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Appendix (Proof of Lemma 3.4)
We first introduce a few definitions and facts about the ma-
trices that are required for the proof. X is a density matrix if
it is symmetric positive semi-definite and Tr (X) = 1. For
a pair of density matrices A and B, the quantum relative en-
tropy is defined as ∆(A,B) = Tr (A(log (A)− log (B))).
For arbitrary symmetric matrices A and B, the Golden-
Thompson inequality states that Tr

(
eA+B

)
≤ Tr

(
eAeB

)
.

Also, for any symmetric matrix A, such that 0 � A � I
and any p1, p2 ∈ R, Jensen’s inequality for matrix expo-
nentials states that: eAp1+(I−A)p2 � Aep1 + (I− A)ep2 .

The following lemma is a straightforward consequence of
Theorem 2 of (Warmuth & Kuzmin, 2006):

Lemma 5.1. Let {Ct}Tt=1 be an arbitrary sequence of di-
lations of instantaneous covariance matrices after appro-
priate spectrum-shift, such that 0 � Ct � rI. For arbitrary
density matrix U and learning rate η > 0, the following
bound holds on the MEG iterates (Algorithm 2):

r∆(U,M0)− r∆(U,MT ) + rη
∑T
t=1 Tr (UCt)

1− e−rη

≥
T∑
t=1

Tr (Mt−1Ct) . (17)

Proof. : We start by bounding the difference in divergences
of two consecutive iterates of Algorithm 2 from the refer-
ence U.

∆(U,Mt−1)−∆(U, M̂t)

=Tr
(

U log
(

M̂t

)
− U log (Mt−1)

)
=Tr

(
U log

(
elog(Mt−1)−ηCt

))
− Tr

(
U log

(
Tr
(
elog(Mt−1)−ηCt

)))
− Tr (U log (Mt−1))

=− ηTr (UCt)− log
(

Tr
(
elog(Mt−1)−ηCt

))
(18)

Using Golden-Thompson inequality with B = −ηCt and
A = log (Mt−1) we get:

Tr
(
elog(Mt−1)−ηCt

)
≤ Tr

(
Mt−1e

−ηCt
)
.

Now using Jensen’s inequality for 0 � Ct
r � I with p1 =

−ηr, p2 = 0 we get: e−ηCt � I − 1−e−ηr
r Ct. Multiplying

both sides by Mt−1, using the fact that Tr (AB) ≤ Tr (AC)
if A is positive definite and B � C, and taking logarithms
of both sides we get:

log
(
Tr
(
Mt−1e

−ηCt
))
≤ log

(
1− 1− e−ηr

r
Tr (Mt−1Ct)

)
≤ −1− e−ηr

r
Tr (Mt−1Ct) ,

where we used the inequality log (1− x) ≤ −x to get the
second inequality. Thus, we have:

log
(

Tr
(
elog(Mt−1)−ηCt

))
≤ −1− e−ηr

r
Tr (Mt−1Ct) .

Plugging the above back in equation (18) and rearranging
we get:

r∆(U,Mt−1)− r∆(U, M̂t) + rηTr (UCt)
1− e−rη

≥ Tr (Mt−1Ct)

(19)
From the Generalized Pythagorean Theorem we have
∆(U, M̂t) ≥ ∆(U,Mt). Hence, inequality (19) holds when
we replace M̂t by Mt. Now summing over T completes the
proof.

Note that lemma 5.1 holds for any density matrix U, and
specifically for U = M∗, the optimum of Problem (12). We
can now tune the learning rate using the following lemma,
which we state without the proof:

Lemma 5.2. (Lemma 4 in (Freund & Schapire, 1997))
Suppose 0 ≤ µ ≤ µ̃ and 0 < ρ ≤ ρ̃. Let β = g( µ̃ρ̃ )

where g(z) = 1

1+
√

2/z
. Then

−µ log (β) + ρ

1− β
≤ µ+

√
2µ̃ρ̃+ ρ (20)

Letting ρ := r∆(M∗,M0) − r∆(M∗,MT ), it is easy to
verify ρ̃ := r log (d) ≥ ρ. Also, by assumptions of Theo-
rem 3.3, we know µ :=

∑T
t=1 Tr(M∗Ct) is bounded above

by µ̃ := LT . Setting β = e−rη, the learning rate

η =
1

r
log

(
1

β

)
=

1

r
log

(
1 +

√
2r log (d)

LT

)
.

Substituting µ, µ̃, ρ, and ρ̃ in (20), moving µ to the left
hand side, and noting that replacing ρ with ρ̃ only makes
the right hand side bigger completes the proof.


