Stochastic Optimization for Multiview Representation Learning

Appendix (Proof of Lemma 3.4)

We first introduce a few definitions and facts about the ma-
trices that are required for the proof. X is a density matrix if
it is symmetric positive semi-definite and Tr (X) = 1. For
a pair of density matrices A and B, the quantum relative en-
tropy is defined as A(A,B) = Tr(A(log (A) — log (B))).
For arbitrary symmetric matrices A and B, the Golden-
Thompson inequality states that Tr (eA*8) < Tr (e*e?).
Also, for any symmetric matrix A, such that 0 < A <X I
and any pi,p2 € R, Jensen’s inequality for matrix expo-
nentials states that: eAP1HI=A)P2 < APt 4 (1 — A)eP2,

The following lemma is a straightforward consequence of
Theorem 2 of (Warmuth & Kuzmin, 2006):

Lemma 5.1. Let {C;}_, be an arbitrary sequence of di-
lations of instantaneous covariance matrices after appro-
priate spectrum-shift, such that 0 <X C; =X rl. For arbitrary
density matrix U and learning rate 1 > 0, the following
bound holds on the MEG iterates (Algorithm 2):
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Proof. : We start by bounding the difference in divergences
of two consecutive iterates of Algorithm 2 from the refer-
ence U.
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Using Golden-Thompson inequality with B = —nC; and
A =log (M;_1) we get:

Tr (elog(Mt_l)—nct) < Tr (My_ye ") |

Now using Jensen’s inequality for 0 = Ct < Iwithp; =

—nr,py = 0 we get: 7% X1 — i 1=c_" ;. Multiplying

both sides by M;_1, using the fact that Tr (AB) < Tr (AC)
if A is positive definite and B < C, and taking logarithms
of both sides we get:
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where we used the inequality log (1 — z) < —z to get the
second inequality. Thus, we have:

log (Tr (elog(Mt_l)*nC’*)) < —

Plugging the above back in equation (18) and rearranging
we get:

1—e™m

, Tr (Mt_lCt) .

rA(U,M;_1) — 7A(U, M) 4 rTr (UCy)
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(19)
From the Generalized Pythagorean Theorem we have
A(U,M;) > A(U, M;). Hence, inequality (19) holds when
we replace 1\71t by M;. Now summing over 7" completes the
proof. O

Note that lemma 5.1 holds for any density matrix U, and
specifically for U = M*, the optimum of Problem (12). We
can now tune the learning rate using the following lemma,
which we state without the proof:

Lemma 5.2. (Lemma 4 in (Freund & Schapire, 1997))
Suppose 0 < p < fiand 0 < p < p. Let § = g(%)

where g(z) = 12/ . Then
z
_”lig_(%)ﬂ < p+2p+p (20)

Letting p = rAM*,Mp) — rA(M*,My), it is easy to
verify p := rlog (d) > p. Also, by assumptions of Theo-
rem 3.3, we know 1 = Z?:l Tr(M*C;) is bounded above
by fi .= LT. Setting 8 = ¢~ "", the learning rate

1 1y 1 2rlog (d)
n—rlog(ﬁ>—rlog<l+ T >

Substituting p, f, p, and p in (20), moving u to the left
hand side, and noting that replacing p with p only makes
the right hand side bigger completes the proof.



