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Abstract
The problem of column subset selection has re-
cently attracted a large body of research, with
feature selection serving as one obvious and im-
portant application. Among the techniques that
have been applied to solve this problem, the
greedy algorithm has been shown to be quite ef-
fective in practice. However, theoretical guaran-
tees on its performance have not been explored
thoroughly, especially in a distributed setting. In
this paper, we study the greedy algorithm for the
column subset selection problem from a theoreti-
cal and empirical perspective and show its effec-
tiveness in a distributed setting. In particular, we
provide an improved approximation guarantee
for the greedy algorithm which we show is tight
up to a constant factor, and present the first dis-
tributed implementation with provable approxi-
mation factors. We use the idea of randomized
composable core-sets, developed recently in the
context of submodular maximization. Finally, we
validate the effectiveness of this distributed algo-
rithm via an empirical study.

1. Introduction
Recent technological advances have made it possible to
collect unprecedented amounts of data. However, extract-
ing patterns of information from these high-dimensional
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massive datasets is often challenging. How do we auto-
matically determine, among millions of measured features
(variables), which are informative, and which are irrelevant
or redundant? The ability to select such features from high-
dimensional data is crucial for computers to recognize pat-
terns in complex data in ways that are fast, accurate, and
even human-understandable (Guyon & Elisseeff, 2003).

An efficient method for feature selection receiving increas-
ing attention is Column Subset Selection (CSS). CSS is a
constrained low-rank-approximation problem that seeks to
approximate a matrix (e.g. instances by features matrix)
by projecting it onto a space spanned by only a few of
its columns (features). Formally, given a matrix A with
n columns, and a target rank k < n, we wish to find a size-
k subset S of A’s columns such that each column Ai of A
(i ∈ {1, . . . , n}) is contained as much as possible in the
subspace span(S), in terms of the Frobenius norm:

arg maxS contains k ofA’s columns

n∑
i=1

‖proj(Ai | span(S))‖22

While similar in spirit to general low-rank approximation,
some advantages with CSS include flexibility, interpretabil-
ity and efficiency during inference. CSS is an unsupervised
method and does not require labeled data, which is espe-
cially useful when labeled data is sparse. We note, on the
other hand, unlabeled data is often very abundant and there-
fore scalable methods, like the one we present, are often
needed. Furthermore, by subselecting features, as opposed
to generating new features via an arbitrary function of the
input features, we keep the semantic interpretation of the
features intact. This is especially important in applications
that require interpretable models. A third important advan-
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tage is the efficiency of applying the solution CSS feature
selection problem during inference. Compared to PCA or
other methods that require a matrix-matrix multiplication
to project input features into a reduced space during infer-
ence time, CSS only requires selecting a subset of feature
values from a new instance vector. This is especially useful
for latency sensitive applications and when the projection
matrix itself may be prohibitively large, for example in re-
stricted memory settings.

While there have been significant advances in CSS (Bout-
sidis et al., 2011; 2009; Guruswami & Sinop, 2012), most
of the algorithms are either impractical and not applicable
in a distributed setting for large datasets, or they do not have
good (multiplicative 1− ε) provable error bounds. Among
efficient algorithms studied for the CSS problem is the sim-
ple greedy algorithm, which iteratively selects the best col-
umn and keeps it. Recent work shows that it does well
in practice and even in a distributed setting (Farahat et al.,
2011; 2013) and admits a performance guarantee (Çivril
& Magdon-Ismail, 2012). However, the known guarantees
depend on an arbitrarily large matrix-coherence parameter,
which is unsatisfactory. Also, even though the algorithm is
relatively fast, additional optimizations are needed to scale
it to datasets with millions of features and instances.

1.1. Our contributions

Let A ∈ Rm×n be the given matrix, and let k be the target
number of columns. Let OPTk denote the optimal set of
columns, i.e., one that covers the maximum Frobenius mass
of A. Our contributions are as follows.

Novel analysis of Greedy. For any ε > 0, we show
that the natural greedy algorithm (Section 2), after r =

k
σmin(OPTk)ε steps, gives an objective value that is within
a (1 − ε) factor of the optimum. We also give a match-
ing lower bound, showing that k

σmin(OPTk)ε is tight up to a
constant factor. Here σmin(OPTk) is the smallest squared
singular value of the optimal set of columns (after scaling
to unit vectors).

Our result is similar in spirit to those of (Çivril & Magdon-
Ismail, 2012; Boutsidis et al., 2015), but with an important
difference. Their bound on r depends on the least σmin(S)
over all S of size k, while ours depends on σmin(OPTk).
Note that these quantities can differ significantly. For in-
stance, if the data has even a little bit of redundancy (e.g.
few columns that are near duplicates), then there exist S for
which σmin is tiny, but the optimal set of columns could be
reasonably well-conditioned (in fact, we would expect the
optimal set of columns to be fairly well conditioned).

Distributed Greedy. We consider a natural distributed im-
plementation of the greedy algorithm (Section 2). Here, we
show that an interesting phenomenon occurs: even though
partitioning the input does not work in general (as in core-

set based algorithms), randomly partitioning works well.
This is inspired by a similar result on submodular max-
imization (Mirrokni & Zadimoghaddam, 2015). Further,
our result implies a 2-pass streaming algorithm for the CSS
problem in the random arrival model for the columns.

We note that if the columns each have sparsity φ, (Boutsidis
et al., 2016) gives an algorithm with total communication
of O( skφε + sk2

ε4 ). Their algorithm works for “worst case”
partitioning of the columns into machines and is much
more intricate than the greedy algorithm. In constrast, our
algorithm is very simple, and for a random partitioning, the
communication is just the first term above, along with an
extra σmin(OPT ) term. Thus depending on σmin and ε,
each of the bounds could be better than the other.

Further optimizations. We also present techniques to speed
up the implementation of the greedy algorithm. We show
that the recent result of (Mirzasoleiman et al., 2015) (once
again, on submodular optimization) can be extended to the
case of CSS, improving the running time significantly.

We then compare our algorithms (in accuracy and running
times) to various well-studied CSS algorithms. (Section 6.)

1.2. Related Work

The CSS problem is one of the central problems re-
lated to matrix approximation. Exact solution is known
to be UG-hard (Çivril, 2014), and several approximation
methods have been proposed over the years. Techniques
such as importance sampling (Drineas et al., 2004; Frieze
et al., 2004), adaptive sampling (Deshpande & Vempala,
2006), volume sampling (Deshpande et al., 2006; Desh-
pande & Rademacher, 2010), leverage scores (Drineas
et al., 2008), and projection-cost preserving sketches (Co-
hen et al., 2015) have led to a much better understanding
of the problem. (Guruswami & Sinop, 2012) gave the op-
timal dependence between column sampling and low-rank
approximation. Due to the numerous applications, much
work has been done on the implementation side, where
adaptive sampling and leverage scores have been shown to
perform well. A related, extremely simple algorithm is the
greedy algorithm, which turns out to perform well and be
scalable (Farahat et al., 2011; 2013). This was first ana-
lyzed by (Çivril & Magdon-Ismail, 2012), as we discussed.

There is also substantial literature about distributed algo-
rithms for CSS (Pi et al., 2013; Feldman et al., 2015; Co-
hen et al., 2015; Farahat et al., 2015a;b; Boutsidis et al.,
2016). In particular, (Farahat et al., 2015a;b) present dis-
tributed versions of the greedy algorithm based on MapRe-
duce. Although they do not provide theoretical guarantees,
their experimental results are very promising.

The idea of composable coresets has been applied explic-
itly or implicitly to several problems (Feldman et al., 2013;
Balcan et al., 2013; Indyk et al., 2014). Quite recently,
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for some problems in which coreset methods do not work
in general, surprising results have shown that randomized
variants of them give good approximations (da Ponte Bar-
bosa et al., 2015; Mirrokni & Zadimoghaddam, 2015). We
extend this framework to the CSS problem.

1.3. Background and Notation

We use the following notation throughout the paper. The
set of integers {1, . . . , n} is denoted by [n]. For a ma-
trix A ∈ Rm×n, Aj denotes the jth column (Aj ∈ Rm).
Given S ⊆ [n],A[S] denotes the submatrix ofA containing
columns indexed by S. The projection matrix ΠA projects
onto the column span ofA. Let ‖A‖F denote the Frobenius

norm, i.e.,
√∑

i,j A
2
i,j . We write σmin(A) to denote the

minimum squared singular value, i.e., infx:‖x‖2=1
‖Ax‖22
‖x‖22

.
We abuse notation slightly, and for a set of vectors V , we
write σmin(V ) for the σmin of the matrix with columns V .

Definition 1. Given a matrix A ∈ Rm×n and an integer
k ≤ n, the Column Subset Selection (CSS) Problem asks
to find

arg maxS⊆[n],|S|=k‖ΠA[S]A‖2F ,

i.e., the set of columns that best explain the full matrix A.

We note that it is also common to cast this as a minimiza-
tion problem, with the objective being ‖A − ΠA[S]A‖2F .
While the exact optimization problems are equivalent, ob-
taining multiplicative approximations for the minimization
version could be harder when the matrix is low-rank.

For a set of vectors V and a matrix M , we denote

fM (V ) = ‖ΠVM‖2F .

Also, the case when M is a single vector will be important.
For any vector u, and a set of vectors V , we write

fu(V ) = ‖ΠV u‖22.

Remark 1. Note that fM (V ) can be viewed as the extent
to which we can cover matrix M using vectors V . How-
ever, unlike combinatorial covering objectives, our defini-
tion is not submodular, or even subadditive. As an example,
consider covering the following A using its own columns.
Here, fA({A1, A2}) = ‖A‖2F > f({A1}) + f({A2}).

A =

 1 0 1
1 −1 0
0 1 1


2. Greedy Algorithm for Column Selection
Let us state our algorithm and analysis in a slightly general
form. Suppose we have two matrices A,B with the same
number of rows and nA, nB columns respectively. The
GCSS(A,B, k) problem is that of finding a subset S of

columns of B, that maximizes fA(S) subject to |S| = k.
Clearly, if B = A, we recover the CSS problem stated
earlier. Also, note that scaling the columns of B will not
affect the solution, so let us assume that the columns of B
are all unit vectors. The greedy procedure iteratively picks
columns of B as follows:

Algorithm 1 GREEDY(A∈Rm×nA ,B∈Rm×nB , k ≤ nB)
1: S ← ∅
2: for i = 1 : k do
3: Pick column Bj that maximizes fA(S ∪Bj)
4: S ← S ∪ {Bj}
5: end for
6: Return S

Step (3) is the computationally intensive step in GREEDY
– we need to find the column that gives the most marginal
gain, i.e., fA(S ∪ Bj)− fA(S). In Section 5, we describe
different techniques to speed up the calculation of marginal
gain, while obtaining a 1−ε approximation to the optimum
f(·) value. Let us briefly mention them here.

Projection to reduce the number of rows. We can left-
multiply bothA andB with an r×n Gaussian random ma-
trix. For r ≥ k logn

ε2 , this process is well-known to preserve
fA(·), for any k-subset of the columns of B (see (Sarlos,
2006) or Appendix Section A.5 for details).

Projection-cost preserving sketches. Using recent results
from (Cohen et al., 2015), we can project each row of A
onto a random O( kε2 ) dimensional space, and then work
with the resulting matrix. Thus we may assume that the
number of columns in A is O( kε2 ). This allows us to effi-
ciently compute fA(·).

Lazier-than-lazy greedy. (Mirzasoleiman et al., 2015) re-
cently proposed the first algorithm that achieves a constant
factor approximation for maximizing submodular func-
tions with a linear number of marginal gain evaluations.
We show that a similar analysis holds for GCSS, even
though the cost function is not submodular.

We also use some simple yet useful ideas from (Farahat
et al., 2013) to compute the marginal gains (see Section 5).

2.1. Distributed Implementation

We also study a distributed version of the greedy algorithm,
shown below (Algorithm 2.1). ` is the number of machines.

Algorithm 2 DISTGREEDY(A, B, k, `)
1: Randomly partition the columns of B into T1, . . . , T`
2: (Parallel) compute Si ← GREEDY(A, Ti,

32k
σmin(OPT ) )

3: (Single machine) aggregate the Si, and compute S ←
GREEDY(A,∪`i=1Si,

12k
σmin(OPT ) )

4: Return arg maxS′∈{S,S1,...,S`}fA(S′)
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As mentioned in the introduction, the key here is that the
partitioning is done randomly, in contrast to most results
on composable summaries. We also note that machine i
only sees columns Ti of B, but requires evaluating fA(·)
on the full matrix A when running GREEDY.1 The way to
implement this is again by using projection-cost preserv-
ing sketches. (In practice, keeping a small sample of the
columns of A works as well.) The sketch is first passed to
all the machines, and they all use it to evaluate fA(·).

We now turn to the analysis of the single-machine and the
distributed versions of the greedy algorithm.

3. Peformance analysis of GREEDY
The main result we prove is the following, which shows
that by taking only slightly more than k columns, we are
within a 1− ε factor of the optimal solution of size k.

Theorem 1. Let A ∈ Rm×nA and B ∈ Rm×nB . Let
OPTk be a set of columns from B that maximizes fA(S)
subject to |S| = k. Let ε > 0 be any constant, and let
Tr be the set of columns output by GREEDY(A,B, r), for
r = 16k

εσmin(OPTk) . Then we have

fA(Tr) ≥ (1− ε)fA(OPTk).

We show in Appendix Section A.3 that this bound is tight
up to a constant factor, with respect to ε and σmin(OPTk).
Also, we note that GCSS is a harder problem than
MAX-COVERAGE, implying that if we can choose only
k columns, it is impossible to approximate to a ratio better
than (1 − 1

e ) ≈ 0.63, unless P=NP. (In practice, GREEDY
does much better, as we will see.)

The basic proof strategy for Theorem 1 is similar to that
of maximizing submodular functions, namely showing that
in every iteration, the value of f(·) increases significantly.
The key lemma is the following.

Lemma 1. Let S, T be two sets of columns, with fA(S) ≥
fA(T ). Then there exists v ∈ S such that

fA(T ∪ v)− fA(T ) ≥ σmin(S)

(
fA(S)− fA(T )

)2
4|S|fA(S)

.

Theorem 1 follows easily from Lemma 1, which we show
at the end of the section. Thus let us first focus on prov-
ing the lemma. Note that for submodular f , the analogous
lemma simply has f(S)−f(T )

|S| on the right-hand side (RHS).
The main ingredient in the proof of Lemma 1 is its single
vector version:

Lemma 2. Let S, T be two sets of columns, with fu(S) ≥
1It is easy to construct examples in which splitting both A and

B fails badly.

fu(T ). Suppose S = {v1, . . . , vk}. Then

k∑
i=1

(
fu(T ∪ vi)−fu(T )

)
≥ σmin(S)

(
fu(S)− fu(T )

)2
4fu(S)

.

Let us first see why Lemma 2 implies Lemma 1. Observe
that for any set of columns T , fA(T ) =

∑
j fAj (T ) (sum

over the columns), by definition. For a column j, let us

define δj = min{1, fAj (T )

fAj (S)}. Now, using Lemma 2 and
plugging in the definition of δj , we have

1

σmin(S)

k∑
i=1

(
fA(T ∪ vi)− fA(T )

)
(1)

=
1

σmin(S)

n∑
j=1

k∑
i=1

(
fAj (T ∪ vi)− fAj (T )

)
≥

n∑
j=1

(1− δj)2fAj (S)

4
(2)

=
fA(S)

4

n∑
j=1

(1− δj)2 fAj (S)

fA(S)
(3)

≥ fA(S)

4

 n∑
j=1

(1− δj)
fAj (S)

fA(S)

2

(4)

=
1

4fA(S)

( n∑
j=1

max{0, fAj (S)− fAj (T )}
)2

(5)

≥ 1

4fA(S)

(
fA(S)− fA(T )

)2

(6)

To get (4), we used Jensen’s inequality (E[X2] ≥ (E[X])2)

treating
fAj (S)

fA(S) as a probability distribution over indices j.
Thus it follows that there exists an index i for which the
gain is at least a 1

|S| factor, proving Lemma 1.

Proof of Lemma 2. Let us first analyze the quantity fu(T ∪
vi) − fu(T ), for some vi ∈ S. As mentioned earlier, we
may assume the vi are normalized. If vi ∈ span(T ), this
quantity is 0. Thus we can assume that such vi have been
removed from S. Now, adding vi to T gives a gain because
of the component of vi orthogonal to T , i.e., vi − ΠT vi,
where ΠT denotes the projector onto span(T ). Define

v′i =
vi −ΠT vi
‖vi −ΠT vi‖ 2

.

By definition, span(T ∪ vi) = span(T ∪ v′i). Thus the pro-
jection of a vector u onto span(T ∪ v′i) is ΠTu+ 〈u, v′i〉v′i,
which is a vector whose squared length is ‖ΠTu‖2 +
〈u, v′i〉2 = fu(T ) + 〈u, v′i〉2. This implies that

fu(T ∪ vi)− fu(T ) = 〈u, v′i〉2. (7)
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Thus, to show the lemma, we need a lower bound on∑
i〈u, v′i〉2. Let us start by observing that a more

explicit definition of fu(S) is the squared-length of
the projection of u onto span(S), i.e. fu(S) =

maxx∈span(S),‖x‖2=1〈u, x〉2. Let x =
∑k
i=1 αivi be a max-

imizer. Since ‖x‖2 = 1, by the definition of the smallest
squared singular value, we have

∑
i α

2
i ≤ 1

σmin(S) . Now,
decomposing x = ΠTx+ x′, we have

fu(S) = 〈x, u〉2 = 〈x′+ΠTx, u〉2 = (〈x′, u〉+〈ΠTx, u〉)2.

Thus (since the worst case is when all signs align),

|〈x′, u〉| ≥
√
fu(S)− |〈ΠTx, u〉| ≥

√
fu(S)−

√
fu(T )

=
fu(S)− fu(T )√
fu(S) +

√
fu(T )

≥ fu(S)− fu(T )

2
√
fu(S)

. (8)

where we have used the fact that |〈ΠTx, u〉|2 ≤ fu(T ),
which is true from the definition of fu(T ) (and since ΠTx
is a vector of length ≤ 1 in span(T )).

Now, because x =
∑
i αivi, we have x′ = x − ΠTx =∑

i αi(vi −ΠT vi) =
∑
i αi‖vi −ΠT vi‖2v′i. Thus,

〈x′, u〉2 =
(∑

i

αi‖vi −ΠT vi‖2〈v′i, u〉
)2

≤
(∑

i

α2
i ‖vi −ΠT vi‖22

)(∑
i

〈v′i, u〉2
)

≤
(∑

i

α2
i

)(∑
i

〈v′i, u〉2
)
.

where we have used Cauchy-Schwartz, and then the fact
that ‖vi − ΠT vi‖2 ≤ 1 (because vi are unit vectors). Fi-
nally, we know that

∑
i α

2
i ≤ 1

σmin(S) , which implies∑
i

〈v′i, u〉2 ≥ σmin(S)〈x′, u〉2 ≥ σmin(S)
(fu(S)− fu(T ))2

4fu(S)

Combined with (7), this proves the lemma.

Proof of Theorem 1. For notational convenience, let σ =
σmin(OPTk) and F = fA(OPTk). Define ∆0 = F ,
∆1 = ∆0

2 , . . . , ∆i+1 = ∆i

2 until ∆N ≤ εF . Note that
the gap fA(OPTk)− fA(T0) = ∆0. We show that it takes
at most 8kF

σ∆i
iterations (i.e. additional columns selected)

to reduce the gap from ∆i to ∆i

2 = ∆i+1. To prove this,
we invoke Lemma 1 to see that the gap filled by 8kF

σ∆i
iter-

ations is at least 8kF
σ∆i
· σ (

∆i
2 )2

4kF = ∆i

2 = ∆i+1. Thus the
total number of iterations r required to get a gap of at most
∆N ≤ εF is:

r ≤
N−1∑
i=0

8kF

σ∆i
=

8kF

σ

N−1∑
i=0

2i−N+1

∆N−1
<

16k

εσ
.

where the last step is due to ∆N−1 > εF and∑N−1
i=0 2i−N+1 < 2. Therefore, after r < 16k

εσ iterations,
we have fA(OPTk) − fA(Tr) ≤ εfA(OPTk). Rearrang-
ing proves the lemma.

4. Distributed Greedy Algorithm
We will now analyze the distributed version of the greedy
algorithm that was discussed earlier. We show that in one
round, we will find a set of size O(k) as before, that has
an objective value Ω(f(OPTk)/κ), where κ is a condition
number (defined below). We also combine this with our
earlier ideas to say that if we perform O(κ/ε) rounds of
DISTGREEDY, we get a (1−ε) approximation (Theorem 3).

4.1. Analyzing one round

We consider an instance of GCSS(A,B, k), and let OPT
denote an optimum set of k columns. Let ` denote the
number of machines available. The columns (of B) are
partitioned across machines, such that machine i is given
columns Ti. It runs GREEDY as explained earlier and out-
puts Si ⊂ Ti of size k′ = 32k

σmin(OPT ) . Finally, all the Si are
moved to one machine and we run GREEDY on their union
and output a set S of size k′′ = 12k

σmin(OPT ) . Let us define

κ(OPT ) = σmax(OPT )
σmin(OPT ) .

Theorem 2. Consider running DISTGREEDY on an in-
stance of GCSS(A,B, k). We have

E[max{fA(S),max
i
{fA(Si)}}] ≥

f(OPT )

8 · κ(OPT )
.

The key to our proof are the following definitions:

OPTSi = {x ∈ OPT : x ∈ GREEDY(A, Ti ∪ x, k′)}
OPTNSi = {x ∈ OPT : x 6∈ GREEDY(A, Ti ∪ x, k′)}

In other words, OPTSi contains all the vectors in OPT
that would have been selected by machine i if they had
been added to the input set Ti. By definition, the sets
(OPTSi , OPT

NS
i ) form a partition of OPT for every i.

Proof outline. Consider any partitioning T1, . . . , T`, and
consider the sets OPTNSi . Suppose one of them (say the
ith) had a large value of fA(OPTNSi ). Then, we claim
that fA(Si) is also large. The reason is that the greedy
algorithm does not choose to pick the elements ofOPTNSi

(by definition) – this can only happen if it ended up picking
vectors that are “at least as good”. This is made formal
in Lemma 3. Thus, we can restrict to the case when none
of fA(OPTNSi ) is large. In this case, Lemma 4 shows
that fA(OPTSi ) needs to be large for each i. Intuitively,
it means that most of the vectors in OPT will, in fact, be
picked by GREEDY (on the corresponding machines), and
will be considered when computing S. The caveat is that
we might be unlucky, and for every x ∈ OPT , it might
have happened that it was sent to machine j for which it
was not part of OPTSj . We show that this happens with
low probability, and this is where the random partitioning
is crucial (Lemma 5). This implies that either S, or one of
the Si has a large value of fA(·).
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Let us now state two lemmas, and defer their proofs to Sec-
tions A.1 and A.2 respectively.

Lemma 3. For Si of size k′ = 32k
σmin(OPT ) , we have

f(Si) ≥
fA(OPTNSi )

2
for all i.

Lemma 4. For any matrix A, and any partition (I, J) of
OPT :

fA(I) + fA(J) ≥ fA(OPT )

2κ(OPT )
. (9)

Our final lemma is relevant when none of fA(OPTNSi )
are large and, thus, fA(OPTSi ) is large for all i (due to
Lemma 4). In this case, Lemma 5 will imply that the ex-
pected value of f(S) is large.

Note that Ti is a random partition, so the Ti, the OPTSi ,
OPTNSi , Si, and S are all random variables. However,
all of these value are fixed given a partition {Ti}. In what
follows, we will write f(·) to mean fA(·).

Lemma 5. For a random partitioning {Ti}, and S of size
k′′ = 12k

σmin(OPT ) , we have

E[f(S)] ≥ 1

2
E

[∑`
i=1 f(OPTSi )

`

]
. (10)

Proof. At a high level, the intuition behind the analysis is
that many of the vectors in OPT are selected in the first
phase, i.e., in ∪iSi. For an x ∈ OPT , let Ix denote the
indicator for x ∈ ∪iSi.
Suppose we have a partition {Ti}. Then if x had gone to
a machine i for which x ∈ OPTSi , then by definition, x
will be in Si. Now the key is to observe (see definitions)
that the event x ∈ OPTSi does not depend on where x is in
the partition! In particular, we could think of partitioning
all the elements except x (and at this point, we know if
x ∈ OPTSi for all i), and then randomly place x. Thus

E[Ix] = E

[
1

`

∑̀
i=1

[[x ∈ OPTSi ]]

]
, (11)

where [[ · ]] denotes the indicator.

We now use this observation to analyze f(S). Consider the
execution of the greedy algorithm on ∪iSi, and suppose V t

denotes the set of vectors picked at the tth step (so V t has
t vectors). The main idea is to give a lower bound on

E[f(V t+1)− f(V t)], (12)

where the expectation is over the partitioning {Ti}. Let
us denote by Q the RHS of (10), for convenience. Now,
the trick is to show that for any V t such that f(V t) ≤ Q,

the expectation in (12) is large. One lower bound on
f(V t+1)− f(V t) is (where Ix is the indicator as above)

1

k

∑
x∈OPT

Ix
(
f(V t ∪ x)− f(V t)

)
.

Now for every V , we can use (11) to obtain

E[f(V t+1)− f(V t)|V t = V ]

≥ 1

k`

∑
x∈OPT

E

[∑̀
i=1

[[x ∈ OPTSi ]]

] (
f(V ∪ x)−f(V )

)
=

1

k`
E

∑̀
i=1

∑
x∈OPTSi

(
f(V ∪ x)− f(V )

) .
Now, using (1)-(5), we can bound the inner sum by

σmin(OPTSi )
(max{0, f(OPTSi )− f(V )})2

4f(OPTSi )
.

Now, we use σmin(OPTSi ) ≥ σmin(OPT ) and the iden-
tity that for any two nonnegative reals a, b: (max{0, a −
b})2/a ≥ a/2− 2b/3. Together, these imply

E[f(V t+1)− f(V t)|V t = V ]

≥ σmin(OPT )

4k`
E

[∑̀
i=1

f(OPTSi )

2
− 2f(V )

3

]
.

and consequently: E[f(V t+1) − f(V t)] ≥ α(Q −
2
3E[f(V t)] for α = σmin(OPT )/4k. If for some t, we
have E[f(V t)] ≥ Q, the proof is complete because f is
monotone, and V t ⊆ S. Otherwise, E[f(V t+1) − f(V t)]
is at least αQ/3 for each of the k′′ = 12k/σmin(OPT ) =
3/α values of t. We conclude that E[f(S)] should be at
least (αQ/3)×(3/α) = Qwhich completes the proof.

Proof of Theorem 2. If fA(OPTNSi ) ≥ f(OPT )
4κ(OPT ) for some

i, then we are done, because Lemma 3 implies that fA(Si)
is large enough. Otherwise, by Lemma 4, fA(OPTSi ) ≥
f(OPT )
4κ(OPT ) for all i. Now we can use Lemma 5 to conclude

that E[fA(S)] ≥ f(OPT )
8κ(OPT ) , completing the proof.

4.2. Multi-round algorithm

We now show that repeating the above algorithm helps
achieve a (1− ε)-factor approximation.

We propose a framework with r epochs for some integer
r > 0. In each epoch t ∈ [r], we run the DISTGREEDY
algorithm to select set St. The only thing that changes in
different epochs is the objective function: in epoch t, the
algorithm selects columns based on the function f t which
is defined to be: f t(V ) = fA(V ∪ S1 ∪ S2 · · · ∪ St−1) for
any t. We note that function f1 is indeed the same as fA.
The final solution is the union of solutions: ∪rt=1S

t.



On Greedy Column Subset Selection

Theorem 3. For any ε < 1, the expected value of the
solution of the r-epoch DISTGREEDY algorithm, for r =
O(κ(OPT )/ε), is at least (1− ε)f(OPT ).

The proof is provided in Section A.7 of the appendix.

Necessity of Random Partitioning. We point out that the
random partitioning step of our algorithm is crucial for the
GCSS(A,B, k) problem. We adapt the instance from (In-
dyk et al., 2014) and show that even if each machine can
compute fA(·) exactly, and is allowed to output poly(k)
columns, it cannot compete with the optimum. Intuitively,
this is because the partition of the columns in B could en-
sure that in each partition i, the best way of covering A
involve picking some vectors Si, but the Si’s for different
i could overlap heavily, while the global optimum should
use different i to capture different parts of the space to be
covered. (See Theorem 8 in Appendix A.8 for details.)

5. Further optimizations for GREEDY

We now elaborate on some of the techniques discussed
in Section 2 for improving the running time of GREEDY.
We first assume that we left-multiply both A and B by
a random Gaussian matrix of dimension r × m, for r ≈
k log n/ε2. Working with the new instance suffices for the
purposes of (1−ε) approximation to CSS (for pickingO(k)
columns). (Details in the Appendix, Section A.5)

5.1. Projection-Cost Preserving Sketches

Marginal gain evaluations of the form fA(S ∪ v)− fA(S)
require summing the marginal gain of v onto each column
of A. When A has a large number of columns, this can be
very expensive. To deal with this, we use a sketch of A
instead of A itself. This idea has been explored in several
recent works; we use the following notation and result:

Definition 2 ((Cohen et al., 2015)). For a matrix A ∈
Rm×n, A′ ∈ Rm×n′ is a rank-k Projection-Cost Preserv-
ing Sketch (PCPS) with error 0 ≤ ε < 1 if for any set
of k vectors S, we have: (1 − ε)fA(S) ≤ fA′(S) + c ≤
(1 + ε)fA(S) where c ≥ 0 is a constant that may depend
on A and A′ but is independent of S.

Theorem 4. [Theorem 12 of (Cohen et al., 2015)] Let R
be a random matrix with n rows and n′ = O(

k+log 1
δ

ε2 )
columns, where each entry is set independently and uni-

formly to ±
√

1
n′ . Then for any matrix A ∈ Rm×n, with

probability at least 1−O(δ), AR is a rank-k PCPS for A.

Thus, we can use PCPS to sketch the matrix A to have
roughly k/ε2 columns, and use it to compute fA(S) to a
(1 ± ε) accuracy for any S of size ≤ k. This is also used
in our distributed algorithm, where we send the sketch to
every machine.

5.2. Lazier-than-lazy Greedy

The natural implementation of GREEDY requires O(nk)
evaluations of f(·) since we compute the marginal gain of
all n candidate columns in each of the k iterations. For sub-
modular functions, one can do better: the recently proposed
LAZIER-THAN-LAZY GREEDY algorithm obtains a 1− 1

e−
δ approximation with only a linear number O(n log(1/δ))
of marginal gain evaluations (Mirzasoleiman et al., 2015).
We show that a similar result holds for GCSS, even though
our cost function f(·) is not submodular.

The idea is as follows. Let T be the current solution set.
To find the next element to add to T , we draw a sized
nB log(1/δ)

k subset uniformly at random from the columns
inB\T . We then take from this set the column with largest
marginal gain, add it to T , and repeat. We show this gives
the following guarantee (details in Appendix Section A.4.)

Theorem 5. Let A ∈ Rm×nA and B ∈ Rm×nB . Let
OPTk be the set of columns from B that maximizes fA(S)
subject to |S| = k. Let ε, δ > 0 be any constants
such that ε + δ ≤ 1. Let Tr be the set of columns out-
put by LAZIER-THAN-LAZY GREEDY(A,B, r), for r =

16k
εσmin(OPTk) . Then we have:

E[fA(Tr)] ≥ (1− ε− δ)fA(OPTk)

Further, this algorithm evaluates marginal gain only a lin-
ear number 16nB log(1/δ)

εσmin(OPTk) of times.

Note that this guarantee is nearly identical to our analysis of
GREEDY in Theorem 1, except that it is in expectation. The
proof strategy is very similar to that of Theorem 1, namely
showing that the value of f(·) increases significantly in ev-
ery iteration (see Appendix Section A.4).

Calculating marginal gain faster. We defer the discussion
to Appendix Section A.6.

6. Experimental results
In this section we present an empirical investigation of the
GREEDY, GREEDY++ and DISTGREEDY algorithms. Ad-
ditionally, we will compare with several baselines:
Random: The simplest imaginable baseline, this method
selects columns randomly.
2-Phase: The two-phased algorithm of (Boutsidis et al.,
2009), which operates by first sampling Θ(k log k)
columns based on properties of the top-k right singular
space of the input matrix (this requires computing a top-k
SVD), then finally selects exactly k columns via a deter-
ministic procedure. The overall complexity is dominated
by the top-k SVD, which is O(min{mn2,m2n}).
PCA: The columns of the rank-k PCA projection matrix
will be used to serve as an upper bound on performance, as
they explicitly minimize the Forbenius reconstruction cri-
teria. Note this method only serves as an upper bound and
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Figure 1. A comparison of reconstruction accuracy, model classification accuracy and runtime of various column selection methods
(with PCA proved as an upper bound). The runtime is shown plot shows the relative speedup over the naive GREEDY algorithm.

does not fall into the framework of column subset selection.

We investigate using these algorithms using two datasets,
one with a small set of columns (mnist) that is used
to compare both scalable and non-scalable methods, as
well as a sparse dataset with a large number of columns
(news20.binary) that is meant to demonstrate the scalabil-
ity of the GREEDY core-set algorithm.2

Finally, we are also interested in the effect of column selec-
tion as a preprocessing step for supervised learning meth-
ods. To that end, we will train a linear SVM model, using
the LIBLINEAR library (Fan et al., 2008), with the subse-
lected columns (features) and measure the effectiveness of
the model on a held out test set. For both datasets we re-
port test error for the best choice of regularization parame-
ter c ∈ {10−3, . . . , 104}. We run GREEDY++ and DIST-
GREEDY with n

k log(10) marginal gain evaluations per iter-
ation and the distributed algorithm uses s =

√
n
k machines

with each machine recieving n
s columns.

6.1. Small scale dataset (mnist)

We first consider the MNIST digit recognition task, which
is a ten-class classification problem. There are n = 784
input features (columns) that represent pixel values from
the 28× 28-pixel images. We use m = 60,000 instances to
train with and 10,000 instances for our test set.

From Figure 1 we see that all column sampling methods,
apart from Random, select columns that approximately
provide the same amount of reconstruction and are able to
reach within 1% of the performance of PCA after sampling
300 columns. We also see a very similar trend with respect
to classification accuracy. It is notable that, in practice, the
core-set version of GREEDY incurs almost no additional
error (apart from at the smallest values of k) when com-
pared to the standard GREEDY algorithm.

Finally, we also show the relative speed up of the compet-
itive methods over the standard GREEDY algorithm. In
this small dataset regime, we see that the core-set algo-

2Both datasets can be found at:
www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html.

n Rand 2-Phase DISTGREEDY PCA
500 54.9 81.8 (1.0) 80.2 (72.3) 85.8 (1.3)
1000 59.2 84.4 (1.0) 82.9 (16.4) 88.6 (1.4)
2500 67.6 87.9 (1.0) 85.5 (2.4) 90.6 (1.7)

Table 1. A comparison of the classification accuracy of selected
features. Also, the relative speedup over the 2-Phase algorithm
for selecting features is shown in parentheses.

rithm does not offer an improvement over the single ma-
chine GREEDY++ and in fact the 2-Phase algorithm is the
fastest. This is primarily due to the overhead of the dis-
tributed core-set algorithm and the fact that it requires two
greedy selection stages (e.g. map and reduce). Next, we
will consider a dataset that is large enough that a distributed
model is in fact necessary.

6.2. Large scale dataset (news20.binary)

In this section, we show that the DISTGREEDY algorithm
can indeed scale to a dataset with a large number of
columns. The news20.binary dataset is a binary class text
classification problem, where we start with n = 100,000
sparse features (0.033% non-zero entries) that represent
text trigrams, use m = 14,996 examples to train with and
hold-out 5,000 examples to test with.

We compare the classification accuracy and column selec-
tion runtime of the naive random method, 2-Phase algo-
rithm as well as PCA (that serves as an upper bound on
performance) to the DISTGREEDY algorithm. The results
are presented in Table 1, which shows that DISTGREEDY
and 2-Phase both perform significantly better than ran-
dom sampling and come relatively close to the PCA upper
bound in terms of accuracy. However, we also find that
DISTGREEDY can be magnitudes of order faster than the 2-
Phase algorithm. This is in a large part because the 2-Phase
algorithm suffers from the bottleneck of computing a top-
k SVD. We note that an approximate SVD method could
be used instead, however, it was outside the scope of this
preliminary empirical investigation.

In conclusion, we have demonstrated that DISTGREEDY is
able to scale to larger sized datasets while still selecting
effective features.
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Çivril, A. and Magdon-Ismail, M. Column subset selection
via sparse approximation of svd. Theor. Comput. Sci.,
421:1–14, March 2012. ISSN 0304-3975.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. Dimensionality reduction for k-means clustering and
low rank approximation. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC ’15, pp. 163–172, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3536-2.

da Ponte Barbosa, Rafael, Ene, Alina, Nguyen, Huy L., and
Ward, Justin. The power of randomization: Distributed
submodular maximization on massive datasets. CoRR,
abs/1502.02606, 2015.

Deshpande, A. and Rademacher, L. Efficient volume sam-
pling for row/column subset selection. In Proceedings of
the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pp. 329–338, Wash-
ington, DC, USA, 2010. IEEE Computer Society. ISBN
978-0-7695-4244-7.

Deshpande, A. and Vempala, S. Adaptive sampling
and fast low-rank matrix approximation. In Proceed-
ings of the 9th International Conference on Approxima-
tion Algorithms for Combinatorial Optimization Prob-
lems, and 10th International Conference on Random-
ization and Computation, APPROX’06/RANDOM’06,
pp. 292–303, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-38044-2, 978-3-540-38044-3.

Deshpande, A., Rademacher, L., Vempala, S., and Wang,
G. Matrix approximation and projective clustering via
volume sampling. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm,
SODA ’06, pp. 1117–1126, Philadelphia, PA, USA,
2006. Society for Industrial and Applied Mathematics.
ISBN 0-89871-605-5.

Drineas, P., Frieze, A., Kannan, R., Vempala, S., and Vinay,
V. Clustering large graphs via the singular value decom-
position. Mach. Learn., 56(1-3):9–33, June 2004. ISSN
0885-6125.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S.
Relative-error cur matrix decompositions. SIAM J. Ma-
trix Analysis Applications, 30(2):844–881, 2008.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang,
Xiang-Rui, and Lin, Chih-Jen. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874, 2008.

Farahat, A. K., Ghodsi, A., and Kamel, M. S. An efficient
greedy method for unsupervised feature selection. In
Proceedings of the 2011 IEEE 11th International Con-
ference on Data Mining, ICDM ’11, pp. 161–170. IEEE
Computer Society, 2011. ISBN 978-0-7695-4408-3.

Farahat, A. K., Ghodsi, A., and Kamel, M. S. A fast greedy
algorithm for generalized column subset selection. In
Advances in Neural Information Processing Systems 27,
2013.

Farahat, A. K., Elgohary, A., Ghodsi, A., and Kamel, M. S.
Greedy column subset selection for large-scale data sets.
Knowl. Inf. Syst., 45(1):1–34, October 2015a. ISSN
0219-1377.

Farahat, A. K., Elgohary, A., Ghodsi, A., and Kamel, M. S.
Greedy column subset selection for large-scale data sets.
Knowl. Inf. Syst., 45(1):1–34, October 2015b. ISSN
0219-1377.

Feldman, D., Schmidt, M., and Sohler, C. Turning big data
into tiny data: Constant-size coresets for k-means, PCA
and projective clustering. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pp. 1434–1453, 2013.



On Greedy Column Subset Selection

Feldman, D., Volkov, M., and Rus, D. Dimensionality re-
duction of massive sparse datasets using coresets. CoRR,
abs/1503.01663, 2015.

Frieze, A., Kannan, R., and Vempala, S. Fast monte-
carlo algorithms for finding low-rank approximations. J.
ACM, 51(6):1025–1041, November 2004. ISSN 0004-
5411.

Guruswami, V. and Sinop, A. K. Optimal column-based
low-rank matrix reconstruction. In Proceedings of the
Twenty-third Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’12, pp. 1207–1214. SIAM,
2012.

Guyon, I. and Elisseeff, A. An introduction to variable and
feature selection. J. Mach. Learn. Res., 3:1157–1182,
March 2003. ISSN 1532-4435.

Indyk, Piotr, Mahabadi, Sepideh, Mahdian, Mohammad,
and Mirrokni, Vahab S. Composable core-sets for di-
versity and coverage maximization. In Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’14, Snowbird,
UT, USA, June 22-27, 2014, pp. 100–108, 2014.

Johnson, W. and Lindenstrauss, J. Extensions of Lipschitz
mappings into a Hilbert space. In Conference in mod-
ern analysis and probability (New Haven, Conn., 1982),
volume 26 of Contemporary Mathematics, pp. 189–206.
American Mathematical Society, 1984.

Mirrokni, V. and Zadimoghaddam, M. Randomized com-
posable core-sets for distributed submodular maximiza-
tion. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC ’15, pp.
153–162, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3536-2.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.,
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