
Algorithms for Optimizing the Ratio of Submodular Functions

Wenruo Bai WRBAI@UW.EDU
Rishabh Iyer RKIYER@U.WASHINGTON.EDU
Kai Wei WEIKAI.HUST@GMAIL.COM
Jeff Bilmes BILMES@UW.EDU

University of Washington, Seattle, WA 98195, USA

Abstract
We investigate a new optimization problem in-
volving minimizing the Ratio of two Submodular
(RS) functions. We argue that this problem
occurs naturally in several real world applications.
We then show the connection between this
problem and several related problems including
minimizing the difference between submodular
functions (Iyer & Bilmes, 2012b; Narasimhan &
Bilmes, 2005), and to submodular optimization
subject to submodular constraints (Iyer & Bilmes,
2013). We show that RS optimization can be
solved with bounded approximation factors. We
also provide a hardness bound and show that our
tightest algorithm matches the lower bound up to
a log factor. Finally, we empirically demonstrate
the performance and good scalability properties
of our algorithms.

1. Introduction
A set function f : 2V → R+ is said to be submodular
(Fujishige, 2005) if for all subsets S, T ⊆ V , it holds
that f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). Defining
f(j|S) , f(S ∪ j) − f(S) as the gain of j ∈ V in the
context of S ⊆ V , then f is submodular if and only if
f(j|S) ≥ f(j|T) for all S ⊆ T and j /∈ T . The function
f is monotone iff f(j|S) ≥ 0,∀j /∈ S, S ⊆ V . W.l.o.g.,
we assume the ground set is V = {1, 2, · · · , n}. While
general set function optimization is often intractable, many
forms of submodular function optimization can be solved
near optimally or even optimally in certain cases, and
hence submodularity is also often called the discrete analog
of convexity (Lovász, 1983). Submodularity, moreover,
is inherent in a large set of real-world machine learning
applications, therefore making them useful in practice.

In this paper, we study a new class of discrete optimization

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume 48.
Copyright 2016 by the author(s).

problems that have the following form:

Problem 1: min
∅⊂X⊆V

f(X)

g(X)
, (1)

where f and g are monotone non-decreasing submodu-
lar functions. We call the objective f(A)

g(A) a ratio of sub-
modular (RS) function. We do not require that either
f or g is normalized, we only assume f(∅) ≥ 0 and
g(∅) ≥ 0. We assume, w.l.o.g., that both f and g satisfy
f(v) > 0, g(v) > 0,∀v ∈ V , since we may simply remove
any item v ∈ V for consideration if g(v) = 0 and add any
item v ∈ V to the solution if f(v) = 0. As a consequence
of this assumption and the monotonicity of f and g, we have
that f(A) > 0, g(A) > 0,∀∅ ⊂ A ⊆ V .

We call this problem RS minimization. In Section 5, we
extend the algorithms here to handle non-monotone submod-
ular functions. We also consider a related problem called
RS maximization:

Problem 2: max
∅⊂X⊆V

g(X)

f(X)
. (2)

We observe that RS Minimization and RS Maximization are
equivalent, in that an algorithm for Problem 1 also solves
Problem 2. To be precise, given an α-approximation al-
gorithm (α > 1) for Problem 1, one can achieve a 1/α
approximation for Problem 2, using the solution obtained
by the algorithm for Problem 1.

1.1. Applications

In the below, we describe how Problems 1 and 2 appear
naturally in several machine learning applications.

Maximizing the F-Measure in Information Retrieval:
Consider the problem where one is given a set U of objects
(e.g., documents, images etc.) which can be expressed as
a bag of words W . One can construct a bipartite graph
G(U,W,E), where U is the set of objects, W is the set of
words, and the edge eu,w ∈ E between the object u and the
wordw exists if the wordw is present in the object u. Define
a neighborhood function Γ : 2U → 2W on the bipartite

Algorithms for Optimizing the Ratio of Submodular Functions

graph G that maps from any subset of the objects X ⊆ U to
the set of words Γ(X) ⊆W contained in the objects. We are
interested in the information retrieval problem of finding a
set of objects that cover exactly a set of target words T ⊆W .
The quality of any subset X ⊆ U may be measured as the
F-Measure of the coverage on the target words T . More
formally, the quality measure can be defined as:

F (X) =
2|Γ(X) ∩ T |
|T |+ |Γ(X)|

. (3)

The goal is to find a set of objects X that maximizes
the F-measure F (X). Note that both |Γ(X) ∩ T | and
|T |+ |Γ(X)| are monotone submodular. Hence the problem
is an instance of RS maximization (Problem 2).

Normalized Cuts and Ratio Cuts: Another application
of RS optimization is the normalized cut and ratio cut prob-
lem, which have been extensively used in image segmen-
tation and clustering (Shi & Malik, 2000; Kawahara et al.,
2011). Let G = (V,E) be a similarity graph defined on the
set of vertices V , wherewa,a′ is the edge weight between the
vertex a and a′ ∈ V and measures the similarity between
these two vertices. Let h(A) =

∑
a∈A

∑
a′∈V \A wa,a′

be the graph cut function defined on the graph G, and let
m(A) =

∑
a∈A

∑
v∈V wa,v be the function that measures

the association of the subset A to the ground set V . The
normalized cut problem as defined in (Shi & Malik, 2000)
is to minimize the following objective:

h(A)

m(A)
+

h(A)

m(V)−m(A)
, (4)

which can further simplified as follows:

h(A)m(V)

m(A)(m(V)−m(A))
. (5)

Note that m(V) is a constant, and both h(A) and
m(A)(m(V)−m(A)) are symmetric submodular functions.
Therefore, the normalized cuts problem can be formulated as
a non-monotone instance of RS minimization (Problem 1).
A similar case is given in (Narasimhan & Bilmes, 2007).

Maximizing Diversity & Minimizing Cooperative Costs:
A final set of applications are related to simultaneously

maximizing diversity or coverage, while minimizing coop-
erative costs. Applications of this involve sensor placement,
feature selection (Krause et al., 2008; Iyer & Bilmes, 2012b;
Liu et al., 2013), and data subset selection (Lin & Bilmes,
2011; Wei et al., 2013; 2015a). While these problems are
often modeled as a difference of submodular functions, or
constrained submodular optimization, one can also model
them as a ratio of submodular functions, where the submod-
ular function f models the cooperative costs while g models
information and utility. The ratio g(A)

f(A) naturally models

the cost normalized utility of the set A. Maximizing g(A)
f(A)

(Problem 2) leads to the best cost normalized subset A.

Algorithm 1 A (1 + ε)-approximation algorithm for RS
minimization using an exact algorithm for DS minimization

1: Input: f , g, ε ∈ [0, 1) and an exact algorithm for DS
minimization.

2: Output: A (1 + ε)-approximate solution for Prob. 1
3: Set λmax← f(A)

g(A) for arbitrary A ⊆ V , and λmin ← 0.
4: while λmax > (1 + ε)λmin do
5: λ̄← λmin+λmax

2 .
6: X̂ ← argminX⊃∅[f(X)− λ̄g(X)].

7: if f(X̂)

g(X̂)
≥ λ̄ then

8: λmin ← λ̄
9: else

10: λmax ← λ̄
11: end if
12: end while
13: Return X̂ ← argminX [f(X)− λ̄g(X)].

1.2. RoadMap of this Paper

The rest of the paper is organized as follows. We first de-
scribe connections between RS minimization and related
problems studied in the literature (Section 2). In particu-
lar, we show how this is closely related to the problem of
minimizing the difference between submodular functions
and to the problem of submodular optimization subject to
submodular lower bound and upper bound constraints. In
Section 3, we provide several approximation algorithms
along with the analysis of their approximation guarantees
for RS minimization. The algorithms include GreedyRatio,
Binary Search, Majorization-Minimization, and Ellipsoidal
Approximations. In Section 4, we prove matching hard-
ness bounds for this Problem. In Section 5, we consider
extensions of RS minimization where f and g may be su-
permodular and/or non-monotone submodular. Empirical
evaluations on synthetic data are given in Section 6.

2. Connections to Related Problems
Connections to DS optimization: A problem related to
the RS minimization is the Difference of Submodular (DS)
minimization defined as follows:

Problem: min
X⊆V

[f(X)− λg(X)], (6)

where λ ≥ 0. We call the objective f(X) − λg(X) a
difference of submodular (DS) function. We show below
that, in fact, an exact algorithm for DS minimization can
be used as a subroutine to also solve RS minimization via a
simple binary search scheme as described in Alg. 1.

Lemma 2.1. Given ε > 0 and an exact algorithm for solv-
ing DS minimization (Problem 6), Algorithm 1 provides a
(1 + ε)-approximation for RS minimization (Problem 1), by
solving O(log(1/ε)) instances of DS minimization.

Algorithms for Optimizing the Ratio of Submodular Functions

Proof. When the algorithm terminates, the following holds:
minX [f(X)− λming(X)] ≥ 0, which implies that f(X)

g(X) ≥

λmin,∀X ⊂ V . Therefore, it holds that: f(X̂)

g(X̂)
≤ λmax ≤

(1 + ε)λmin ≤ (1 + ε) minX
f(X)
g(X) .

While RS minimization and DS minimization are closely
related, we show below the class of set functions rep-
resentable as an RS function is strictly contained by
the class of DS functions. Thus, the DS minimization
problem encapsulates a strictly larger class of combinatorial
optimization problems.

Lemma 2.2. Any RS function can be expressed as a DS
function. However, there exists an instance of a DS function
that cannot be represented as an RS function.

Proof. The first half of the lemma holds since any RS func-
tion is a set function, and any set function can be expressed
as a DS function (Narasimhan & Bilmes, 2005).

To show the second half of the Lemma, we give a counter-
example as follows: Let V = {1, 2}, h(X) = f1(X) −
g1(X) where f1(X) =

√
2|X| and g1(X) = |X|. Note

that h(X), by definition, is a DS function. Assume that
h(X) can be expressed as f2(X)

g2(X) with f2(X) and g2(X)

being non-decreasing submodular functions. We then have
that f2(∅) = f2(V) = 0, since f2(∅)

g2(∅) = f2(V)
g2(V) = 0. How-

ever, we have that f2({1}) = h({1})g2({1}) > 0, which
contradicts the monotonicity of f2.

In Section 3, we give bounded approximation algorithms
for RS minimization. This is unlike DS minimization that,
in the worst case, is inapproximable (Iyer & Bilmes, 2012b)
— hence, we cannot simply optimize log f/g and expect
guarantees. Nevertheless, there are a number of heuristic
approaches to DS optimization that work well in prac-
tice (Iyer & Bilmes, 2012b; Narasimhan & Bilmes, 2005;
Kawahara & Washio, 2011). Moreover, there are several
special cases of DS minimization that can be solved exactly
(Section 3) and hence where a (1 + ε)-approximation for
RS minimization may be obtained via Algorithm 1.

Relation to SCSC and SCSK: Another related and re-
cently studied class of problems is submodular optimization
subject to submodular cover and submodular knapsack con-
straints (Iyer & Bilmes, 2013), namely:

Problem (SCSC): min{f(X) | g(X) ≥ c}, (7)
Problem (SCSK): max{g(X) | f(X) ≤ b}, (8)

which generalize (Wolsey, 1982; Atamtürk & Narayanan,
2009). These problems are referred to as Submodular Cost
Submodular Cover (SCSC) and Submodular Cost Submod-
ular Knapsack (SCSK), respectively. As shown in (Iyer
& Bilmes, 2013), both SCSC and SCSK admit bi-criterion

Algorithm 2 Approx. algorithm for RS minimization using
an approximation algorithm for SCSC.

1: Input: f , g, ε > 0, and a [σ, ρ] bicriterion approxima-
tion algorithm for SCSC.

2: Output: An σ(1+ε)
ρ approximation for Problem 1.

3: c← g(V), X̂c ← V , and X̂ ← X̂c.
4: while g(X̂c) > minj∈V g(j) do
5: c← (1 + ε)−1c

6: X̂c ← [σ, ρ] approx. for Problem 7 with c.
7: if f(X̂)

g(X̂)
> f(X̂c)

g(X̂c)
then

8: X̂ ← X̂c

9: end if
10: end while
11: Return X̂ .

approximation algorithms. Without loss of generality, we
concentrate on SCSC. An algorithm is a [σ, ρ] bi-criterion
algorithm for SCSC if it is guaranteed to obtain a set X
such that f(X) ≤ σf(X∗) (approximate optimality) and
g(X) ≥ ρc (approximate feasibility), where X∗ is the opti-
mizer for SCSC. Note that it typically holds that σ ≥ 1 and
ρ ≤ 1. Interestingly, we show in the below that any [σ, ρ] bi-
criterion algorithm for SCSC can be used as a subroutine to
yield a σ

ρ -approximation algorithm for RS minimization via
a simple linear search strategy as described in Algorithm 2.

Lemma 2.3. Given ε > 0, Algorithm 2 is guaranteed to find
a solution X̂ which is a σ

ρ (1 + ε)-approximation for RS min-
imization in O(1/ε) calls to a [σ, ρ] bi-criterion algorithm
for SCSC.

Proof. Let X∗ = argminX
f(X)
g(X) and c∗ = g(X∗). During

the linear search procedure, we must have searched a c
such that c ≤ c∗ ≤ (1 + ε)c. For such c, we have that
f(X̂c) ≤ σf(X∗) and g(X̂c) ≥ ρc, thanks to the [σ, ρ]
bi-criterion guarantee. Therefore, we obtain the following:
f(X̂c)

g(X̂c)
≤ σ

ρ
f(X∗)
c ≤ σ

ρ
(1+ε)f(X∗)

c∗ ≤ σ(1+ε)
ρ

f(X∗)
g(X∗) .

Using the same argument, we may connect SCSK to RS
maximization via the same linear search strategy. While
Lemma 2.3, — showing that a bicriterion approximation
algorithm for SCSC (or SCSK) can be utilized to solve RS
minimization (maximization) with bounded approximation
factors — is theoretically interesting, Algorithm 2 may not
be practical for large-scale problems, since it involves solv-
ing O(1/ε) instances of SCSC. In Section 3, we provide a
number of more efficient approximation algorithms for RS
minimization, while still offering similar guarantees.

Algorithms for Optimizing the Ratio of Submodular Functions

Algorithm 3 GREEDRATIO for RS minimization

1: Input: f and g.
2: Output: An approximation solution X̂ .
3: Initialize: X0 ← ∅, R← V and i← 0.
4: while R 6= ∅ do
5: v ∈ argminv∈R

f(v|Xi)
g(v|Xi) .

6: Xi+1 ← Xi ∪ v.
7: R← {v ∈ R|g(v|Xi+1) > 0}
8: i← i+ 1.
9: end while

10: i∗ ∈ argmini
f(Xi)
g(Xi)

.

11: Return X̂ ← Xi∗ .

3. Approximation Algorithms for RS
Minimization

In this section, we study four separate cases of RS min-
imization depending on whether f or g, are modular or
submodular.

3.1. Modular f and Modular g

When both f and g are modular, RS minimization be-
comes very easy. We introduce a simple greedy algorithm–
GREEDRATIO (Algorithm 3) to handle this scenario. The
idea of GREEDRATIO is to, in each iteration, greedily add an
element to the solution set such that the ratio of the marginal
gain by this element is the smallest. When the algorithm
terminates, a chain of sets X1 ⊂ . . . ,⊂ X` (` is the total
number of iterations) is obtained, and the algorithm sim-
ply outputs the set Xi∗ that achieves the minimum ratio.
Though simple, we show below that GREEDRATIO is guar-
anteed to yield the optimal solution for RS minimization in
this case.
Theorem 3.1. When f and g are modular, GREEDRATIO
finds the optimal solution for RS minimization with a com-
plexity of O(n log n).

Proof. Since both f and g are modular functions, we have
that f(v|X) = f(v) and g(v|X) = g(v) for allX ⊆ V and
v ∈ V \X . As a simpler implementation of GREEDRATIO,
one may first obtain a non-decreasing order of the items in V
as σ = {vσ1

, . . . , vσn} according to their ratio of singleton
scores f(v)

g(v) . Namely, f(vσ1)g(vσ1)
≤ · · · ≤ f(vσn)

g(vσn)
. It is easy to

verify that for any threshold τ > 0, the set Xτ = {v ∈
V | f(v)g(v) ≤ τ} is among the chain of solutions {Xi}ni=1. Let

X∗ ∈ argminX
f(X)
g(X) and r∗ = f(X∗)

g(X∗) . Observe that if any

item v satisfies f(v)
g(v) < r∗, the item must be contained in

X∗, otherwise, adding v to X∗ would further decrease the
objective. Let Xr∗ =

{
v ∈ V | f(v)g(v) < r∗

}
. Note that Xr∗

is contained in the chain of the solutions {Xi}ni=1 and that
f(Xr

∗
)

g(Xr∗)
= r∗. Therefore, the output X̂ is optimal.

The complexity of algorithm involves computing all n ratio
of singleton scores and then takes anotherO(n log n) to sort
them.

3.2. Modular f and Submodular g

Next, we study a slightly more general form where f is
modular and g is submodular. We show below that this
scenario can still be solved up to a constant 1/(1 − 1/e)
factor by the same greedy algorithm– GREEDRATIO.
Theorem 3.2. When f is modular and g is submodular,
GREEDRATIO is guaranteed to obtain a solution X̂ such
that

f(X̂)

g(X̂)
≤ e

e− 1

f(X∗)

g(X∗)
, (9)

where X∗ ∈ argmin∅⊂X⊆V
f(X)
g(X) .

Proof. This simply follows as a special case of Theorem 3.4
(cf. Section 3.4) when κf = 0.

We point out that GREEDRATIO may require a time com-
plexity of O(n2) function evaluations in the worst case.
However, thanks to the lazy evaluation trick as described
in (Minoux, 1978), Line 5 in GREEDRATIO need not to
recompute the marginal gain for every item in each round,
allowing GREEDRATIO to scale to large data sets.

3.3. Submodular f and Modular g

In contrast to the case above where f is modular and g is
submodular, we show that here, the opposite case, can actu-
ally be exactly optimized using the binary search strategy
in Algorithm 1. The key observation is that the correspond-
ing DS minimization becomes an instance of submodular
minimization, which can be optimally solved in poly-time.
Hence, one can achieve a (1 + ε)-approximation for this
case as a Corollary of Theorem 2.1:
Corollary 3.3. When f is submodular and g is modular,
using an exact submodular minimization algorithm as a
subroutine, Algorithm 1 provides a (1 + ε)-approximation
for RS minimization in O(log(1/ε)) calls to the subroutine.

3.4. Submodular f and Submodular g

Lastly, we study the most general form of RS minimization
with both f and g being submodular. GREEDRATIO can
again be shown to yield a curvature dependent bound for
this problem. The curvature of a submodular function f is
defined as follows: (Conforti & Cornuejols, 1984; Vondrák,
2010; Iyer et al., 2013a; Wei et al., 2014):

κf = 1−min
v∈V

f(v|V \ v)

f(v)
∈ [0, 1]. (10)

Algorithms for Optimizing the Ratio of Submodular Functions

The curvature κf measures how close a submodular function
f is to a modular function. f is fully curved if κf = 1
and is modular if κf = 0. In the below, we show that
GREEDRATIO approximates the RS minimization problem
with a factor in terms of the curvature κf of the function f .

Theorem 3.4. GREEDRATIO is guaranteed to obtain a so-
lution X̂ such that

f(X̂)

g(X̂)
≤ 1

1− e(κf−1)
f(X∗)

g(X∗)
, (11)

where X∗ ∈ argmin∅⊂X⊆V
f(X)
g(X) and κf is the curvature

of the submodular function f .

Proof. It is equivalent to prove the following:

g(X̂)

f(X̂)
≥ (1− e(κf−1)) g(X∗)

f(X∗)
. (12)

Denote X1, X2, . . . , Xl as the chain of sets obtained by
the greedy algorithm and x1, . . . , x` as the sequence of
items added during the algorithm. Note ` is the number
of rounds when the algorithm terminates. Denote k as the
largest index in {1, . . . , `} such that f(Xk) ≤ f(X∗). For
i = 1, 2, . . . , k, it holds that:

g(X∗) ≤ g(Xi−1) +
∑

v∈X∗\Xi−1

g(v|Xi−1)

≤ g(Xi−1) +
∑

v∈X∗\Xi−1

g(xi|Xi−1)

f(xi|Xi−1)
f(v|Xi−1)

The last inequality follows since g(v|Xi−1)
f(v|Xi−1)

≤ g(xi|Xi−1)
f(xi|Xi−1)

as
required by the greedy algorithm. Given the definition of
the curvature κf , we have the following

g(X∗)− g(Xi−1) ≤ g(xi|Xi−1)

f(xi|Xi−1)

∑
v∈X∗\Xi−1

f(v|Xi−1)

≤ g(xi|Xi−1)

f(xi|Xi−1)

∑
v∈X∗

f(v)

≤ g(xi|Xi−1)

f(xi|Xi−1)

1

1− κf
f(X∗)

Rearranging the inequality, we obtain the following:

g(X∗)− g(Xi)

g(X∗)− g(Xi−1)
≤
[
1− (1− κf)f(xi|Xi−1)

f(X∗)

]
, (13)

Algorithm 4 ELLIPSOIDAPPROX

1: Input: f and g
2: Output: An approximation solution X̂ .
3:
√
wf ← the ellipsoidal approximation for f

4: X̂ ∈ argminX

√
wf (X)

g(X) \\ e(1+ε)
e−1 −Approximately

solved by Algorithm 2
5: Return X̂

which implies

g(X∗)− g(Xk) ≤
k∏
i=1

[
1− (1− κf)f(xi|Xi−1)

f(X∗)

]
g(X∗)

(14)

≤
k∏
i=1

e

[
−

(1−κf)f(xi|Xi−1)

f(X∗)

]
g(X∗) (15)

≤ e
[
−

(1−κf)f(Xk)

f(X∗)

]
g(X∗) (16)

Using the fact 1− x ≤ e−x, we then obtain the following:

g(Xk)

f(Xk)
≥
[
1− e

[
−

(1−κf)f(Xk)

f(X∗)

]]
f(X∗)

f(Xk)

g(X∗)

f(X∗)
(17)

≥
[
1− e−(1−κf)

] g(X∗)

f(X∗)
. (18)

Since (1 − e−(1−κg)x)x−1 monotonically decreases in x
and f(Xk)

f(X∗) ≤ 1, we have the following:

f(X̂)

g(X̂)
≤ f(Xk)

g(Xk)
≤ 1

1− eκf−1
f(X∗)

g(X∗)
. (19)

We point out that Theorem 3.4 generalizes Theorem 3.2
when f is modular, i.e., κf = 0. Note that the approxima-
tion guarantee of GREEDRATIO deteriorates as the curvature
κf of the function f increases and becomes unbounded (and
hence vacuous) when the f is fully curved, i.e., κf = 1.

Ellipsoid Approximation: To yield a bounded approxi-
mation algorithm for RS minimization, we provide an al-
gorithmic framework–ELLIPSOIDAPPROX, which involves
computing the ellipsoidal approximation (EA) of a submod-
ular function. As shown in Goemans et. al (Goemans
et al., 2009), one can approximate any monotone submodu-
lar function f(X) in polynomial time by a surrogate func-
tion f̂(X) =

√
wf (X) for a certain modular weight vector

wf ∈ RV , such that√
wf (X) ≤ f(X) ≤ O(

√
n log n)

√
wf (X),∀X ⊆ V.

Algorithms for Optimizing the Ratio of Submodular Functions

To apply the idea of EA to RS minimization, we first replace
f(X) by its ellipsoidal approximation

√
wf (X), and then

the problem becomes

min
∅⊂X⊆V

√
wf (X)

g(X)
, (20)

for which we may use Algorithm 2 (i.e., linear search with
SCSC) to solve. At every round of Algorithm 2, the SCSC
problem has the following form:

min{
√
wf (X)|g(X) ≥ c}, (21)

which is effectively,

min{wf (X)|g(X) ≥ c}. (22)

Note that Eqn. 22 can be solved by the greedy algorithm
with a [1, (1 − 1/e)] bicriterion approximation guaran-
tee (Iyer & Bilmes, 2013), which then leads to a constant
factor approximation for Eqn. 20 thanks to Lemma 2.3. The
following result provides a worst-case approximation factor
of this approach for RS minimization:

Theorem 3.5. Let
√
wf be the ellipsoidal approximation

for f and X̂ be the output solution of Algorithm 2 on

min∅⊂X⊆V

√
wf (X)

g(X) , it then holds that

f(X̂)

g(X̂)
≤ O(

√
n log n)

f(X∗)

g(X∗)
. (23)

Proof. Let X∗ ∈ argminX
f(X)
g(X) . Since the output solution

X̂ of Algorithm 2 has a constant e
e−1 (1 + ε)-approximation

for Eqn. 20, it then holds that

f(X̂)

g(X̂)
≤ O(

√
n log n)

√
wf (X̂)

g(X̂)
(24)

≤ O(
√
n log n)

e

e− 1
(1 + ε)

√
wf (X∗)

g(X∗)
(25)

≤ O(
√
n log n)

f(X∗)

g(X∗)
(26)

As we will see, the O(
√
n log n)-approximation factor pro-

vided by this approach matches the lower bound (hardness)
of the RS minimization up to a log factor.

Majorization-Minimization: While the Ellipsoidal Ap-
proximation algorithm provides the tightest approximation
factor, it does not scale very well even to medium scale
problems (Iyer & Bilmes, 2013). To this end we propose
another framework — Majorization-Minimization (MMIN,
see Alg. 5) — that achieves a slightly worse approximation

Algorithm 5 MMIN for RS minimization

1: Input: f and g
2: Output: An approximation solution X̂ .
3: Initialize: An arbitrary set X0, and t← 0.
4: repeat
5: pick a subgradient ht at Xt of g
6: pick a supergradient mt at Xt of f
7: A ∈ argminX

f(X)
ht(X)\\ (1 + ε)−Approximately

solved by Algorithm 1
8: B ∈ argminX

mt(X)
g(X) \\

e
e−1−Approximately

solved by GREEDRATIO

9: Xt+1 ← argminX∈{A,B}
f(X)
g(X)

10: t← t+ 1
11: until we have converged (Xt = Xt−1)
12: Return X̂ ← Xt

factor, but that scales quite well to large scale problems.
In the spirit of (Iyer et al., 2013b; Wei et al., 2015b), this
framework uses modular lower and modular upper bounds
of a submodular function (Iyer et al., 2013b) to transform
the originally hard RS minimization problem to a special
case with either f or g being modular. For either case, the
result admits constant approximation algorithms as shown
in Section 3.2 and 3.3. Moreover, the resulting guarantees
can be translated to a curvature dependent guarantee for the
original RS minimization.

Akin to convex functions, submodular functions have tight
modular lower bounds. These bounds are related to the
subdifferential ∂f (Y) of the submodular set function f at a
set Y ⊆ V , which is defined (Fujishige, 2005) as:

∂f (Y) = {y ∈ Rn : (27)
f(X)− y(X) ≥ f(Y)− y(Y) for all X ⊆ V }

For a vector x ∈ RV and X ⊆ V , we write x(X) =∑
j∈X x(j). Denote a subgradient at Y by hY ∈ ∂f (Y).

The extreme points of ∂f (Y) may be computed via a greedy
algorithm: Let π be a permutation of V that assigns the
elements in Y to the first |Y | positions (π(i) ∈ Y if and
only if i ≤ |Y |). Each such permutation defines a chain
with elements Sπ0 = ∅, Sπi = {π(1), π(2), . . . , π(i)} and
Sπ|Y | = Y . This chain defines an extreme point hπY of ∂f (Y)

with entries

hπY (π(i)) = f(Sπi)− f(Sπi−1). (28)

Defined as above, hπY forms a modular lower bound of f ,
tight at Y — i.e., hπY (X) =

∑
j∈X h

π
Y (j) ≤ f(X),∀X ⊆

V and hπY (Y) = f(Y).

We can also define a modular upper bound of a submodu-
lar function f via its superdifferentials ∂f (Y) (Jegelka &

Algorithms for Optimizing the Ratio of Submodular Functions

Bilmes, 2011; Iyer & Bilmes, 2012a) at Y :

∂f (Y) = {y ∈ Rn : (29)
f(X)− y(X) ≤ f(Y)− y(Y); for all X ⊆ V }

It is possible, moreover, to provide specific supergradi-
ents (Iyer & Bilmes, 2012a; Iyer et al., 2013b) that define
the following two modular upper bounds (when referring
either one, we use mf

X):

mf
X,1(Y) , f(X)−

∑
j∈X\Y

f(j|X\j) +
∑

j∈Y \X

f(j|∅),

(30)

mf
X,2(Y) , f(X)−

∑
j∈X\Y

f(j|V \j) +
∑

j∈Y \X

f(j|X).

Then mf
X,1(Y) ≥ f(Y) and mf

X,2(Y) ≥ f(Y),∀Y ⊆ V

and mf
X,1(X) = mf

X,2(X) = f(X).

Having formally defined the tight modular upper and lower
bounds, we are ready to discuss how to apply this machinery
to RS minimization. MMIN consists of two stages. In
the first stage, it replaces f by its modular upper bound
and keep g as it is, and then solves the resulting problem
using the algorithms proposed in Section 3.2. In the second
stage, MMIN replaces g by its modular lower bound and
keep f as it is, and then solves the resulting problem using
the algorithms described in Section 3.3. Lastly, MMIN
outputs the better among these two solutions. We show
below that MMIN yields a bounded approximation for RS
minimization in terms of the curvature both of κf and κg .
Theorem 3.6. MMIN admits a worst-case approximation
factor of O(min{ n

1+(n−1)(1−κf) ,
n

1+(n−1)(1−κg)).

Proof. To prove this theorem, we utilize the Lemma
from (Iyer et al., 2013a), that stated the following: Given a
monotone submodular function f , it holds that

f(X) ≤ f̂m(X) ,
∑
j∈X

f(j) ≤ n

1 + (n− 1)(1− κf)
f(X)

(31)

where f̂m(X) is the simple modular upper bound of f .
Since, f̂m approximates f by a factor of n

1+(n−1)(1−κf) ,

the ratio f̂m(X)/g(X) also approximates f(X)/g(X) by
the same factor. Moreover, the same bound holds for approx-
imating g(X) by its modular lower bound. Hence MMin,
produces the two subproblems as discussed in Sections 3.2
and 3.3. Both subproblems admit constant approximation
algorithms.

Observe that Theorem 3.6 provides a worst-case approxima-
tion for RS minimization that interpolates between the cases
when f and g are modular and submodular. In particular,
when either f or g are modular, MMIN provides a constant
factor guarantee for this problem.

4. Hardness of RS Optimization
In this section, we provide a worst case hardness result
(lower bound) for RS minimization. We show that when
f and g are submodular, the problem is NP hard, and one
cannot approximate it better than a factor of O(

√
n), which

matches the bound of ELLIPSOIDAPPROX up to a log factor.

Theorem 4.1. There exist an instance of submodular func-
tion f and g such that no poly-time algorithm can achieve
an approximation factor better than n1/2−ε, for any ε > 0.

Proof. We prove this result using the hardness construction
from (Goemans et al., 2009; Svitkina & Fleischer, 2008).
The main idea of the proof technique is to construct two
submodular functions f(X) and fR(X) that with high prob-
ability are indistinguishable. Thus, also with high probabil-
ity, no algorithm can distinguish between the two functions
and the gap in their values provides a lower bound on the
approximation.

Define two monotone submodular functions g(X) =
min{|X|, α} and f(X) = min{β + |X ∩ R̄|, |X|, α},
where R ⊆ V is a random set of cardinality α. Let α
and β be an integer such that α = x

√
n/5 and β = x2/5

for an x2 = ω(log n). Given an arbitrary ε > 0, set
x2 = n2ε = ω(log n). Then the ratio between g(R) and
f(R) is n1/2−ε. A Chernoff bound analysis very similar
to (Svitkina & Fleischer, 2008) reveals that any algorithm
that uses a polynomial number of queries can distinguish
f and g with probability only n−ω(1), and therefore cannot
reliably distinguish the functions with a polynomial number
of queries. Since no algorithm can distinguish between f
and g, any algorithm will achieve a minimum value of 1 for
the following optimization problem: minX

f(X)
g(X) , whereas

the optimal solution has a value 1/n1/2−ε.

5. Non-Monotone Submodular and
Supermodular f and g

In this section, we investigate extensions of RS minimization
to the case when f and g are non-monotone submodular,
and even supermodular.

5.1. Non-Monotone Submodular f and g

Given a modular function g and a non-monotone submod-
ular function f , one can use the Binary Search algorithm
(Algorithm 1), in which case the corresponding DS sub-
problem becomes an instance of submodular minimization.
Correspondingly, one can easily extend Theorem 2.1 to
this case, and achieve a 1 + ε approximation factor for this
problem. We can also extend our algorithms to the sce-
nario when one of the functions is monotone submodular,
while the other one is non-monotone. For example, if f is
monotone submodular, while g is non-monotone, one can
use Ellipsoidal Approximation on f , and keep g as it is.

Algorithms for Optimizing the Ratio of Submodular Functions

The problem then becomes, minX

√
wf (X)

g(X) which is equiv-

alent to maxX
g(X)√
wf (X)

. We can then convert this to SCSK,

max{g(X)|
√
wf (X) ≤ b}, which is an instance of non-

monotone submodular knapsack, which also has constant
factor guarantees (Feige et al., 2011). Furthermore, if f is
non-monotone, while g is monotone, one can replace g by
its modular upper bound, thereby obtaining an instance of
an RS optimization problem, with a non-monotone f and a
modular g, which can be solved by using the Binary search
algorithm (Algorithm 1) as discussed at the beginning of this
section. Finally, in case both f and g are non-monotone sub-
modular (a generalization of (Narasimhan & Bilmes, 2007)),
one can use Algorithm 1 and repeatedly solve the resulting
DS optimization problem. While this has no guarantees,
this is a reasonable heuristic for this problem.

5.2. Extensions to Supermodular f and g

Consider an instance of Problem 1, when f is modular or
submodular, but g is supermodular. One can then use Algo-
rithm 1, and the corresponding DS optimization subproblem
becomes an instance of submodular minimization, which
can exactly solved. Hence in this case Problem 1 is solv-
able in polynomial time. One can also consider an alternate
case, when f is supermodular, and g is either modular or
submodular. In this case, the resulting DS optimization
problem (using Algorithm 1) becomes an instance of sub-
modular maximization, which can be approximately solved.
While this does not directly correspond to an approxima-
tion guarantee for the original problem, it does provide a
reasonable heuristic for solving the problem. When both
f and g are monotone supermodular, it remains an open
problem whether it admits any polynomial time algorithm
with bounded approximations.

6. Experiments
We empirically evaluate our proposed algorithmic frame-
works for RS minimization, including in particular MMIN,
GREEDRATIO, and ELLIPSOIDAPPROX, on a synthetic data
set. In particular, we evaluate on a generalized form of the
F-measure function:

Fλ(X) =
|Γ(X) ∩ T |

λ|T |+ (1− λ)|Γ(X)|
, (32)

where 0 ≤ λ ≤ 1 is a parameter that determines a trade-
off weight between precision and recall. Note Fλ=0.5 is
the same as the F-measure function defined in Eqn. 3. We
instantiate the F-measure function on a randomly generated
bipartite graph G(U,W,E). The bipartite graph is defined
with |U | = 100 and |W | = 100. We define an edge between
u ∈ U andw ∈W independently with probability p = 0.05.
The set of targets T ⊆ W is also randomly chosen with a
fixed size 20, i.e., |T | = 20. We run the experiments on 10
instances of the randomly and independently generated data,

and we report the averaged results.

6

0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e
va

lu
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of RS minimization algorithms on synthetic data

GreedyRatio
EllipsoidApprox
MMin
Random

Figure 1. synthetic data experi-
ment

As a baseline, we also
implement a random
sampling method,
where we randomly
choose 100 subsets
X ⊆ U with size
|X| = 50 and report
their averaged function
valuation in terms of
Fλ and their standard
deviation. In Figure 1,
we compare the perfor-
mance of all methods
on with the varying
λ. We observe that
GREEDRATIO, though
very efficient, achieves consistently the best performance
for all cases of λ among all optimization algorithms.
Comparable performance is achieved by MMIN and
ELLIPSOIDAPPROX, although ELLIPSOIDAPPROX is much
more computationally intensive.

Acknowledgments
We wish acknowledge support by the National Science Foun-
dation under Grant No. IIS-1162606, the National Institutes
of Health under award R01GM103544, by a Google, a Mi-
crosoft, and an Intel research award, and also support by
TerraSwarm, one of six centers of STARnet, a Semiconduc-
tor Research Corporation program sponsored by MARCO
and DARPA.

References
Atamtürk, Alper and Narayanan, Vishnu. The submodular

knapsack polytope. Discrete Optimization, 2009.

Conforti, M. and Cornuejols, G. Submodular set func-
tions, matroids and the greedy algorithm: tight worst-case
bounds and some generalizations of the Rado-Edmonds
theorem. Discrete Applied Mathematics, 7(3):251–274,
1984.

Feige, Uriel, Mirrokni, Vahab, and Vondrák, Jan. Maxi-
mizing non-monotone submodular functions. SIAM J.
COMPUT., 40(4):1133–1155, 2011.

Fujishige, S. Submodular functions and optimization, vol-
ume 58. Elsevier Science, 2005.

Goemans, M.X., Harvey, N.J.A., Iwata, S., and Mirrokni,
V. Approximating submodular functions everywhere. In
SODA, pp. 535–544, 2009.

Iyer, R. and Bilmes, J. The submodular Bregman and
Lovász-Bregman divergences with applications. In NIPS,
2012a.

Algorithms for Optimizing the Ratio of Submodular Functions

Iyer, R. and Bilmes, J. Algorithms for approximate mini-
mization of the difference between submodular functions,
with applications. In UAI, 2012b.

Iyer, R. and Bilmes, J. Submodular Optimization with Sub-
modular Cover and Submodular Knapsack Constraints.
In NIPS, 2013.

Iyer, R., Jegelka, S., and Bilmes, J. Curvature and Optimal
Algorithms for Learning and Minimizing Submodular
Functions . In Neural Information Processing Society
(NIPS), 2013a.

Iyer, R., Jegelka, S., and Bilmes, J. Fast Semidifferen-
tial based Submodular function optimization. In ICML,
2013b.

Jegelka, S. and Bilmes, J. A. Submodularity beyond sub-
modular energies: coupling edges in graph cuts. In CVPR,
2011.

Kawahara, Yoshinobu and Washio, Takashi. Prismatic al-
gorithm for discrete dc programming problems. In NIPS,
2011.

Kawahara, Yoshinobu, Nagano, Kiyohito, and Okamoto,
Yoshio. Submodular fractional programming for balanced
clustering. Pattern Recognition Letters, 32(2):235–243,
2011.

Krause, A., Singh, A., and Guestrin, C. Near-optimal sensor
placements in Gaussian processes: Theory, efficient algo-
rithms and empirical studies. JMLR, 9:235–284, 2008.

Lin, H. and Bilmes, J. Optimal selection of limited vocabu-
lary speech corpora. In Interspeech, 2011.

Liu, Yuzong, Wei, Kai, Kirchhoff, Katrin, Song, Yisong,
and Bilmes, Jeff. Submodular feature selection for high-
dimensional acoustic score spaces. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pp. 7184–7188. IEEE, 2013.

Lovász, L. Submodular functions and convexity. Mathemat-
ical Programming, 1983.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. Optimization Techniques, pp.
234–243, 1978.

Narasimhan, M. and Bilmes, J. A submodular-supermodular
procedure with applications to discriminative structure
learning. In UAI, 2005.

Narasimhan, Mukund and Bilmes, Jeff. Local search for
balanced submodular clusterings. In IJCAI, pp. 981–986,
2007.

Shi, Jianbo and Malik, Jitendra. Normalized cuts and image
segmentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 22(8):888–905, 2000.

Svitkina, Z. and Fleischer, L. Submodular approximation:
Sampling-based algorithms and lower bounds. In FOCS,
pp. 697–706, 2008.

Vondrák, J. Submodularity and curvature: the optimal algo-
rithm. RIMS Kokyuroku Bessatsu, 23, 2010.

Wei, Kai, Liu, Yuzong, Kirchhoff, Katrin, and Bilmes, Jeff.
Using document summarization techniques for speech
data subset selection. In NAACL-HLT, 2013.

Wei, Kai, Iyer, Rishabh, and Bilmes, Jeff. Fast multi-stage
submodular maximization. Beijing, China, 2014.

Wei, Kai, Iyer, Rishabh, and Bilmes, Jeff. Submodularity
in data subset selection and active learning. In Proceed-
ings of the 32nd International Conference on Machine
Learning (ICML-15), pp. 1954–1963, 2015a.

Wei, Kai, Iyer, Rishabh K, Wang, Shengjie, Bai, Wenruo,
and Bilmes, Jeff A. Mixed robust/average submodular
partitioning: Fast algorithms, guarantees, and applica-
tions. In Advances in Neural Information Processing
Systems, pp. 2224–2232, 2015b.

Wolsey, Laurence A. An analysis of the greedy algorithm
for the submodular set covering problem. Combinatorica,
2(4):385–393, 1982.

	Introduction
	Applications
	RoadMap of this Paper

	Connections to Related Problems
	Approximation Algorithms for RS Minimization
	Modular f and Modular g
	Modular f and Submodular g
	Submodular f and Modular g
	Submodular f and Submodular g

	Hardness of RS Optimization
	Non-Monotone Submodular and Supermodular f and g
	Non-Monotone Submodular f and g
	Extensions to Supermodular f and g

	Experiments

