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Abstract
We study the problem of supervised learning for
both binary and multiclass classification from a
unified geometric perspective. In particular, we
propose a geometric regularization technique to
find the submanifold corresponding to an esti-
mator of the class probability P (y|x). The regu-
larization term measures the volume of this sub-
manifold, based on the intuition that overfitting
produces rapid local oscillations and hence large
volume of the estimator. This technique can be
applied to regularize any classification function
that satisfies two requirements: firstly, an esti-
mator of the class probability can be obtained;
secondly, first and second derivatives of the class
probability estimator can be calculated. In ex-
periments, we apply our regularization technique
to standard loss functions for classification, our
RBF-based implementation compares favorably
to widely used regularization methods for both
binary and multiclass classification.

1. Introduction
In supervised learning for classification, the idea of regu-
larization seeks a balance between a perfect description of
the training data and the potential for generalization to un-
seen data. Most regularization techniques are defined in the
form of penalizing some functional norms. For instance,
one of the most successful classification methods, the sup-
port vector machine (SVM) (Vapnik, 1998; Schölkopf &
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Smola, 2002) and its variants (Bartlett et al., 2006; Stein-
wart, 2005), use a RKHS norm as a regularizer. While
functional norm based regularization is widely-used in ma-
chine learning, we feel that there is important local geomet-
ric information overlooked by this approach.

In many real world classification problems, if the feature
space is meaningful, then all samples that are locally within
a small enough neighborhood of a training sample should
have class probability P (y|x) similar to the training sam-
ple. For instance, a small enough perturbation of RGB
values at some pixels of a human face image should not
change dramatically the likelihood of correct identifica-
tion of this image during face recognition. However, such
“small local oscillations” of the class probability are not
explicitly incorporated by penalizing commonly used func-
tional norms. For instance, as reported by Goodfellow et al.
(2014), linear models and their combinations can be eas-
ily fooled by barely perceptible perturbations of a correctly
predicted image, even though a L2 regularizer is adopted.

Geometric regularization techniques have also been studied
in machine learning. Belkin et al. (2006) employed geo-
metric regularization in the form of the L2 norm of the gra-
dient magnitude supported on a manifold. This approach
exploits the geometry of the marginal distribution P (x)
for semi-supervised learning, rather than the geometry of
the class probability P (y|x). Other related geometric reg-
ularization methods are motivated by the success of level
set methods in image segmentation (Cai & Sowmya, 2007;
Varshney & Willsky, 2010) and Euler’s Elastica in image
processing (Lin et al., 2012; 2015). In particular, the Level
Learning Set (Cai & Sowmya, 2007) combines a counting
function of training samples and a geometric penalty on
the surface area of the decision boundary. The Geomet-
ric Level Set (Varshney & Willsky, 2010) generalizes this
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idea to standard empirical risk minimization schemes with
margin-based loss. Along this line, the Euler’s Elastica
Model (Lin et al., 2012; 2015) proposes a regularization
technique that penalizes both the gradient oscillations and
the curvature of the decision boundary. However, all three
methods focus on the geometry of the decision boundary
supported in the domain of the feature space, and the “small
local oscillation” of the class probability is not explicitly
addressed.

In this work, we argue that “small local oscillations” of
the class probability can be characterized by the geome-
try of a specific submanifold in the product space of the
feature domain and the probabilistic output space. Let
f : X → ∆L−1 be a class probability estimator, where X
is the feature space and ∆L−1 is the probabilistic simplex
for L classes. From a geometric perspective, if we regard
{(x,f(x))|x ∈ X}, the functional graph (in the geometric
sense) of f , as a submanifold in X × ∆L−1, then “small
local oscillations” can be measured by the local volume or
the more sensitive local curvature of this submanifold.

In our approach, the learning process can be viewed as a
submanifold fitting problem that is solved by a geometric
flow method. In particular, our approach finds a submani-
fold by iteratively fitting the training samples in a curvature
or volume decreasing manner without any a priori assump-
tions on the geometry of the submanifold inX×∆L−1. We
use gradient flow methods to find an optimal direction, i.e.
at each step we find the vector field pointing in the optimal
direction to move f . As we will see in the next section, this
regularization approach naturally handles binary and mul-
ticlass classification in a unified way, while previous deci-
sion boundary based techniques (and most functional reg-
ularization approaches) are originally designed for binary
classification, and rely on “one versus one”, “one versus
all” or more efficiently a binary coding strategy (Varshney
& Willsky, 2010) to generalize to multiclass case.

In experiments, a radial basis function (RBF) based im-
plementation of our formulation compares favorably to
widely used binary and multiclass classification methods
on datasets from the UCI repository and real-world datasets
including the Flickr Material Database (FMD) and the
MNIST Database of handwritten digits.

In summary, our contributions are:

• A geometric perspective on overfitting and a regular-
ization approach that exploits the geometry of a robust
class probability estimator for classification,

• A unified gradient flow based algorithm for both bi-
nary and multiclass classification that can be applied
to standard loss functions, and

Figure 1. Example of three-class learning, i.e., L = 3, where the
input space X is 2d. Training samples of the three classes are
marked with red, green and blue dots respectively. The class label
for each training sample corresponds to a vertex of the simplex
∆L−1. As a result, each mapped training point (xi,zi) lies on
one face (corresponding to its label yi) of the space X×∆2.

• A RBF-based implementation that achieves promising
experimental results.

2. Method Overview
In our work, we propose a regularization scheme that ex-
ploits the geometry of a robust class probability estimator
and suggest a gradient flow based approach to solve for it.
In the following, we will describe our approach. Related
mathematical notation is summarized in Table 2.

Following the probabilistic setting of classification, given
a sample (feature) space X ⊂ RN , a label space Y =
{1, . . . , L}, and a finite training set of labeled samples
Tm = {(xi, yi)}mi=1, where each training sample is gen-
erated i.i.d. from distribution P over X × Y , our goal is
to find a hTm : X → Y such that for any new sample
x ∈ X , hTm predicts its label ŷ = hTm(x). The optimal
generalization risk (Bayes risk) is achieved by the classifier
h∗(x) = argmax{η`(x), ` ∈ Y}, where η = (η1, . . . , ηL)
with η` : X → [0, 1] being the `th class probability, i.e.
η`(x) = P (y = `|x).

Our regularization approach exploits the geometry of the
class probability estimator, and can be regarded as a “hy-
brid” plug-in/ERM scheme (Audibert & Tsybakov, 2007).
A regularized loss minimization problem is setup to find
an estimator f : X → ∆L−1, where ∆L−1 is the stan-
dard (L − 1)-simplex in RL, and f = (f1, . . . , fL) is
an estimator of η with f ` : X → [0, 1]. The estima-
tor f is then “plugged-in” to get the classifier hf (x) =
argmax{f `(x), ` ∈ Y}.

Figure 1 shows an example of the setup of our approach,
for a synthetic three-class classification problem. The sub-
manifold corresponding to estimator f is the graph (in the
geometric sense) of f : gr(f) = {(x, f1(x), . . . , fL(x)) :



Differential Geometric Regularization for Supervised Learning of Classifiers

(a) (b) (c) (d)

Figure 2. Example of binary learning via gradient flow. As shown in (a), the feature spaceX is 2d, training points are sampled uniformly
within the region [−15, 15] × [−15, 15], and labeled by the function y = sign(10 − ‖x‖2) (the red circle). In the initialization step,
shown in (b), positive and negative training points map to the two faces of the space X × ∆1 respectively. Our gradient flow method
starts from a neutral function f0 ≡ 1

2
and moves towards the negative direction (red and blue arrows) of the penalty gradient ∇Pf0

.
Figure (c) shows the submanifold (gr(f1)) one step after (b). The submanifold then continues to evolve towards −∇Pft

step by step
and the final output after convergence of the algorithm is shown in (d).

x ∈ X} ⊂ X × ∆L−1. We denote a point in the space
X × ∆L−1 as (x, z) = (x1, . . . , xN , z1, . . . , zL), where
x ∈ X and z ∈ ∆L−1. Then in this product space,
a training pair (xi, yi = `) naturally maps to the point
(xi, zi) = (xi, 0, . . . , 1, . . . , 0), with the one-hot vector
zi (with the 1 in its `-th slot) at the vertex of ∆L−1 corre-
sponding to P (y = yi|x) = 1.

We point out two properties of this geometric setup. Firstly,
it inherently handles multiclass classification, with binary
classification as a special case. Secondly, while the dimen-
sion of the ambient space, i.e. RN+L, depends on both the
feature dimension N and number of classes L, the intrinsic
dimension of the submanifold gr(f) only depends on N .

2.1. Variational formulation

We want gr(f) to approach the mapped training points
while remaining as flat as possible, so we impose a penalty
on f consisting of an empirical loss term PTm and a geo-
metric regularization term PG. For PTm , we can choose ei-
ther the widely-used cross-entropy loss function for multi-
class classification or the simpler Euclidean distance func-
tion between the simplex coordinates of the graph point and
the mapped training point. For PG, we would ideally con-
sider an L2 measure of the Riemann curvature of gr(f), as
the vanishing of this term gives optimal (i.e., locally distor-
tion free) diffeomorphisms from gr(f) to RN . However,
the Riemann curvature tensor takes the form of a combina-
tion of derivatives up to third order, and the corresponding
gradient vector field is even more complicated and ineffi-
cient to compute in practice. As a result, we measure the
graph’s volume, PG(f) =

∫
gr(f)

dvol, where dvol is the
induced volume from the Lebesgue measure on the ambi-
ent space RN+L.

More precisely, we find the function that minimizes the fol-
lowing penalty P:

P = PTm + λPG :M = Maps(X ,∆L−1)→ R (1)

on the setM of smooth functions from X to ∆L−1, where
λ is the tradeoff parameter between empirical loss and reg-
ularization. It is important to note that any relative scal-
ing of the domain X will not affect the estimate of the
class probability η, as scaling will distort gr(f) but will
not change the critical function estimating η.

2.2. Gradient flow and geometric foundation

The standard technique for solving variational formulas is
the Euler-Lagrange PDE. However, due to our geomet-
ric term PG, finding the minimal solutions of the Euler-
Lagrange equations for P is difficult, instead, we solve for
argmin P using gradient flow in functional spaceM.

A simple but intuitive simulated example of binary learn-
ing using gradient flow for our approach is given in Fig-
ure 2. For the explanation purposes only, we replace M
with a finite dimensional Riemannian manifold M . With-
out loss of generality, we also assume that P is smooth,
then it has a differential dPf : TfM → R for each f ∈M ,
where TfM is the tangent space to M at f . Since dPf is
a linear functional on TfM , there is a unique tangent vec-
tor, denoted ∇Pf , such that dPf (v) = 〈v,∇Pf 〉 for all
v ∈ TfM. ∇Pf points in the direction of maximal in-
crease of P at f . Thus, the solution of the negative gra-
dient flow df t/dt = −∇Pft

is a flow line of steepest
descent starting at an initial f0. For a dense open set of
initial points, flow lines approach a local minimum of P at
t→∞. We always choose the initial function f0 to be the
“neutral” choice f0(x) ≡ ( 1

L , . . . ,
1
L ) which reasonably

assigns equal conditional probability to all classes.

Similar gradient flow procedures are widely used in
variational problems, such as level set methods (Osher
& Sethian, 1988; Sethian, 1999), Mumford-Shah func-
tional (Mumford & Shah, 1989), etc. In the classification
literature, Varshney & Willsky (2010) were the first to use
gradient flow methods for solving level set based energy
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functions, then followed by Lin et al. (2012; 2015) to solve
Euler’s Elastica models. In our case, we are exploiting the
geometry in the space X ×∆L−1, rather than standard vec-
tor spaces.

Since our gradient flow method is actually applied on the
infinite dimensional manifold M, we have to understand
both the topology and the Riemannian geometry of M.
For the topology, we put the Fréchet topology on M′ =
Maps(X ,RL), the set of smooth maps from X to RL, and
take the induced topology onM. Intuitively speaking, two
functions inM are close if the functions and all their par-
tial derivatives are pointwise close. Since M is a closed
Fréchet submanifold with corners inside the vector space
M′, we can identify each TfM with a closed cone inside
M′. For the Riemannian metric onM, we restrict the L2

metric onM′ to TfM: 〈φ1, φ2〉 :=
∫
X φ1(x)φ2(x)dvolx,

with φi ∈ M′ and dvolx being the volume form of the
induced Riemannian metric on the graph of f . (Strictly
speaking, the volume form is pulled back to X by f , usu-
ally denoted by f∗dvol.)

The differential dPf is linear as above, and by a direct cal-
culation, there is a unique tangent vector ∇Pf ∈ TfM
such that dPf (φ) = 〈∇Pf , φ〉 for all φ ∈ TfM. Thus, we
can construct the gradient flow equation. However, unlike
the case of finite dimensions, the existence of flow lines
is not automatic. Assuming the existence of flow lines, a
generic initial point flows to a local minimum of P . In any
case, our RBF-based implementation in §3 mimicking gra-
dient flow is well defined.

Note that we think of X as large enough so that the train-
ing data actually is sampled well inside X . This allows
us to treat X as a closed manifold in our gradient calcu-
lations, so that boundary effects can be ignored. A simi-
lar natural boundary condition is also adopted by previous
work (Varshney & Willsky, 2010; Lin et al., 2012; 2015).

2.3. More on related work

There exist some other works that are related to some as-
pects of our work. Most notably, Sobolev regularization,
involves functional norms of a certain number of deriva-
tives of the prediction function. For instance, the manifold
regularization (Belkin et al., 2006) mentioned in §1 uses a
Sobolev regularization term,∫

x∈M
‖∇Mf‖2dP (x), (2)

where f is a smooth function on manifold M. A discrete
version of (2) corresponds to the graph Laplacian regular-
ization (Zhou & Schölkopf, 2005). Lin et al. (2015) dis-
cussed in detail the difference between a Sobolev norm and
a curvature-based norm for the purpose of exploiting the
geometry of the decision boundary.

For our purpose, while imposing, say, a high Sobolev
norm1, will also lead to a flattening of the hypersurface
gr(f), these norms are not specifically tailored to measur-
ing the flatness of gr(f). In other words, a high Sobolev
norm bound will imply the volume bound we desire, but
not vice versa. As a result, imposing high Sobolev norm
constraints (regardless of computational difficulties) over-
shrinks the hypothesis space from a learning theory point
of view. In contrast, our regularization term (given in (11))
involves only the combination of first derivatives of f that
specifically address the geometry behind the “small local
oscillation” prior observed in practice.

Our training procedure for finding the optimal graph of a
function is, in a general sense, also related to the manifold
learning problem (Tenenbaum et al., 2000; Roweis & Saul,
2000; Belkin & Niyogi, 2003; Donoho & Grimes, 2003;
Zhang & Zha, 2005; Lin & Zha, 2008). The most closely
related work is (Donoho & Grimes, 2003), which seeks a
flat submanifold of Euclidean space that contains a dataset.
Again, there are key differences. Since the goal of (Donoho
& Grimes, 2003) is dimensionality reduction, their mani-
fold has high codimension, while our functional graph has
codimension L−1, which may be as low as 1. More impor-
tantly, we do not assume that the graph of our target func-
tion is a flat (or volume minimizing) submanifold, and we
instead flow towards a function whose graph is as flat (or
volume minimizing) as possible. In this regard, our work is
related to a large body of literature on Morse theory in finite
and infinite dimensions, and on mean curvature flow (Chen
et al., 1999; Mantegazza, 2011).

3. Example Formulation: RBFs
We now illustrate our approach using an RBF representa-
tion of our estimator f . RBFs are also used by previous ge-
ometric classification methods (Varshney & Willsky, 2010;
Lin et al., 2012; 2015).

Given values of f are probabilistic vectors, it is common to
represent f as a “softmax” output of RBFs, i.e.

f j =
eh

j∑L
l=1 e

hl
, where hj =

m∑
i=1

ajiϕi(x),

for j = 1, . . . , L, (3)

where ϕi(x) = e−
1
c ‖x−xi‖2 is the RBF function centered

at training sample xi, with kernel width parameter c.

Estimating f becomes an optimization problem for them×
L coefficient matrix A = (a`i). The following equation
determines A:

[h(x1), . . . ,h(xm)]
T

= GA, where Gij = ϕj(xi). (4)

1“High Sobolev norm” is the conventional term for Sobolev
norm with high order of derivatives.
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To plug this RBF representation into our gradient flow
scheme, the gradient vector field ∇Pf is evaluated at each
sample point xi, and A is updated by

A← A− τG−1 [∇Ph(x1), . . . ,∇Ph(xm)]
T
, (5)

where τ is the step-size parameter, and

∇Ph(xi) =

[
∂f

∂h

]T
xi

∇Pf (xi). (6)

Here ∇Ph(xi) denotes the gradient vector field w.r.t. h
evaluated at xi, and the L×L Jacobian matrix

[
∂f
∂h

]
xi

can

be obtained in closed form from (3). In the following sub-
sections, we give exact forms of the empirical penalty PTm
and the geometric penalty PG, and discuss the computation
of ∇Ph for both penalty terms.

3.1. The empirical penalty PTm
We consider two widely-used loss functions for the empir-
ical penalty term PTm .

Quadratic loss. Since PTm measures the deviation of
gr(f) from the mapped training points, it is natural to
choose the quadratic function of the Euclidean distance in
the simplex ∆L−1,

PTm(f) =

m∑
i=1

‖f(xi)− zi‖2, (7)

where zi is the one-hot vector corresponding to the ground
truth label of xi. The gradient vector w.r.t. f evaluated at
xi is

∇PTm,f (xi) = 2(f(xi)− zi).

The gradient vector w.r.t. h evaluated at xi is

∇PTm,h(xi) = 2

[
∂f

∂h

]T
xi

(f(xi)− zi), (8)

evaluation of
[
∂f
∂h

]T
xi

is the same as in (6).

Cross-entropy loss. The cross-entropy loss function is also
widely-used for probabilistic output in classification,

PTm(f) = −
m∑
i=1

L∑
`=1

z`i log f `(xi), (9)

whose gradient vector field w.r.t. h evaluated at xi is

∇PTm,h(xi) = f(xi)− zi. (10)

3.2. The geometric penalty PG

As discussed in §2, we wish to penalize graphs for exces-
sive curvature and we use the following function, which
measures the volume of the gr(f):

PG(f) =

∫
gr(f)

dvol =

∫
gr(f)

√
det(g)dx1 . . . dxN ,

(11)
where g = (gij) with gij = δij + fai f

a
j , is the Riemma-

nian metric on gr(f) induced from the standard dot product
on RN+L. We use the summation convention on repeated
indices. Note that this regularization term is clearly very
different from the standard Sobolev norm of any order.

It is standard that ∇PG = −Tr II ∈ RN+L on the space
of all embeddings of X in RN+L, where Tr II is the trace
of second fundamental form of gr(f). If we restrict to the
submanifold of graphs of f ∈ M′, it is easy to calculate
that the gradient of geometric penalty (11) is

∇PG,f = VG,f = −Tr IIL, (12)

where Tr IIL denotes the last L components of Tr II. Then
the geometric gradient w.r.t. h is

∇PG,h = VG,h = −
[
∂f

∂h

]T
Tr IIL. (13)

Evaluation of
[
∂f
∂h

]
and Tr IIL at xi leads to ∇PG,h(xi).

The formulation given above is general in that it encom-
passes both the binary and the multiclass cases. For both
cases, evaluation of

[
∂f
∂h

]
at the training points is the same

as that in (6), and evaluation of Tr IIL at any point x can
be performed explicitly by the following theorem.

Theorem 1. For f : RN → ∆L−1, Tr IIL for gr(f) is
given by

Tr IIL = (g−1)ij
(
f1ji − (g−1)rsfarsf

a
i f

1
j , . . . ,

fLji − (g−1)rsfarsf
a
i f

L
j

)
, (14)

where fai , f
a
ij denote partial derivatives of fa.

The proof is in the supplemental materials. Note that for
our RBF representation (3), the partial derivatives fai , f

a
ij

can be easily obtained in closed form.

Simplex constraint. The class probability estimator f :
X → ∆L−1 always takes values in ∆L−1 ⊂ RL, as guar-
anteed by the “softmax” representation of f (3). However,
the geometric gradient vector field ∇PG,f ∈ TfM′, the
set of vector fields along f with values in RL, may not lie
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in TfM, and in particular may not take values in T∆L−1.
There are two ways to enforce this constraint for the geo-
metric gradient vector field. First, since our initial function
f0 takes values at the center of ∆L−1, we can orthogonally
project the geometric gradient vector VG,f to V ′G,f in the
tangent space Z = {(y1, . . . , yL) ∈ RL :

∑L
`=1 y

` = 0}
of the simplex. More simply, we can also select L − 1
of the L components of f(x), call the new function f ′ :
X → RL−1, and compute the (L − 1)-dimensional gra-
dient vector VG,f ′ following (12) and (14). The omitted
component of the desired L-gradient vector is determined
by −

∑L−1
`=1 V

`
G,f ′ , by the definition of tangent space Z.

Our implementation follows this second approach, where
we choose the (L − 1) components of f by omitting the
component corresponding to the class with least number of
training samples.

3.3. Algorithm summary

Algorithm 1 gives a summary of the classifier learning pro-
cedure. Input to the algorithm is the training set Tm, RBF
kernel width c, trade-off parameter λ, and step-size param-
eter τ. For initialization, our algorithm first initializes the
function values of h and f for every training point, and
then constructs matrix G and solves for A by (4). In the
subsequent steps, at each iteration, our algorithm first eval-
uates the gradient vector field∇Ph at every training point,
then updates coefficient matrix A by (5). For the overall
penalty function P = PTm + λPG, we compute the total
gradient vector field ∇Ph evaluated at xi as follows.

For quadratic loss, it is:

∇Ph(xi) =

[
∂f

∂h

]T
xi

(
2(f(xi)−zi)−λTr IILxi

)
. (15)

For cross-entropy loss, it is:

∇Ph(xi) = f(xi)− zi − λ
[
∂f

∂h

]T
xi

Tr IILxi
. (16)

Our algorithm iterates until it converges or reaches the
maximum iteration number.

The same algorithm applies to both the quadratic loss and
the cross-entropy loss. To evaluate the total gradient vec-
tors ∇Ph(xi) in each iteration, for the quadratic loss, we
use (8) and (13) to compute the total gradient vector (15);
for the cross-entropy loss, we use (10) and (13) instead to
compute (16). The remaining steps of the procedure are
exactly the same for both loss functions.

The final predictor learned by our algorithm is given by

F (x) = argmax{f `(x), ` ∈ {1, 2, · · · , L}}. (17)

Algorithm 1 Geometric regularized classification
Input: training data Tm = {(xi, yi)}mi=1, RBF kernel
width c, trade-off parameter λ, step-size τ
Initialize: h(xi) = (1, . . . , 1),f(xi) = ( 1

L , . . . ,
1
L ),

∀i ∈ {1, · · · ,m}, construct matrix G and solve A by (4)
for t = 1 to T do

– Evaluate the total gradient vector∇Ph(xi) at ev-
ery training point according to (15) or (16).

– Update the A by (5).
end for
Output: class probability estimator f given by (3).

4. Experiments
To evaluate the effectiveness of the proposed regulariza-
tion approach, we compare our RBF-based implementation
with two groups of related classification methods. The first
group of methods are standard RBF-based methods that use
different regularizers than ours. The second group of meth-
ods are previous geometric regularization methods.

In particular, the first group includes the Radial Basis Func-
tion Network (RBN), SVM with RBF kernel (SVM) and
the Import Vector Machine (IVM) (Zhu & Hastie, 2005)
(a greedy search variant of the standard RBF kernel logis-
tic regression classifier). Note that both SVM and IVM
use RKHS regularizers and the IVM also uses the similar
cross-entropy loss as Ours-CE.

The second group includes the Level Learning Set classi-
fier (Cai & Sowmya, 2007) (LLS), the Geometric Level Set
classifier (Varshney & Willsky, 2010) (GLS) and the Eu-
ler’s Elastica classifier (Lin et al., 2012; 2015) (EE). Note
that both GLS and EE use RBF representations and EE also
uses the same quadratic distance loss as Ours-Q.

We test both the quadratic loss version (Ours-Q) and the
cross-entropy loss version (Ours-CE) of our implementa-
tion.

4.1. UCI datasets

We tested our classification method on four binary classi-
fication datasets and four multiclass classification datasets.
Given that Varshney & Willsky (2010) has covered several
methods on our comparing list and their implementation
is publicly available, we choose to use the same datasets
as (Varshney & Willsky, 2010) and carefully follow the ex-
act experimental setup. Tenfold cross-validation error is
reported. For each of the ten folds, the kernel-width con-
stant c and tradeoff parameter λ are found using fivefold
cross-validation on the training folds. All dimensions of
input sample points are normalized to a fixed range [0, 1]
throughout the experiments. We select c from the set of val-
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Table 1. Tenfold cross-validation error rate (percent) on four binary and four multiclass classification datasets from the UCI machine
learning repository. (L,N) denote the number of classes and input feature dimensions respectively. We compare both the quadratic
loss version (Ours-Q) and the cross-entropy loss version (Ours-CE) of our method with 6 RBF-based classification methods and (or)
geometric regularization methods: SVM with RBF kernel (SVM), Radial basis function network (RBN), Level learning set classifier (Cai
& Sowmya, 2007) (LLS), Geometric level set classifier (Varshney & Willsky, 2010) (GLS), Import Vector Machine (Zhu & Hastie, 2005)
(IVM), Euler’s Elastica classifier (Lin et al., 2012; 2015) (EE). The mean error rate averaged over all eight datasets is shown in the bottom
row. Top performance for each dataset is shown in bold.

DATASET(L,N) RBN SVM IVM LLS GLS EE OURS-Q OURS-CE
PIMA(2,8) 24.60 24.12 24.11 29.94 25.94 23.33 23.98 24.51
WDBC(2,30) 5.79 2.81 3.16 6.50 4.40 2.63 2.63 2.63
LIVER(2,6) 35.65 28.66 29.25 37.39 37.61 26.33 25.74 26.31
IONOS.(2,34) 7.38 3.99 21.73 13.11 13.67 6.55 6.83 6.26
WINE(3,13) 1.70 1.11 1.67 5.03 3.92 0.56 0.00 0.00
IRIS(3,4) 4.67 2.67 4.00 3.33 6.00 4.00 3.33 3.33
GLASS(6,9) 34.50 31.77 29.44 38.77 36.95 32.28 29.87 29.44
SEGM.(7,19) 13.07 3.81 3.64 14.40 4.03 8.80 2.47 2.73
ALL-AVG 15.92 12.37 14.63 18.56 16.57 13.06 11.86 11.90

ues {1/25, 1/24, 1/23, 1/22, 1/2, 1, 2, 4, 8} and λ from the
set of values {1/1.54, 1/1.53, 1/1.52, 1/1.5, 1, 1.5} that
minimizes the fivefold cross-validation error. The step-size
τ = 0.1 and iteration number T = 5 are fixed over all
datasets. We used the same settings for both loss functions.

Table 1 reports the results of this experiment. The top per-
former for each dataset is marked in bold, and the aver-
aged performance of each method over all testing datasets
is summarized in the bottom row. The numbers for RBN,
LLS and GLS are copied from Table 1 of (Varshney & Will-
sky, 2010). Results for SVM and IVM are obtained by run-
ning publicly available implementations for SVM (Chang
& Lin, 2011) and IVM (Roscher et al., 2012). Results for
EE are obtained by running an implementation provided by
the authors of (Lin et al., 2012). When running these im-
plementations, we followed the same experimental setup as
described above and exhaustively searched for the optimal
range for the kernel bandwidth and the trade-off parameter
via cross-validation.

As shown in the last row of Table 1, two versions of our
approach are overall the top two performers among all re-
ported methods. In particular, Ours-Q attains top perfor-
mance on four out of the eight benchmarks, Ours-CE at-
tains top performance on three out of the eight benchmarks.
The performance of the two versions of our method are
very close, which shows the robustness of our geometric
regularization approach cross different loss functions for
classification. Note that three pairs of comparisons, IVM
vs Ours-CE, GLS vs Ours-Q/Ours-CE, and EE vs Ours-Q
are of particular interest. We are going to discuss them in
detail respectively.

The IVM method of kernel logistic regression uses the
same RBF-based implementation and very similar cross-
entropy loss as our cross-entropy version Ours-CE, and

both methods handle the multiclass case inherently. The
main difference lies in regularization, i.e., the standard
RKHS norm regularizer vs our geometric regularizer.
Ours-CE outperforms IVM on six of the eight benchmars
in Table 1, and achieves equal performance on one of the
remaining two, and is only slightly behind on “PIMA”. The
overall superior performance of Ours-CE demonstrates the
advantage of the proposed geometric regularization over
the standard RKHS norm regularization.

The GLS method uses the same RBF-based implementa-
tion as ours and also exploits volume geometry for regu-
larization. As described in §1, however, there are key dif-
ferences between the two regularization techniques. GLS
measures the volume of the decision boundary supported
in X , while our approach measures the volume of a sub-
manifold supported in X × ∆L−1 that corresponds to the
class probability estimator. Our regularization technique
handles the binary and multiclass cases in a unified frame-
work, while the decision boundary based techniques, such
as GLS (and EE), were inherently designed for the binary
case and rely on a binary coding strategy to train log2 L
decision boundaries to generalize to the multiclass case.
In our experiments, both Ours-Q and Ours-CE outperform
GLS on all the benchmarks we have tested. This demon-
strates the effectiveness of exploiting the geometry of the
class probability in addressing the “small local oscillation”
for classification.

The EE method of Euler’s Elastica model uses the same
RBF-based implementation and the same quadratic loss
as our quadratic loss version Ours-Q. The main differ-
ence, again, lies in regularization, i.e., a combination of 1-
Sobolev norm and curvature penalty on the decision bound-
ary vs our volume penalty on the submanifold correspond-
ing to the class probability estimator. Since EE adopts a
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Table 2. Notations

hf (x) = argmax
`∈Y

f `(x), : plug-in classifier of f : X → ∆L−1

∆L−1 : the standard(L− 1)-simplex in RL;

η(x) = (η1(x), . . . , ηL(x)) : class probability: η`(x) = P (y = `|x)

M : {f : X → ∆L−1 : f ∈ C∞}
M′ : {f : X → RL : f ∈ C∞}

TfM : the tangent space toM at some f ∈M
The graph of f ∈M (orM′) : gr(f) = {(x, f(x)) : x ∈ X}

gij = ∂f
∂xi

∂f
∂xj : The Riemannian metric on gr(f)induced from the standard dot product on RN+L

(gij) = g−1, with g = (gij)i,j=1,...,N

dvol =
√

det(g)dx1 . . . dxN , the volume element on gr(f)

{ei}Ni=1 : a smoothly varying orthonormal basis of the tangent spaces T(x,f(x)gr(f)of the graph of f
Tr II : the trace of the second fundamental form of gr(f),Tr II ∈ RN+L

Tr II =
(∑N

i=1Deiei
)⊥

: with ⊥ the orthogonal projection to the subspace perpendicular to the

tangent space of gr(f) and Dyw the directional derivative of w in y direction
Tr IIL : the projection of Tr II onto the last L coordinates of RN+L

∇P : the gradient vector field of a function P :M→ R on a possibly infinite dimensional manifoldM

combination of sophisticated geometric measures on the
decision boundary, which fit specifically the binary case,
it achieves top performance on binary datasets. However,
as explained in §1, the geometry of the class probability for
general classification, which is captured by our approach,
cannot be captured by decision boundary based techniques.
That is the reason why Ours-Q, a general scheme for both
the binary and multiclass case, outperforms EE on all four
multiclass datasets, while it still achieves top performance
on binary datasets. This again demonstrates our geomet-
ric perspective and regularization approach that exploits the
geometry of the class probability.

4.2. Real-world datasets

To test the scalability of our method to high dimensional
and large-scale problems, we also conduct experiments on
two real-world datasets, i.e., the Flickr Material Database
(FMD) (Sharan et al., 2009) for image classification and
the MNIST (LeCun et al., 1998) Database of handwritten
digits.

FMD (4096 dimensional). The FMD dataset contains 10
categories of images with 100 images per category. We ex-
tract image features using the SIFT descriptor augmented
by its feature coordinates, implemented by the VLFeat li-
brary (Vedaldi & Fulkerson, 2008). With this descrip-
tor, Bag-of-visual-words uses 4096 vector-quantized visual
words, histogram square rooting, followed by L2 normal-
ization. We compare our method with an SVM classifier
with RBF kernels, using exactly the same 4096 dimen-
sional feature. Our method achieves a correct classifica-
tion rate of 48.8% while the SVM baseline achieves 46.4%.
Note that while recent works (Qi et al., 2015; Cimpoi et al.,

2015) report better performance on this dataset, the effort
focuses on better feature design, not on the classifier itself.
The features used in those works, such as local texture de-
scriptors and CNN features, are more sophisticated.

MNIST (60,000 samples). The MNIST dataset contains
10 classes (0 ∼ 9) of handwritten digits with 60, 000 sam-
ples for training and 10, 000 samples for testing. Each sam-
ple is a 28 × 28 grey scale image. We use 1000 RBFs to
represent our function f , with RBF centers obtained by ap-
plying K-means clustering on the training set. Note that
our learning and regularization approach still handles all
the 60, 000 training samples as described by Algorithm 1.
Our method achieves an error rate of 2.74%. While there
are many results reported on this dataset, we feel that the
most comparable method with our representation is the Ra-
dial Basis Function Network with 1000 RBF units (LeCun
et al., 1998), which achieves an error rate of 3.6%. This
experiment shows the potential that our geometric regular-
ization approach scales to larger datasets.

5. Conclusion
We have introduced a new geometric perspective on regu-
larization for classification that exploits the geometry of a
robust class probability estimator. Under this perspective,
we propose a general regularization approach that applies
to both binary and multiclass cases in a unified way. In ex-
periments with an example formulation based on RBFs, our
implementation achieves favorable results comparing with
widely used RBF-based classification methods and previ-
ous geometric regularization methods. We plan to extend
this work to machine learning problems beyond classifica-
tion, and to state-of-the-art deep learning models.
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