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A. Missing Proofs
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for any fixed action a 2 K. Next, note that
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for any fixed action a 2 K, and in particular for a⇤.

Lemma A.1. Algorithm 2 generates online predictions for
which it holds that:
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Proof. Define an auxiliary function

˜̀Sig
t

(u) =
�
u

>
�(x

t

)� u

>
0

�(x
t

)
�
2

,

and notice that E[r`Sig
t

(u
t

) | F
t�1

] = r˜̀Sig
t

(u
t

), where
F

t�1

denotes the sigma-algebra that consists of the ac-
tions u

1

, . . . , u

t

, and the losses `Sig
1

, . . . , `

Sig
t�1

. Next, define
h

t

(u) as in Claim 3.1:

h

t

(u) = ˜̀Sig
t

(u) + u

>(r`Sig
t

(u
t

)�r˜̀Sig
t

(u
t

)),

and notice that rh

t

(u
t

) = r`Sig
t

(u
t

). Thus, by Claim 3.1
we can obtain

E[R
T

(˜̀Sig
1

, . . . ,

˜̀Sig
T

)]  E[BA
T

(h
1

, . . . , h

T

)]

= E[BA
T

(`Sig
1

, . . . , `

Sig
T

)]

 8T 1/2

,

as stated in the lemma.
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where (1) follows by Markov’s inequality; (2) follows by
the regret bound for {`Sig
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