A. Missing Proofs

Proposition 3.1. Let $\{\ell_t\}_{t=1}^T$ be a sequence of loss functions, and $\{\tilde{\ell}_t\}_{t=1}^T$ a sequence of corresponding approximation functions for which it holds that

$$\mathbb{E}[\nabla \tilde{\ell}_t(a) \mid \mathcal{F}_{t-1}] = \nabla \ell_t(a) + b_t(a),$$

for all t and $a \in \mathcal{K}$. Denote by $\{a_t\}_{t=1}^T$ the sequence of actions that a first-order algorithm \mathcal{A} outputs for $\{h_t\}_{t=1}^T$, where $h_t(a) = \ell_t(a) + a^\top (\nabla \tilde{\ell}_t(a_t) - \nabla \ell_t(a_t))$. Then,

$$\mathbb{E}[\mathcal{R}_T(\ell_1,\ldots,\ell_T)] = \sum_{t=1}^T \mathbb{E}\left[\ell_t(a_t)\right] - \sum_{t=1}^T \ell_t(a^*)$$
$$\leq \mathbb{E}\left[\mathcal{B}_T^{\mathcal{A}}(h_1,\ldots,h_T)\right] - \sum_{t=1}^T \mathbb{E}\left[(a_t - a^*)^\top b_t(a_t)\right],$$

where $a^* = \arg \min_{a \in \mathcal{K}} \sum_{t=1}^T \ell_t(a)$, and $\mathcal{B}_T^{\mathcal{A}}(h_1, \dots, h_T)$ is the regret bound of algorithm \mathcal{A} applied to $\{h_t\}_{t=1}^T$.

Proof. Notice that $\nabla h_t(a_t) = \nabla \tilde{\ell}_t(a_t)$. Thus, applying algorithm \mathcal{A} to $\{h_t\}_{t=1}^T$ yields the following guarantee:

$$\mathcal{R}_T^{\mathcal{A}}(h_1, \dots, h_T) = \sum_{t=1}^T h_t(a_t) - \sum_{t=1}^T h_t(a)$$
$$\leq \mathcal{B}_T^{\mathcal{A}}(h_1, \dots, h_T), \tag{8}$$

for any fixed action $a \in \mathcal{K}$. Next, note that

$$\mathbb{E}[h_t(a_t)] = \mathbb{E}[\ell_t(a_t)] + \mathbb{E}[a_t^\top (\nabla \ell_t(a_t) - \nabla \ell_t(a_t))]$$

= $\mathbb{E}[\ell_t(a_t)] + \mathbb{E}[\mathbb{E}[a_t^\top (\nabla \tilde{\ell}_t(a_t) - \nabla \ell_t(a_t)) \mid \mathcal{F}_{t-1}]]$
= $\mathbb{E}[\ell_t(a_t)] + \mathbb{E}[a_t^\top \mathbb{E}[(\nabla \tilde{\ell}_t(a_t) - \nabla \ell_t(a_t)) \mid \mathcal{F}_{t-1}]]$
= $\mathbb{E}[\ell_t(a_t)] + \mathbb{E}[a_t^\top b_t(a_t)],$

and also that

$$\mathbb{E}[h_t(a)] = \mathbb{E}[\ell_t(a)] + \mathbb{E}[a^\top (\nabla \tilde{\ell}_t(a_t) - \nabla \ell_t(a_t))]$$

= $\mathbb{E}[\ell_t(a)] + \mathbb{E}[a^\top \mathbb{E}[(\nabla \tilde{\ell}_t(a_t) - \nabla \ell_t(a_t)) \mid \mathcal{F}_{t-1}]]$
= $\mathbb{E}[\ell_t(a)] + \mathbb{E}[a^\top b_t(a_t)],$

for any fixed action $a \in \mathcal{K}$. Finally, taking expectation on Equation (8) and substituting $\mathbb{E}[h_t(a_t)]$, $\mathbb{E}[h_t(a)]$ as computed above yields

$$\mathbb{E}[\mathcal{R}_T(\ell_1,\ldots,\ell_T)] = \sum_{t=1}^T \mathbb{E}\left[\ell_t(a_t)\right] - \sum_{t=1}^T \ell_t(a)$$
$$\leq \mathbb{E}\left[\mathcal{B}_T^{\mathcal{A}}(h_1,\ldots,h_T)\right] - \sum_{t=1}^T \mathbb{E}\left[(a_t-a)^{\top}b_t(a_t)\right],$$

for any fixed action $a \in \mathcal{K}$, and in particular for a^* .

Lemma A.1. Algorithm 2 generates online predictions for which it holds that:

$$\sum_{t=1}^{T} \mathbb{E}\left[\left(u_t^{\top} \phi(x_t) - u_0^{\top} \phi(x_t)\right)^2\right] - \min_{u \in \mathcal{K}} \sum_{t=1}^{T} \left(u^{\top} \phi(x_t) - u_0^{\top} \phi(x_t)\right)^2 \le 8T^{1/2}$$

Proof. Define an auxiliary function

$$\tilde{\ell}_t^{\mathrm{Sig}}(u) = \left(u^{\top} \phi(x_t) - u_0^{\top} \phi(x_t) \right)^2,$$

and notice that $\mathbb{E}[\nabla \ell_t^{\mathrm{Sig}}(u_t) | \mathcal{F}_{t-1}] = \nabla \tilde{\ell}_t^{\mathrm{Sig}}(u_t)$, where \mathcal{F}_{t-1} denotes the sigma-algebra that consists of the actions u_1, \ldots, u_t , and the losses $\ell_1^{\mathrm{Sig}}, \ldots, \ell_{t-1}^{\mathrm{Sig}}$. Next, define $h_t(u)$ as in Claim 3.1:

$$h_t(u) = \tilde{\ell}_t^{\operatorname{Sig}}(u) + u^{\top} (\nabla \ell_t^{\operatorname{Sig}}(u_t) - \nabla \tilde{\ell}_t^{\operatorname{Sig}}(u_t)),$$

and notice that $\nabla h_t(u_t) = \nabla \ell_t^{Sig}(u_t)$. Thus, by Claim 3.1 we can obtain

$$\mathbb{E}[\mathcal{R}_T(\hat{\ell}_1^{\mathrm{Sig}}, \dots, \hat{\ell}_T^{\mathrm{Sig}})] \le \mathbb{E}[\mathcal{B}_T^{\mathcal{A}}(h_1, \dots, h_T)]$$
$$= \mathbb{E}[\mathcal{B}_T^{\mathcal{A}}(\ell_1^{\mathrm{Sig}}, \dots, \ell_T^{\mathrm{Sig}})]$$
$$\le 8T^{1/2},$$

as stated in the lemma.

Proposition 4.2. Let ℓ_t^{Sig} , ℓ_t^{Var} and $\tilde{\ell}_t^{Var}$ be as defined above and let $\alpha \in (0, 1)$. Then, Algorithm 2 generates online sequences $\{u_t\}_{t=1}^T$ and $\{v_t\}_{t=1}^T$ for which it holds that:

$$\frac{1}{T} \sum_{t=1}^{T} P\left(|u_t^{\top} \phi(x_t) - y_t| \ge c_t\right) \le \alpha,$$

for $c_t = \sqrt{\frac{2 \max\left\{\beta, v_t^{\top} \psi(x_t)\right\}}{\alpha}}$ and $\beta = 16T^{-1/4}.$

Proof. Using the techniques of Section 3.2, we have that

$$\sum_{t=1}^{T} \ell_t^{\text{Sig}}(u_t) - \min_{\|u\| \le 1} \sum_{t=1}^{T} \ell_t^{\text{Sig}}(u) \le \frac{4T^{1/2}\alpha}{\beta},$$

and also that

$$\sum_{t=1}^T \mathbb{R}\left[\ell_t^{\operatorname{Var}}(v_t)\right] - \min_{\|v\| \le 1} \sum_{t=1}^T \ell_t^{\operatorname{Var}}(v) \le \frac{16T^{1/2}\alpha^2}{\beta^2}$$

where we used the fact that $\frac{1}{c_t^2} \leq \frac{\alpha}{2\beta}$. Equipped with the above, we can bound the quantity of interest:

$$\begin{split} &\frac{1}{T}\sum_{t=1}^{T}P\left(|u_{t}^{\top}\phi(x_{t})-y_{t}|\geq c_{t}\right)\\ &=\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\mathbb{E}\left[1_{\left\{(u_{t}^{\top}\phi(x_{t})-y_{t})^{2}\geq c_{t}^{2}\right\}}\mid\mathcal{F}_{t-1}\right]\right]\\ &\stackrel{(1)}{\leq}\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\frac{\mathbb{E}\left[(u_{t}^{\top}\phi(x_{t})-y_{t})^{2}\mid\mathcal{F}_{t-1}\right]\right]\\ &=\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\frac{1}{c_{t}^{2}}(u_{t}^{\top}\phi(x_{t})-y_{t})^{2}\right]\\ &\stackrel{(2)}{\leq}\frac{1}{T}\left(\mathbb{E}\left[\min_{||u||\leq 1}\sum_{t=1}^{T}\frac{1}{c_{t}^{2}}\left(y_{t}-u^{\top}\phi(x_{t})\right)^{2}\right]+\frac{4T^{1/2}\alpha}{\beta}\right)\\ &\leq\frac{1}{T}\left(\sum_{t=1}^{T}\mathbb{E}\left[\frac{1}{c_{t}^{2}}\left(y_{t}-u_{0}^{\top}\phi(x_{t})\right)^{2}\right]+\frac{4T^{-1/2}\alpha}{\beta}\right)\\ &=\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\mathbb{E}\left[\frac{1}{c_{t}^{2}}\left(y_{t}-u_{0}^{\top}\phi(x_{t})\right)^{2}\mid\mathcal{F}_{t-1}\right]\right]+\frac{4T^{-1/2}\alpha}{\beta}\\ &=\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\frac{v_{0}^{\top}\psi(x_{t})}{c_{t}^{2}}\right]+\frac{4T^{-1/2}\alpha}{\beta}\\ &\leq\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\frac{|v_{0}^{\top}\psi(x_{t})-v_{t}^{\top}\psi(x_{t})|}{c_{t}^{2}}\right]+\frac{4T^{-1/2}\alpha}{\beta}\\ &\stackrel{(3)}{\leq}\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\frac{v_{t}^{\top}\psi(x_{t})}{c_{t}^{2}}\right]+\frac{4T^{-1/2}\alpha}{\beta}+\frac{4T^{-1/4}\alpha}{\beta}\leq\alpha, \end{split}$$

where (1) follows by Markov's inequality; (2) follows by the regret bound for $\{\ell_t^{\text{Sig}}\}_{t=1}^T$; and (3) follows by the regret bound for $\{\ell_t^{\text{Var}}\}_{t=1}^T$ and the relationship between the ℓ_1 and the ℓ_2 norms.