Why Regularized Auto-Encoders Learn Sparse Representation?

Appendices

A1 Supplementary Material

A1l .1. Supplementary Proofs

Lemma 1. If assumption 1 is true, and encoding activation function s.(.) has first derivative in [0, 1], then 0Jag /0b., €
(=20, v/l W[, 20,/ W]].

Proof. For squared loss function J4 g,

aJAE Gse(aj)
abej G j

= QEX |: (X - WTSQ(WX + be))T WJ:| = QEX [&Se—mj)rTWj] (15)

where a; = WTx + b;. Since a‘%ﬁ:” € [0,1],
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Let r denote any one of the elements of ry. Since each element of ry is i.i.d. from assumption 1 and rx € R", using

Jensen’s inequality, Ex [||rx||2] < +/nEx[rZ] = /no,. Thus,

0se(a;
Ex {Mﬂ;wﬂ} < Vo, |W,| (17
8Clj
which leads to %fo‘“ < 20,1/n||W;||. We can similarly prove in the other direction get the desired bound. O

Theorem 1. Let {W*! € R™*" bl € R™} be the parameters of a regularized auto-encoder (A > 0)

JraE = Jag + AR(W, b.) (18)
at training iteration t with regularization term R(W, b.), activation function s.(.) and define pre-activation a’; = W'x+-
bf (thus hf; = s.(a})). If/\ ,2,...,m}, then updating {W',bl} along the negative

“j
gradlent of Trap, results in Bx[a}™'] < Ex[a] and Var[ai*t'] = W2 for all t > 0.

Proof. Atiterationt + 1,
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for any step size . Expanding JraE, we get,
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Thus taking expectation over x on both sides we get,
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Ex [aiT'] = Ex [a}] — 7 (1)
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Notice the terms containing and BR in equation 20 disappear because both terms are already a function of expec-

tation over x (see various auto encoder regularlzatlons) when we deal with expected cost function. Thus these terms are
linear in x and hence taking an expectation results in 0.

From lemma 1, 55 n

n

(a5 < Exlat].

Finally, Var[ai™!] = Ex[a’! — Ex[at*]]? = By [Wt+1 x]? = IIWﬁ«“II2 O
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Corollary 1. If s. is a non-decreasing activation function with first derivative in [0, 1] and R = ZT:l f(Ex[h;]) for any
monotonically increasing function f(.), then 3\ > 0 such that updating {W* bl} along the negative gradient of Jrap
results in Ex[a’"] < Ey[a}] and Var[a’*'] = [[W' "2 for all t > 0.

OB [hr;]
non-decreasing functlons, 8b > 0 in all cases. O

Proof. We need one additional argument other than theorem 1. BR = ME [ahf] Since both s (.) and f(.) are

Corollary 2. If s. is a non-decreasing convex activation function with first derivative in [0,1] and R =
N4
E, [>T 8}” WES)|. ¢ € N, p € W, then 3\ > 0 such that updating {W*, b’} along the negative gradi-
j=1 e
ent of TrAE, results in Exla t+1} < Ey[a}] and Var(a! ™| = WS for all t > 0.

N\
Proof. We need one additional argument other than theorem 1. G—R = Ex [q (%) % S;J ||Wt 15| Since s (.)

is a non-decreasing convex function, both i ga(a’) > 0 and as (a’) > 0Va; € R. Finally, 5+ ab = 1 by definition. Thus

88()73 > 0 in all cases. O

Theorem 2. Let pg- denote a lower bound of Pr(hE- < Omin) at iteration t and s.(.) be a non-decreasing function with
Jirst derivative in [0, 1]. If ||[W|2 is upper bounded independent of X then 1S C R" and ITiyin, Tinax € N such that
p§+1 > pt7 VA€ S’ Tmin S t S Tmax-

Proof. From theorem 1, E[a t+1] < E[a4] Vt > 0. Define amin such that dpin = maxa,,, Se(@min). Thus Iin € N, such
that Vt > Thin, Ela } < @pin- Then in the case of non-decreasing activation functions, using Chebyshev’s bound,

Pr(h; < 5min) = PI’(G,E- < amin) > PI’(|CL§ - ]E[a§” < Gmin — E[a?])

Var[a’] (22)
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Thus p§- =1 m%:_’gs[’a]fw lower bounds Pr(h§ < Omin) V& > Tinin. Now consider the difference

D) = Var|a t+1] B Var[a}] @3

(Gmin —E[a™])2 (amin — E[a}])?
and recall that
0Jap | OR
17 _ t
Ex [a’j ] = Ex [a‘j] n 8b abEj (24)

where both the step size 77 and -2 We, are positive and 0Ja g /0be; € [—20,+/n||W; |, 20,1/n||W;||]. Thus, since Var|a;] =
||Wj||2, we can always choose a fixed S C RT such that D(t) < 0VA € S and Thyin <t < Thax- O

Theorem 3. Let {W, b} represent the parameters of a DAE with squared loss, linear decoding, and i.i.d. Gaussian
corruption with zero mean and o® variance, at any point of training over data sampled from distribution D. Let a; =
W,x + b, so that hj = s.(a;) corresponding to sample x ~ D. Then,
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2 .
where g?h € R™ is the element-wise 2™ derivative of h w.r:t. a and © is element-wise product.

Proof. Using 2"¢ order Taylor’s expansion of the loss function, we get

U(x, falfe(%))) = €%, fa(fe(px)) + (X = px) T Vil + %(i — 1) TVEE (R — pix) + 0(0?) (26)

where px = X. since we assume zero mean Gaussian noise. Thus taking the expectation of this approximation over noise
yields

EIL(0x, falFe ()] = EIGx falFe(m))] + 5r(SxV20) + (o) @)

where Ty 1= E[(X — ux)(X — px)T]. Since the corruption is i.i.d., assume the covariance ¥ = oI, where I is the
identity matrix.

Taking expectation over x, we can rewrite equation (27) as

1 22325

Expanding the second order term in the above equation, we get

JIpae = Jae +Ex + o(0?) (28)
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For linear decoding and squared loss,
awTo?n " 9%h
- I = b h-—x)TWT ( —— i i
h o7 Z((d+w x)TW (azCW OW)) (30)

i=1

where 832 € R™ is the element-wise 2" derivative of h w.r.t. a, ® represents element-wise product and W* denotes the
h column of W. Let vector dy, € R™ be defined such that dp; = an Vj e {1,2,...,m}. Then,

920 on SR 2
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where (W)7 represents the j¢* column of W and © denotes element-wise product. Let Dy, = diag(dy,). Then,

n

33 ((dw @ (W))T(W)F)* = (DL W) W2 (32)

=1k =1

<.

Finally, using the cyclic property of trace operator, we get, [[(DhnW)TW|% = tr(W'D,WWTD,W) =
tr(DLWWTDL,WWT). Thus DAE objective becomes,

Tpap = JTap + 0 Ex [tr(DhWW DWW+

n 2 33
> <(bd+WTh—x)TWT (% @W@WZ))] + o(c?) G
=1

Upon expansion of the second term above, we get the final form. O
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Remark 3. Let {W € R™*" b, € R™} represent the parameters of a Marginalized De-noising Auto-Encoder (nDAE)
with s.(.) activation function, linear decoding, squared loss and o2, = A\ Vi € {1,...,n}, at any point of training over
data sampled from some distribution D. Let aj := W ;X + b, so that hj = s.(a;) corresponding to sample x ~ D. Then,

ol
ImpAE = Jag + MNEx Zl ((8 lj) W ||2> (34
=

Proof. For linear decoding and squared loss, -2 o DL = 2| W;||3 and ah’ = —Z]LW” Thus

%Z i( ) =SS ws (S )
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:A;ijufj;( ) ZW2= 2(2—::) W55

(35)



