 filters, respectively, and a
2 × 2 stride. Each feature in the coarse feature maps
covers a patch of size 11×11 pixels, which we extend
by 3 pixels in each side to give the fine layers more
context. The size of the coarse feature map is 23×23.

• Fine layers: 5 convolutional layers, each with 3 × 3

3We evaluate all models on an NVIDIA Titan Black GPU card.

filter sizes, 1×1 strides, and 24 filters. We apply 2×2
pooling with 2 × 2 stride after the second and fourth
layers. We also use 1 × 1 zero padding in all layers
except for the first and last layers. This architecture
was chosen so that it maps a 14 × 14 patch into one
spatial location.

• Top layers: one convolutional layer with 4 × 4 filter
size, 2×2 stride and 96 filters, followed by global max
pooling. The result is fed into a 10-output softmax
layer.

We use rectifier non-linearities in all layers. We use
Batch Normalization (Ioffe & Szegedy, 2015) and Adam
(Kingma & Ba, 2014) for training our models. In DCN we
train the coarse layers with a convex combination of cross
entropy objective and hints.

6.2. SVHN Experiment Details

• Coarse layers: the model is fully convolutional with
7 convolutional layers. First three layers have 24, 48,
128 filters respectively with size 5 × 5 and stride 2 ×
2. Layer 4 has 192 filters with 4 × 5 and stride 1 ×
2. Layer 5 has 192 filters with size 1 × 4. Finally,
the last two layers are 1 × 1 convolutions with 1024
filters. We use stride of 1×1 in the last 3 layers and do
not use zero padding in any of the coarse layers. The
corresponding patch size here is 54× 110.

• Fine layers: 11 convolutional layers. The first 5 con-
volutional layers have 48, 64, 128, 160 and 192 filters
respectively, with size 5 × 5 and zero-padding. After
layers 1, 3, and 5 we use 2×2 max pooling with stride
2×2. The following layers have 3×3 convolution with
192 filters. The 3 last layers are 1×1 convolution with
1024 hidden units.

Here we use SGD with momentum and exponential learn-
ing rate decay. While training, we take 54 × 110 random
crop from images, and we use 0.2 dropout on convolutional
layers and 0.5 dropout on fully connected layers.
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