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A. Proof of Theorem 1
Proof. For f : RN → ∆L−1 ⊂ RL,

{rj = rj(x) = (0, . . . ,
j

1, . . . , 0, f1j , . . . , f
L
j ) : j = 1, . . . N}

is a basis of the tangent space Txgr(f) to gr(f). Here
f ij = ∂xjf

i. Let {ei} be an orthonormal frame of Txgr(f).
We have

ei = Bji rj

for some invertible matrix Bji .

Define the metric matrix g for the basis {rj} by

g = (gkj) with gkj = rk · rj = δkj + f ikf
i
j .

Then

δij = ei · ej = Bki B
t
jrk · rt = Bki B

t
jgkt

⇒ I = (BBT )g ⇒ BBT = g−1.

Thus BBT is computable in terms of derivatives of f .

Let Duw be the RN+L directional derivative of w in the
direction u. Then

Tr II = P νDeiei = P νDBji rj
Bki rk = BjiP

νDrjB
k
i rk

= BjiP
ν [(DrjB

k
i )rk] +BjiB

k
i Drjrk

= BjiB
k
i P

νDrjrk

= (g−1)jkP νDrjrk,

since P νrk = 0.

We have

rk = (0, . . . , 1, . . . , f1k (x1, . . . , xN ), . . . , fLk (x1, . . . , xN ))

= ∂R
N+L

k +

L∑
i=1

f ik∂
RN+L

N+i ,

so in particular, ∂R
N+L

` rk = 0 if ` > N. Thus

Drjrk = (0, . . . ,
N
0 , f1kj , . . . , f

L
kj).

So far, we have

Tr II = (g−1)jkP ν(0, . . . ,
N
0 , f1kj , . . . , f

L
kj).

Since g is given in terms of derivatives of f , we need to
write P ν = I − PT in terms of derivatives of f . For any
u ∈ RN+L, we have

PTu = (PTu · ei)ei = (u ·Bji rj)B
k
i rk

= BjiB
k
i (u · rj)rk

= (g−1)jk(u · rj)rk.

Thus

Tr II (1)

= (g−1)jkP ν(0, . . . ,
N
0 , f1kj , . . . , f

L
kj) (2)

= (g−1)jk(0, . . . ,
N
0 , f1kj , . . . , f

L
kj)

−PT [(g−1)jk(0, . . . ,
N
0 , f1kj , . . . , f

L
kj)]

= (g−1)jk(0, . . . ,
N
0 , f1kj , . . . , f

L
kj)

−(g−1)jk[(g−1)rs(0, . . . ,
N
0 , f1rs, . . . , f

L
rs) · rj ]rk

= (g−1)jk(0, . . . ,
N
0 , f1kj , . . . , f

L
kj)

−(g−1)jk(g−1)rs
(
f irsf

i
j

)
rk

= (g−1)ij
(

0, . . . ,
j

−(g−1)rsfarsf
a
i , . . . , 0, (3)

f1ji − (g−1)rsfarsf
a
i f

1
j , . . . , f

L
ji − (g−1)rsfarsf

a
i f

L
j

)
,

after a relabeling of indices. Therefore, the last L compo-
nent of Tr II are given by

Tr IIL = (g−1)ij
(
f1ji − (g−1)rsfarsf

a
i f

1
j , . . . ,

fLji − (g−1)rsfarsf
a
i f

L
j

)
.

B. An Easy Example with Bayes Consistency
We now give an example with a loss function that enables
easy Bayes consistency proof under some mild initializa-
tion assumption. Related notation is summerized in §C.
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For ease of reading, we change the notation for empiri-
cal penalty PTm in this supplemental material to PD, i.e.,
P = PD+λPG. PD measures the deviation of gr(f) from
the mapped training points, a natural geometric distance
penalty term is an L2 distance in RL from f(x) to the av-
eraged z component of the k-nearest training points:

PD(f) = RD,Tm,k(f) =

∫
X
d2

(
f(x),

1

k

k∑
i=1

z̃i

)
dx,

(4)
where d is the Euclidean distance in RL, z̃i is
the vector of the last L components of (x̃i, z̃i) =
(x̃1
i , . . . , x̃

N
i , z̃

1
i , . . . , z̃

L
i ), with x̃i the ith nearest neighbor

of x in Tm, and dx is the Lebesgue measure. The gradient
vector field is

∇(RD,Tm,k)f (x,f(x)) =
2

k

k∑
i=1

(f(x)− z̃i).

However, ∇(RD,Tm,k)f is discontinuous on the set D of
points x such that x has equidistant training points among
its k nearest neighbors. D is the union of (N − 1)-
dimensional hyperplanes in X , so D has measure zero.
Such points will necessarily exist unless the last L com-
ponents of the mapped training points are all 1 or all 0. To
rectify this, we can smooth out ∇(RD,Tm,k)f to a vector
field

VD,f ,φ =
2φ(x)

k

k∑
i=1

(f(x)− z̃i). (5)

Here φ(x) is a smooth damping function close to the sin-
gular function δD, which has δD(x) = 0 for x ∈ D and
δD(x) = 1 for x 6∈ D. Outside any open neighborhood of
D,∇RD,Tm,k = VD,f ,φ for φ close enough to δD.

Recall the geometric penalty from the submission, i.e.,
PG(f) =

∫
gr(f)

dvol, with the geometric gradient vector

field being VG,f = −Tr IIL.

Then the gradient vector field Vtot,λ,m,f ,φ of this example
penalty P is,

Vtot,λ,m,f ,φ = ∇Pf = VD,f ,φ + λVG,f

=
2φ(x)

k

k∑
i=1

(f(x)− z̃i)− λTr IIL.(6)

B.1. Consistency analysis

For a training set Tm, we let fTm = (f1Tm , . . . , f
L
Tm)

be the class probability estimator given by our approach.
We denote the generalization risk of the corresponding
plug-in classifier hfTm

by RP (fTm) = EP [1hfTm (x) 6=y].
The Bayes risk is defined by R∗P = inf

h:X→Y
RP (h) =

EP [1hη(x) 6=y]. Our algorithm is Bayes consistent if

lim
m→∞

RP (fTm) = R∗P holds in probability for all distribu-
tions P on X × Y . Usually, gradient flow methods are ap-
plied to a convex functional, so that a flow line approaches
the unique global minimum. If the domain of the functional
is an infinite dimensional manifold of (e.g. smooth) func-
tions, we always assume that flow lines exist and that the
actual minimum exists in this manifold.

Because our functionals are not convex, we can only hope
to prove Bayes consistency for the set of initial estimators
in the stable manifold of a stable fixed point (or sink) of the
vector field (Guckenheimer & Worfolk, 1993). Recall that
a stable fixed point f0 has a maximal open neighborhood,
the stable manifold Sf0

, on which flow lines tend towards
f0. For the manifold M, the stable manifold for a stable
critical point of the vector field Vtot,λ,m,f ,φ is infinite di-
mensional.

The proof of Bayes consistency for multiclass (including
binary) classification follows these steps:

Step 1: lim
λ→0

R∗D,P,λ = 0.

Step 2: lim
n→∞

RD,P (fn) = 0⇒ lim
n→∞

RP (fn) = R∗P .

Step 3: For all f ∈M = Maps(X ,∆L−1), |RD,Tm(f)−
RD,P (f)| m→∞−−−−→ 0 in probability.

Proofs of these steps are provided in following sub-
sections. For the notation see §C. R∗D,P,λ is the
minimum of the regularized D risk RD,P,λ(f)
for f : RD,P,λ(f) = RD,P (f) + λPG(f), with
RD,P (f) =

∫
X d

2(f(x),η(x))dx the D-risk.
Also, RD,Tm,λ(f) = RD,Tm(f) + λPG(f), with

RD,Tm(f) =
∫
X d

2
(
f(x), 1k

∑k
i=1 z̃i

)
dx the empirical

D-risk.

Theorem 2 (Bayes Consistency). Let m be the size of
the training data set. Let f1,λ,m ∈ SfD,Tm,λ , the sta-
ble manifold for the global minimum fD,Tm,λ of RD,Tm,λ,
and let fn,λ,m,φ be a sequence of functions on the flow
line of Vtot,λ,m,f ,φ starting with f1,λ,m with the flow time

tn →∞ as n→∞. Then RP (fn,λ,m,φ)
m,n→∞−−−−−−−→

λ→0,φ→δD
R∗P

in probability for all distributions P onX ×Y , if k/m→ 0
as m→∞.

Proof. In the notation of §C, if fD,Tm,λ is a global mini-
mum for RD,Tm,λ, then outside of D, fD,Tm,λ is the limit
of critical points for the negative flow of Vtot,λ,m,f ,φ as
φ → δD. To see this, fix an εi neighborhood Dεi of D.
For a sequence φj → δD, Vtot,λ,m,f,φj is independent of
j ≥ j(εi) on X \ Dεi , so we find a function f i, a criti-
cal point of Vtot,λ,m,f ,φj(εi) , equal to fD,Tm,λ on X \ Dεi .
Since any x 6∈ D lies outside some Dεi , the sequence f i
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converges at x if we let εi → 0. Thus we can ignore the
choice of φ in our proof, and drop φ from the notation.

For our algorithm, for fixed λ,m, we have as above
lim
n→∞

fn,λ,m = fD,Tm,λ, so

lim
n→∞

RD,Tm,λ(fn,λ,m) = RD,Tm,λ(fD,Tm,λ),

for f1 ∈ SfD,Tm,λ . By Step 2, it suffices to show
RD,P (fD,Tm,λ)

m→∞−−−−→
λ→0

0. In probability, we have ∀δ >
0,∃m > 0 such that

0 ≤ RD,P (fD,Tm,λ)

≤ RD,P (fD,Tm,λ) + λPG(fD,Tm,λ)

≤ RD,Tm(fD,Tm,λ) + λPG(fD,Tm,λ) +
δ

3
(Step 3)

= RD,Tm,λ(fD,Tm,λ) +
δ

3

≤ RD,Tm,λ(fD,P,λ) +
δ

3
(minimality of fD,Tm,λ)

= RD,Tm(fD,P,λ) + λPG(fD,P,λ) +
δ

3

≤ RD,P (fD,P,λ) + λPG(fD,P,λ) +
2δ

3
(Step 3)

= RD,P,λ(fD,P,λ) +
2δ

3
= R∗D,P,λ +

2δ

3
≤ δ, (Step 1)

for λ close to zero.

B.2. Step 1

Lemma 1. (Step 1) lim
λ→0

R∗D,P,λ = 0.

Proof. After the smoothing procedure in §3.1 for the dis-
tance penalty term, the function RD,P,λ :M→ R is con-
tinuous in the Fréchet topology on M. We check that the
functions RD,P,λ : M → R are equicontinuous in λ: for
fixed f0 ∈ M and ε > 0, there exists δ = δ(f0, ε) such
that |λ − λ′| < δ ⇒ |RD,P,λ(f0) − RD,P,λ′(f0)| < ε.
This is immediate:

|RD,P,λ(f0)−RD,P,λ′(f0)| = |(λ− λ′)PG(f0)| < ε,

if δ < ε/|PG(f0)|. It is standard that the infimum inf Rλ
of an equicontinuous family of functions is continuous in
λ, so lim

λ→0
R∗D,P,λ = R∗D,P,λ=0 = RD,P (η) = 0.

B.3. Step 2

We assume that the class probability function η(x) :
RN → RL is smooth, and that the marginal distribution
µ(x) is continuous. We also let µ denote the correspond-
ing measure on X .

Denote: hf (x) = argmax{f `(x), ` ∈ Y}, and,

1hf (x) 6=y =

{
1, hf (x) 6= y,
0, hf (x) = y.

Lemma 2. (Step 2 for a subsequence)

lim
n→∞

RD,P (fn) = 0⇒ lim
i→∞

RP (fni) = R∗P

for some subsequence {fni}
∞
i=1 of {fn}.

Proof. The left hand side of the Lemma is∫
X
d2(fn(x),η(x))dx→ 0,

which is equivalent to∫
X
d2(fn(x),η(x))µ(x)dx→ 0, (7)

since X is compact and µ is continuous. Therefore, it suf-
fices to show∫

X
d2(fn(x),η(x))µ(x)dx→ 0 (8)

=⇒ EP [1hfn (x) 6=y]→ EP [1hη(x) 6=y].

We recall that L2 convergence implies pointwise conver-
gence a.e, so (7) implies that a subsequence of fn, also
denoted fn, has fn → η(x) pointwise a.e. on X . (By
our assumption on µ(x), these statements hold for either
µ or Lebesgue measure.) By Egorov’s theorem, for any
ε > 0, there exists a set Bε ⊂ X with µ(Bε) < ε such that
fn → η(x) uniformly on X \Bε.

Fix δ > 0 and set

Zδ = {x ∈ X : #{argmax
`∈Y

η`(x)} = 1,

|max
`∈Y

η`(x)− submax
`∈Y

η`(x)| < δ},

where submax
`∈Y

denotes the second largest element in

{η1(x), . . . , ηL(x)}. For the moment, assume that Z0 =
{x ∈ X : #{argmax

`∈Y
η`(x)} > 1} has µ(Z0) = 0.

It follows easily1 that µ(Zδ)→ 0 as δ → 0. On X \ (Zδ ∪
Bε), we have 1hfn (x)6=y = 1hη(x) 6=y for n > Nδ . Thus

EP [1X\(Zδ∪Bε)1hfn (x) 6=y] = EP [1X\(Zδ∪Bε)1hη(x)6=y].

1Let Ak be sets with Ak+1 ⊂ Ak and with µ(∩∞
k=1Ak) = 0.

If µ(Ak) 6→ 0, then there exists a subsequence, also called Ak,
with µ(Ak) > K > 0 for some K. We claim µ(∩Ak) ≥ K, a
contradiction. For the claim, let Z = ∩Ak. If µ(Z) ≥ µ(Ak) for
all k, we are done. If not, since the Ak are nested, we can replace
Ak by a set, also called Ak, of measure K and such that the new
Ak are still nested. For the relabeled Z = ∩Ak, Z ⊂ Ak for all
k, and we may assume µ(Z) < K. Thus there exists Z′ ⊂ A1

with Z′ ∩ Z = ∅ and µ(Z′) > 0. Since µ(Ai) = K, we must
have Ai ∩ Z′ 6= ∅ for all i. Thus ∩Ai is strictly larger than Z,
a contradiction. In summary, the claim must hold, so we get a
contradiction to assuming µ(Ak) 6→ 0.
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(Here 1A is the characteristic function of a set A.)

As δ → 0,

EP [1X\(Zδ∪Bε)1hfn (x) 6=y]→ EP [1X\Bε1hfn (x)6=y].

and similarly for fn replaced by η(x).During this process,
Nδ presumably goes to∞, but that precisely means

lim
n→∞

EP [1X\Bε
1hfn (x)6=y] = EP [1X\Bε

1hη(x)6=y].

Since∣∣∣EP [1X\Bε1hfn (x)6=y]− EP [1hfn (x)6=y]
∣∣∣ < ε,

and similarly for η(x), we get∣∣∣ lim
n→∞

EP [1hfn (x) 6=y]− EP [1hη(x) 6=y]
∣∣∣

≤
∣∣∣ lim
n→∞

EP [1hfn (x) 6=y]− lim
n→∞

EP [1X\Bε1hfn (x)6=y]
∣∣∣

+
∣∣∣ lim
n→∞

EP [1X\Bε1hfn (x) 6=y]− EP [1X\Bε1hη(x) 6=y]
∣∣∣

+
∣∣∣ lim
n→∞

EP [1X\Bε1hη(x)6=y]− EP [1hη(x)6=y]
∣∣∣

≤ 3ε.

(Strictly speaking, limn→∞ EP [1hfn (x) 6=y] is first lim sup
and then lim inf to show that the limit exists.) Since ε is
arbitrary, the proof is complete if µ(Z0) = 0.

If µ(Z0) > 0, we rerun the proof with X replaced by Z0.
As above, fn|Z0

converges uniformly to η(x) off a set of
measure ε. The argument above, without the set Zδ , gives∫

Z0

1hfn (x) 6=yµ(x)dx→
∫
Z0

1hη(x)6=yµ(x)dx.

We then proceed with the proof above on X \ Z0.

Corollary 3. (Step 2 in general) For our algorithm,
lim
n→∞

RD,P (fn,λ,m) = 0⇒ lim
i→∞

RP (fn,λ,m) = R∗P .

Proof. Choose f1,λ,m as in Theorem 2. Since
Vtot,λ,m,fn,λ,m has pointwise length going to zero as n →
∞, {fn,λ,m(x)} is a Cauchy sequence for all x. This im-
plies that fn,λ,m, and not just a subsequence, converges
pointwise to η.

B.4. Step 3

Lemma 4. (Step 3) If k → ∞ and k/m → 0 as m → ∞,
then for f ∈ Maps(X ,∆L−1),

|RD,Tm(f)−RD,P (f)| m→∞−−−−→ 0 in probability,

for all distributions P that generate Tm.

Proof. Since RD,P (f) is a constant for fixed f and P ,
convergence in probability will follow from weak conver-
gence, i.e.,

ETm [|RD,Tm(f)−RD,P (f)|] m→∞−−−−→ 0.

We have

|RD,Tm(f)−RD,P (f)|

=

∣∣∣∣∣
∫
X

[
d2

(
f(x),

1

k

k∑
i=1

z̃i

)
− d2(f(x),η(x))

]
dx

∣∣∣∣∣
≤

∫
X

∣∣∣∣∣d2
(
f(x),

1

k

k∑
i=1

z̃i

)
− d2(f(x),η(x))

∣∣∣∣∣ dx.
Set a = f(x)− 1

k

∑k
i=1 z̃i, b = f(x)− η(x). Then∣∣‖a‖22 − ‖b‖22∣∣

=

∣∣∣∣∣
L∑
`=1

a2` −
L∑
`=1

b2`

∣∣∣∣∣ =

∣∣∣∣∣
L∑
`=1

(a2` − b2`)

∣∣∣∣∣
≤

L∑
`=1

|a2` − b2` | ≤ 2

L∑
`=1

|a` − b`|max{|a`|, |b`|}

≤ 2

L∑
`=1

|a` − b`|,

since f `(x), 1k
∑k
i z̃

`
i , η

`(x) ∈ [0, 1]. Therefore, it suffices
to show that

L∑
`=1

ETm

[∫
X

∣∣∣∣∣((f `(x)− 1

k

k∑
i

z̃`i )− (f `(x)− η`(x))

∣∣∣∣∣ dx
]

m→∞−−−−→ 0,

so the result follows if

lim
m→∞

ETm,x

[∣∣∣∣∣η`(x)− 1

k

k∑
i

z̃`i

∣∣∣∣∣
]

= 0 for all `. (9)

By Jensen’s inequality (E[f ])2 ≤ E(f2), (9) follows if

lim
m→∞

ETm,x

(η`(x)− 1

k

k∑
i

z̃`i

)2
 = 0 for all `.

(10)

Let η`k,m(x) = 1
k

∑k
i z̃

`
i . Then η`k,m is actually an estimate

of the class probability η`(x) by the k-Nearest Neighbor
rule. Following the proof of Stone’s Theorem (Stone, 1977;
Devroye et al., 1996), if k m→∞−−−−→ ∞ and k/m m→∞−−−−→ 0,
(10) holds for all distributions P .
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C. Notation

hf (x) = argmax{f `(x), ` ∈ Y} : plug-in classifier of estimator f : X → ∆L−1

1hf (x) 6=y =

{
1, hf (x) 6= y,
0, hf (x) = y.

RP (f) = EP [1hf (x)6=y] : generalization risk for the estimator f

η(x) = (η1(x), . . . , ηL(x)) : class probability function: η`(x) = P (y = `|x)

R∗P = RP (η) : Bayes risk

(D-risk for our PD) RD,P (f) =

∫
X
d2(f(x),η(x))dx

(empirical D-risk)RD,Tm(f) = RD,Tm,k(f) =

∫
X
d2

(
f(x),

1

k

k∑
i=1

z̃i

)
dx

where z̃i is the vector of the last L components of
(x̃i, z̃i), with x̃i the ith nearest neighbor of x in Tm

(volume penalty term) PG(f) =

∫
gr(f)

dvol

RD,P,λ(f) = RD,P (f) + λPG(f) : regularized D-risk for estimator f
RD,Tm,λ(f) = RD,Tm(f) + λPG(f) : regularized empirical D-risk for estimator f

fD,P,λ = function attaining the global minimum for RD,P,λ
R∗D,P,λ = RD,P,λ(fD,P,λ) : minimum value for RD,P,λ

fD,Tm,λ = fD,Tm,k,λ : function attaining the global minimum for RD,Tm,λ(f)

Note that we assume fD,P,λ and fD,Tm,λ exist.
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