Appendices

A1 Supplementary Material

A1.1. Supplementary Proofs

Lemma 1. If assumption 1 is true, and encoding activation function $s_e(.)$ has first derivative in [0,1], then $\partial \mathcal{J}_{AE}/\partial b_{e_j} \in [-2\sigma_r\sqrt{n}\|\mathbf{W}_j\|, 2\sigma_r\sqrt{n}\|\mathbf{W}_j\|]$.

Proof. For squared loss function \mathcal{J}_{AE} ,

$$\frac{\partial \mathcal{J}_{AE}}{\partial b_{e_j}} = 2\mathbb{E}_{\mathbf{x}} \left[\frac{\partial s_e(a_j)}{\partial a_j} \left(\mathbf{x} - \mathbf{W}^T s_e(\mathbf{W} \mathbf{x} + \mathbf{b}_e) \right)^T \mathbf{W}_j \right] = 2\mathbb{E}_{\mathbf{x}} \left[\frac{\partial s_e(a_j)}{\partial a_j} \mathbf{r}_{\mathbf{x}}^T \mathbf{W}_j \right]$$
(15)

where $a_j = \mathbf{W}_j^T \mathbf{x} + b_j$. Since $\frac{\partial s_e(a_j)}{\partial a_j} \in [0, 1]$,

$$\mathbb{E}_{\mathbf{x}} \left[\frac{\partial s_e(a_j)}{\partial a_j} \mathbf{r}_{\mathbf{x}}^T \mathbf{W}_j \right] \le \mathbb{E}_{\mathbf{x}} \left[\frac{\partial s_e(a_j)}{\partial a_j} \| \mathbf{r}_{\mathbf{x}} \| \| \mathbf{W}_j \| \right] \le \| \mathbf{W}_j \| . \mathbb{E}_{\mathbf{x}} \left[\| \mathbf{r}_{\mathbf{x}} \| \right]$$
(16)

Let $r_{\mathbf{x}}$ denote any one of the elements of $\mathbf{r}_{\mathbf{x}}$. Since each element of $\mathbf{r}_{\mathbf{x}}$ is *i.i.d.* from assumption 1 and $\mathbf{r}_{\mathbf{x}} \in \mathbb{R}^n$, using Jensen's inequality, $\mathbb{E}_{\mathbf{x}} [\|\mathbf{r}_{\mathbf{x}}\|_2] \leq \sqrt{n}\mathbb{E}_{\mathbf{x}}[r_{\mathbf{x}}^2] = \sqrt{n}\sigma_r$. Thus,

$$\mathbb{E}_{\mathbf{x}} \left[\frac{\partial s_e(a_j)}{\partial a_j} \mathbf{r}_{\mathbf{x}}^T \mathbf{W}_j \right] \le \sqrt{n} \sigma_r \|\mathbf{W}_j\|$$
(17)

which leads to $\frac{\partial \mathcal{J}_{AE}}{\partial b_{e_j}} \leq 2\sigma_r \sqrt{n} \|\mathbf{W}_j\|$. We can similarly prove in the other direction get the desired bound.

Theorem 1. Let $\{\mathbf{W}^t \in \mathbb{R}^{m \times n}, \mathbf{b}_e^t \in \mathbb{R}^m\}$ be the parameters of a regularized auto-encoder $(\lambda > 0)$

$$\mathcal{J}_{RAE} = \mathcal{J}_{AE} + \lambda \mathcal{R}(\mathbf{W}, \mathbf{b}_e) \tag{18}$$

at training iteration t with regularization term $\mathcal{R}(\mathbf{W}, \mathbf{b}_e)$, activation function $s_e(.)$ and define pre-activation $a_j^t = \mathbf{W}_j^t \mathbf{x} + b_{e_j}^t$ (thus $h_j^t = s_e(a_j^t)$). If $\lambda \frac{\partial \mathcal{R}}{\partial b_{e_j}} > 2\sigma_r \sqrt{n} \|\mathbf{W}_j\|$, where $j \in \{1, 2, \dots, m\}$, then updating $\{\mathbf{W}^t, \mathbf{b}_e^t\}$ along the negative gradient of \mathcal{J}_{RAE} , results in $\mathbb{E}_{\mathbf{x}}[a_j^{t+1}] < \mathbb{E}_{\mathbf{x}}[a_j^t]$ and $\operatorname{Var}[a_j^{t+1}] = \|\mathbf{W}_j^{t+1}\|^2$ for all $t \geq 0$.

Proof. At iteration t+1,

$$a_j^{t+1} = a_j^t - \eta \frac{\partial \mathcal{J}_{RAE}}{\partial \mathbf{W}_j} \mathbf{x} - \eta \frac{\partial \mathcal{J}_{RAE}}{\partial b_{e_j}}$$
(19)

for any step size η . Expanding \mathcal{J}_{RAE} , we get,

$$a_j^{t+1} = a_j^t - \eta \frac{\partial \mathcal{J}_{AE}}{\partial \mathbf{W}_j} \mathbf{x} - \eta \frac{\partial \mathcal{J}_{AE}}{\partial b_{e_i}} - \eta \lambda \frac{\partial \mathcal{R}}{\partial \mathbf{W}_j} \mathbf{x} - \eta \lambda \frac{\partial \mathcal{R}}{\partial b_{e_i}}$$
(20)

Thus taking expectation over x on both sides we get,

$$\mathbb{E}_{\mathbf{x}}\left[a_j^{t+1}\right] = \mathbb{E}_{\mathbf{x}}\left[a_j^t\right] - \eta \frac{\partial \mathcal{J}_{AE}}{\partial b_{e_j}} - \eta \lambda \frac{\partial \mathcal{R}}{\partial b_{e_j}} \tag{21}$$

Notice the terms containing $\frac{\partial \mathcal{J}_{AE}}{\partial \mathbf{W}_j}$ and $\frac{\partial \mathcal{R}}{\partial \mathbf{W}_j}$ in equation 20 disappear because both terms are already a function of expectation over \mathbf{x} (see various auto-encoder regularizations) when we deal with expected cost function. Thus these terms are linear in \mathbf{x} and hence taking an expectation results in 0.

From lemma 1,
$$\frac{\partial \mathcal{J}_{AE}}{\partial b_{e_i}} \ge -2\epsilon \sqrt{n} \|\mathbf{W}_j\|$$
, thus if $\lambda \frac{\partial \mathcal{R}}{\partial b_{e_i}} > 2\sigma_r \sqrt{n} \|\mathbf{W}_j\|$, then $\mathbb{E}_{\mathbf{x}}[a_j^{t+1}] < \mathbb{E}_{\mathbf{x}}[a_j^t]$.

Finally,
$$\operatorname{Var}[a_j^{t+1}] = \mathbb{E}_{\mathbf{x}}[a_j^{t+1} - \mathbb{E}_{\mathbf{x}}[a_j^{t+1}]]^2 = \mathbb{E}_{\mathbf{x}}[\mathbf{W}_j^{t+1}\mathbf{x}]^2 = \|\mathbf{W}_j^{t+1}\|^2$$

Corollary 1. If s_e is a non-decreasing activation function with first derivative in [0,1] and $\mathcal{R} = \sum_{j=1}^m f(\mathbb{E}_{\mathbf{x}}[h_j])$ for any monotonically increasing function f(.), then $\exists \lambda > 0$ such that updating $\{\mathbf{W}^t, \mathbf{b}_e^t\}$ along the negative gradient of \mathcal{J}_{RAE} results in $\mathbb{E}_{\mathbf{x}}[a_j^{t+1}] \leq \mathbb{E}_{\mathbf{x}}[a_j^t]$ and $\operatorname{Var}[a_j^{t+1}] = \|\mathbf{W}_j^{t+1}\|^2$ for all $t \geq 0$.

Proof. We need one additional argument other than theorem 1. $\frac{\partial \mathcal{R}}{\partial b_{e_j}} = \frac{\partial f(\mathbb{E}_{\mathbf{x}}[h_j])}{\partial \mathbb{E}_{\mathbf{x}}[h_j]} \mathbb{E}_{\mathbf{x}} \left[\frac{\partial h_j}{\partial a_j} \right]$. Since both $s_e(.)$ and f(.) are non-decreasing functions, $\frac{\partial \mathcal{R}}{\partial b_{e_j}} \geq 0$ in all cases.

Corollary 2. If s_e is a non-decreasing convex activation function with first derivative in [0,1] and $\mathcal{R} = \mathbb{E}_{\mathbf{x}}\left[\sum_{j=1}^m\left(\left(\frac{\partial h_j}{\partial a_j}\right)^q\|\mathbf{W}_j^t\|_2^p\right)\right],\ q\in\mathbb{N}$, $p\in\mathbb{W}$, then $\exists \lambda>0$ such that updating $\{\mathbf{W}^t,\mathbf{b}_e^t\}$ along the negative gradient of \mathcal{J}_{RAE} , results in $\mathbb{E}_{\mathbf{x}}[a_j^{t+1}]\leq\mathbb{E}_{\mathbf{x}}[a_j^t]$ and $\mathrm{Var}[a_j^{t+1}]=\|\mathbf{W}_j^{t+1}\|^2$ for all $t\geq0$.

Proof. We need one additional argument other than theorem 1. $\frac{\partial \mathcal{R}}{\partial b_{e_j}} = \mathbb{E}_{\mathbf{x}} \left[q \left(\frac{\partial h_j}{\partial a_j} \right)^{q-1} \frac{\partial^2 h_j}{\partial a_j^2} \frac{\partial a_j}{\partial b_{e_j}} \| \mathbf{W}_j^t \|_2^p \right]$. Since $s_e(.)$ is a non-decreasing convex function, both $\frac{\partial^2 s_e(a_j)}{\partial a_j^2} \geq 0$ and $\frac{\partial s_e(a_j)}{\partial a_j} \geq 0 \ \forall a_j \in \mathbb{R}$. Finally, $\frac{\partial a_j}{\partial b_{e_j}} = 1$ by definition. Thus $\frac{\partial \mathcal{R}}{\partial b_{e_j}} \geq 0$ in all cases.

Theorem 2. Let p_j^t denote a lower bound of $\Pr(h_j^t \leq \delta_{\min})$ at iteration t and $s_e(.)$ be a non-decreasing function with first derivative in [0,1]. If $\|\mathbf{W}_j^t\|_2$ is upper bounded independent of λ then $\exists S \subseteq \mathbb{R}^+$ and $\exists T_{\min}, T_{\max} \in \mathbb{N}$ such that $p_j^{t+1} \geq p_j^t \ \forall \lambda \in S$, $T_{\min} \leq t \leq T_{\max}$.

Proof. From theorem 1, $\mathbb{E}[a_j^{t+1}] < \mathbb{E}[a_j^t] \ \forall t \geq 0$. Define a_{\min} such that $\delta_{\min} = \max_{a_{\min}} s_e(a_{\min})$. Thus $\exists T_{\min} \in \mathbb{N}$, such that $\forall t \geq T_{\min}$, $\mathbb{E}[a_j^t] < a_{\min}$. Then in the case of non-decreasing activation functions, using Chebyshev's bound,

$$\Pr(h_j^t \le \delta_{\min}) = \Pr(a_j^t \le a_{\min}) \ge \Pr(|a_j^t - \mathbb{E}[a_j^t]| \le a_{\min} - \mathbb{E}[a_j^t])$$

$$\ge 1 - \frac{\operatorname{Var}[a_j^t]}{(a_{\min} - \mathbb{E}[a_j^t])^2}$$
(22)

Thus $p_j^t := 1 - \frac{\operatorname{Var}[a_j^t]}{(a_{\min} - \mathbb{E}[a_j^t])^2}$ lower bounds $\Pr(h_j^t \leq \delta_{\min}) \ \forall t \geq T_{\min}$. Now consider the difference

$$D(t) := \frac{\operatorname{Var}[a_j^{t+1}]}{(a_{\min} - \mathbb{E}[a_i^{t+1}])^2} - \frac{\operatorname{Var}[a_j^t]}{(a_{\min} - \mathbb{E}[a_j^t])^2}$$
(23)

and recall that

$$\mathbb{E}_{\mathbf{x}}\left[a_j^{t+1}\right] = \mathbb{E}_{\mathbf{x}}\left[a_j^t\right] - \eta \frac{\partial \mathcal{J}_{AE}}{\partial b_{e_j}} - \eta \lambda \frac{\partial \mathcal{R}}{\partial b_{e_j}} \tag{24}$$

where both the step size η and $\frac{\partial \mathcal{R}}{\partial b_{e_j}}$ are positive and $\partial \mathcal{J}_{AE}/\partial b_{e_j} \in [-2\sigma_r\sqrt{n}\|\mathbf{W}_j\|, 2\sigma_r\sqrt{n}\|\mathbf{W}_j\|]$. Thus, since $\operatorname{Var}[a_j] = \|\mathbf{W}_j^t\|^2$, we can always choose a fixed $S \subseteq \mathbb{R}^+$ such that $D(t) \leq 0 \ \forall \lambda \in S$ and $T_{\min} \leq t \leq T_{\max}$.

Theorem 3. Let $\{\mathbf{W}, \mathbf{b}_e\}$ represent the parameters of a DAE with squared loss, linear decoding, and i.i.d. Gaussian corruption with zero mean and σ^2 variance, at any point of training over data sampled from distribution \mathcal{D} . Let $a_j := \mathbf{W}_j \mathbf{x} + b_{e_j}$ so that $h_j = s_e(a_j)$ corresponding to sample $\mathbf{x} \sim \mathcal{D}$. Then,

$$\mathcal{J}_{DAE} = \mathcal{J}_{AE} + \sigma^{2} \mathbb{E}_{\mathbf{x}} \left[\sum_{j=1}^{m} \left(\left(\frac{\partial h_{j}}{\partial a_{j}} \right)^{2} \| \mathbf{W}_{j} \|_{2}^{4} \right) + \sum_{\substack{j,k=1\\j \neq k}}^{m} \left(\frac{\partial h_{j}}{\partial a_{j}} \frac{\partial h_{k}}{\partial a_{k}} (\mathbf{W}_{j}^{T} \mathbf{W}_{k})^{2} \right) + \sum_{i=1}^{n} \left((\mathbf{b}_{d} + \mathbf{W}^{T} \mathbf{h} - \mathbf{x})^{T} \mathbf{W}^{T} \left(\frac{\partial^{2} \mathbf{h}}{\partial \mathbf{a}^{2}} \odot \mathbf{W}^{i} \odot \mathbf{W}^{i} \right) \right) \right] + o(\sigma^{2})$$
(25)

where $\frac{\partial^2 \mathbf{h}}{\partial \mathbf{a}^2} \in \mathbb{R}^m$ is the element-wise 2^{nd} derivative of \mathbf{h} w.r.t. \mathbf{a} and \odot is element-wise product.

Proof. Using 2^{nd} order Taylor's expansion of the loss function, we get

$$\ell(\mathbf{x}, f_d(f_e(\tilde{\mathbf{x}}))) = \ell(\mathbf{x}, f_d(f_e(\mu_{\mathbf{x}}))) + (\tilde{\mathbf{x}} - \mu_{\mathbf{x}})^T \nabla_{\tilde{\mathbf{x}}} \ell + \frac{1}{2} (\tilde{\mathbf{x}} - \mu_{\mathbf{x}})^T \nabla_{\tilde{\mathbf{x}}}^2 \ell (\tilde{\mathbf{x}} - \mu_{\mathbf{x}}) + o(\sigma^2)$$
(26)

where $\mu_{\mathbf{x}} = \mathbf{x}$. since we assume zero mean Gaussian noise. Thus taking the expectation of this approximation over noise yields

$$\mathbb{E}[\ell(\mathbf{x}, f_d(f_e(\tilde{\mathbf{x}})))] = \mathbb{E}[\ell(\mathbf{x}, f_d(f_e(\mu_{\mathbf{x}})))] + \frac{1}{2}tr(\Sigma_{\mathbf{x}}\nabla_{\tilde{\mathbf{x}}}^2\ell) + o(\sigma^2)$$
(27)

where $\Sigma_{\mathbf{x}} := \mathbb{E}[(\tilde{\mathbf{x}} - \mu_{\mathbf{x}})(\tilde{\mathbf{x}} - \mu_{\mathbf{x}})^T]$. Since the corruption is i.i.d., assume the covariance $\Sigma_{\mathbf{x}} = \sigma^2 \mathbf{I}$, where \mathbf{I} is the identity matrix.

Taking expectation over x, we can rewrite equation (27) as

$$\mathcal{J}_{DAE} = \mathcal{J}_{AE} + \mathbb{E}_{\mathbf{x}} \left[\frac{1}{2} \sigma^2 \sum_{i=1}^n \frac{\partial^2 \ell}{\partial \tilde{x}_i^2} \right] + o(\sigma^2)$$
 (28)

Expanding the second order term in the above equation, we get

$$\frac{\partial^2 \ell}{\partial \tilde{x}_i^2} = \frac{\partial \mathbf{h}}{\partial \tilde{x}_i}^T \frac{\partial^2 \ell}{\partial \mathbf{h}^2} \frac{\partial \mathbf{h}}{\partial \tilde{x}_i} + \frac{\partial \ell}{\partial \mathbf{h}}^T \frac{\partial^2 \mathbf{h}}{\partial \tilde{x}_i^2}$$
(29)

For linear decoding and squared loss,

$$\frac{\partial \ell}{\partial \mathbf{h}}^T \frac{\partial^2 \mathbf{h}}{\partial \tilde{x}_i^2} = \sum_{i=1}^n \left((\mathbf{b}_d + \mathbf{W}^T \mathbf{h} - \mathbf{x})^T \mathbf{W}^T \left(\frac{\partial^2 \mathbf{h}}{\partial \mathbf{a}^2} \odot \mathbf{W}^i \odot \mathbf{W}^i \right) \right)$$
(30)

where $\frac{\partial^2 \mathbf{h}}{\partial \mathbf{a}^2} \in \mathbb{R}^m$ is the element-wise 2^{nd} derivative of \mathbf{h} *w.r.t.* \mathbf{a} , \odot represents element-wise product and \mathbf{W}^i denotes the i^{th} column of \mathbf{W} . Let vector $\mathbf{d}_{\mathbf{h}} \in \mathbb{R}^m$ be defined such that $d_{h_j} = \frac{\partial h_j}{\partial a_j} \ \forall j \in \{1, 2, \dots, m\}$. Then,

$$\sum_{i=1}^{n} \frac{\partial \mathbf{h}}{\partial \tilde{x}_{i}}^{T} \frac{\partial^{2} \ell}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}}{\partial \tilde{x}_{i}} = 2 \sum_{j=1}^{n} \sum_{k=1}^{n} \left((\mathbf{d}_{\mathbf{h}} \odot (\mathbf{W})^{j})^{T} (\mathbf{W})^{k} \right)^{2}$$
(31)

where $(\mathbf{W})^j$ represents the j^{th} column of \mathbf{W} and \odot denotes element-wise product. Let $\mathbf{D_h} = \mathrm{diag}(\mathbf{d_h})$. Then,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \left((\mathbf{d_h} \odot (\mathbf{W})^j)^T (\mathbf{W})^k \right)^2 = \| (\mathbf{D_h} \mathbf{W})^T \mathbf{W} \|_F^2$$
(32)

Finally, using the cyclic property of trace operator, we get, $\|(\mathbf{D_h}\mathbf{W})^T\mathbf{W}\|_F^2 = \operatorname{tr}(\mathbf{W}^T\mathbf{D_h}\mathbf{W}\mathbf{W}^T\mathbf{D_h}\mathbf{W}) = \operatorname{tr}(\mathbf{D_h}\mathbf{W}\mathbf{W}^T\mathbf{D_h}\mathbf{W}\mathbf{W}^T)$. Thus DAE objective becomes,

$$\mathcal{J}_{DAE} = \mathcal{J}_{AE} + \sigma^{2} \mathbb{E}_{\mathbf{x}} \left[\operatorname{tr}(\mathbf{D}_{\mathbf{h}} \mathbf{W} \mathbf{W}^{T} \mathbf{D}_{\mathbf{h}} \mathbf{W} \mathbf{W}^{T}) + \sum_{i=1}^{n} \left((\mathbf{b}_{d} + \mathbf{W}^{T} \mathbf{h} - \mathbf{x})^{T} \mathbf{W}^{T} \left(\frac{\partial^{2} \mathbf{h}}{\partial \mathbf{a}^{2}} \odot \mathbf{W}^{i} \odot \mathbf{W}^{i} \right) \right) \right] + o(\sigma^{2})$$
(33)

Upon expansion of the second term above, we get the final form.

Remark 3. Let $\{\mathbf{W} \in \mathbb{R}^{m \times n}, \mathbf{b}_e \in \mathbb{R}^m\}$ represent the parameters of a Marginalized De-noising Auto-Encoder (mDAE) with $s_e(.)$ activation function, linear decoding, squared loss and $\sigma^2_{\mathbf{x}i} = \lambda \ \forall i \in \{1, ..., n\}$, at any point of training over data sampled from some distribution \mathcal{D} . Let $a_j := \mathbf{W}_j \mathbf{x} + b_{e_j}$ so that $h_j = s_e(a_j)$ corresponding to sample $\mathbf{x} \sim \mathcal{D}$. Then,

$$\mathcal{J}_{mDAE} = \mathcal{J}_{AE} + \lambda \mathbb{E}_{\mathbf{x}} \left[\sum_{j=1}^{m} \left(\left(\frac{\partial h_j}{\partial a_j} \right)^2 \| \mathbf{W}_j \|_2^4 \right) \right]$$
(34)

Proof. For linear decoding and squared loss, $\frac{\partial^2 \ell}{\partial h_i^2} = 2 \|\mathbf{W}_j\|_2^2$ and $\frac{\partial h_j}{\partial \tilde{\mathbf{x}}_i} = \frac{\partial h_j}{\partial a_j} W_{ji}$. Thus

$$\frac{1}{2} \sum_{i=1}^{n} \sigma_{\mathbf{x}i}^{2} \sum_{j=1}^{m} \frac{\partial^{2} \ell}{\partial h_{j}^{2}} \left(\frac{\partial h_{j}}{\partial \tilde{\mathbf{x}}_{i}} \right)^{2} = \sum_{i=1}^{n} \lambda \sum_{j=1}^{m} \|\mathbf{W}_{j}\|_{2}^{2} \left(\frac{\partial h_{j}}{\partial a_{j}} W_{ji} \right)^{2}$$

$$= \lambda \sum_{j=1}^{m} \|\mathbf{W}_{j}\|_{2}^{2} \left(\frac{\partial h_{j}}{\partial a_{j}} \right)^{2} \sum_{i=1}^{n} W_{ji}^{2} = \lambda \sum_{j=1}^{m} \left(\frac{\partial h_{j}}{\partial a_{j}} \right)^{2} \|\mathbf{W}_{j}\|_{2}^{4}$$
(35)