
Strongly-Typed Recurrent Neural Networks

David Balduzzi1 DBALDUZZI@GMAIL.COM
Muhammad Ghifary1,2 MGHIFARY@GMAIL.COM
1Victoria University of Wellington, New Zealand
2Weta Digital, New Zealand

Abstract
Recurrent neural networks are increasing pop-
ular models for sequential learning. Unfortu-
nately, although the most effective RNN archi-
tectures are perhaps excessively complicated, ex-
tensive searches have not found simpler alterna-
tives. This paper imports ideas from physics and
functional programming into RNN design to pro-
vide guiding principles. From physics, we in-
troduce type constraints, analogous to the con-
straints that forbids adding meters to seconds.
From functional programming, we require that
strongly-typed architectures factorize into state-
less learnware and state-dependent firmware, re-
ducing the impact of side-effects. The fea-
tures learned by strongly-typed nets have a sim-
ple semantic interpretation via dynamic average-
pooling on one-dimensional convolutions. We
also show that strongly-typed gradients are better
behaved than in classical architectures, and char-
acterize the representational power of strongly-
typed nets. Finally, experiments show that, de-
spite being more constrained, strongly-typed ar-
chitectures achieve lower training and compara-
ble generalization error to classical architectures.

1. Introduction
Recurrent neural networks (RNNs) are models that learn
nonlinear relationships between sequences of inputs and
outputs. Applications include speech recognition (Graves
et al., 2013), image generation (Gregor et al., 2015), ma-
chine translation (Sutskever et al., 2014) and image cap-
tioning (Vinyals et al., 2015; Karpathy & Fei-Fei, 2015).
Training RNNs is difficult due to exploding and vanish-
ing gradients (Hochreiter, 1991; Bengio et al., 1994; Pas-
canu et al., 2013). Researchers have therefore developed

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

gradient-stabilizing architectures such as Long Short-Term
Memories or LSTMs (Hochreiter & Schmidhuber, 1997)
and Gated Recurrent Units or GRUs (Cho et al., 2014).

Unfortunately, LSTMs and GRUs are complicated and con-
tain many components whose roles are not well understood.
Extensive searches (Bayer et al., 2009; Jozefowicz et al.,
2015; Greff et al., 2015) have not yielded significant im-
provements. This paper takes a fresh approach inspired by
dimensional analysis and functional programming.

Intuition from dimensional analysis. Nodes in neural
networks are devices that, by computing dot products,
measure the similarity of their inputs to representations
encoded in weight matrices. Ideally, the representation
learned by a net should “carve nature at its joints”. An ex-
emplar is the system of measurement that has been carved
out of nature by physicists. It prescribes units for express-
ing the readouts of standardized measuring devices (e.g.
kelvin for thermometers and seconds for clocks) and rules
for combining them.

A fundamental rule is the principle of dimensional homo-
geneity: it is only meaningful to add quantities expressed in
the same units (Bridgman, 1922; Hart, 1995). For example
adding seconds to volts is inadmissible. In this paper, we
propose to take the measurements performed by neural net-
works as seriously as physicists take their measurements,
and apply the principle of dimensional homogeneity to the
representations learned by neural nets, see section 2.

Intuition from functional programming. Whereas
feedforward nets learn to approximate functions, recurrent
nets learn to approximate programs – suggesting lessons
from language design are relevant to RNN design. Lan-
guage researchers stress the benefits of constraints: elim-
inating GOTO (Dijkstra, 1968); introducing type-systems
that prescribe the interfaces between parts of computer pro-
grams and guarantee their consistency (Pierce, 2002); and
working with stateless (pure) functions.

For our purposes, types correspond to units as above. Let
us therefore discuss the role of states. The reason for recur-

Strongly-Typed Recurrent Neural Networks

rent connections is precisely to introduce state-dependence.
Unfortunately, state-dependent functions have side-effects
– unintended knock-on effects such as exploding gradients.

State-dependence without side-effects is not possible.
The architectures proposed below encapsulate states in
firmware (which has no learned parameters) so that the
learnware (which encapsulates the parameters) is state-
less. It follows that the learned features and gradients in
strongly-typed architectures are better behaved and more
interpretable than their classical counterparts, see section 3.

Strictly speaking, the ideas from physics (to do with units)
and functional programming (to do with states) are inde-
pendent. However, we found that they complemented each
other. We refer to architectures as strongly-typed when
they both (i) preserve the type structure of their features and
(ii) separate learned parameters from state-dependence.

Overview. The core of the paper is section 2, which in-
troduces strongly-typed linear algebra. As partial motiva-
tion, we show how types are implicit in principal compo-
nent analysis and feedforward networks. A careful analysis
of the update equations in vanilla RNNs identifies a flaw
in classical RNN designs that leads to incoherent features.
Fixing the problem requires new update equations that pre-
serve the type-structure of the features.

Section 3 presents strongly-typed analogs of standard RNN
architectures. It turns out that small tweaks to the standard
update rules yield simpler features and gradients, theorem 1
and corollary 2. Finally, theorem 3 shows that, despite their
more constrained architecture, strongly-typed RNNs have
similar representational power to classical RNNs. Exper-
iments in section 4 show that strongly-typed RNNs have
comparable generalization performance and, surprisingly,
lower training error than classical architectures (suggesting
greater representational power). The flipside is that regu-
larization appears to be more important for strongly-typed
architectures, see experiments.

Related work. The analogy between neural networks
and functional programming was proposed in (Olah, 2015),
which also argued that representations should be inter-
preted as types. This paper extends Olah’s proposal. Prior
work on typed-linear algebra (Macedo & Oliveira, 2013) is
neither intended for nor suited to applications in machine
learning. Many familiar RNN architectures already incor-
porate forms of weak-typing, see section 3.1.

2. Strongly-Typed Features
A variety of type systems have been developed for mathe-
matical logic and language design (Reynolds, 1974; Girard,
1989; Pierce, 2002). We introduce a type-system based on

linear algebra that is suited to deep learning. Informally,
a type is a vector space with an orthogonal basis. A more
precise definition along with rules for manipulating types is
provided below. Section 2.2 provides examples; section 2.3
uses types to identify a design flaw in classical RNNs.

2.1. Strongly-Typed Quasi-Linear Algebra

Quasi-linear algebra is linear algebra supplemented with
nonlinear functions that act coordinatewise.
Definition 1. Dot-products are denoted by 〈w,x〉 or wᵀx.
A type T =

(
V, 〈•, •〉, {ti}di=1

)
is a d-dimensional vector

space equipped with an inner product and an orthogonal
basis such that 〈ti, tj〉 = 1[i=j].

Given type T , we can represent vectors in v ∈ V as real-
valued d-tuples via

vT ↔ (v1, . . . , vd) ∈ Rd where vi := 〈v, ti〉.

Definition 2. The following operations are admissible:

T1. Unary operations on a type: T → T
Given a function f : R → R (e.g. scalar multiplica-
tion, sigmoid σ, tanh τ or relu ρ), define

f(v) :=
(
f(v1), . . . , f(vd)

)
∈ T .

T2. Binary operations on a type: T × T → T
Given v,w ∈ T and an elementary binary operation
bin ∈ {+,−,max,min, π1, π2}1, define

bin(v,w) :=
(
bin(v1, w1), . . . , bin(vd, wd)

)
.

Binary operations on two different types (e.g. adding
vectors expressed in different orthogonal bases) are
not admissible.

T3. Transformations between types: T1 → T2
A type-transform is a linear map P : V1 → V2 such
that P(t

(1)
i) = t

(2)
i for i = {1, . . . ,min(d1, d2)}.

Type-transformations are orthogonal matrices.

T4. Diagonalization: T1 → (T2 → T2)
Suppose that v ∈ T1 and w ∈ T2 have the same di-
mension. Define

vT1 �wT2 := (v1 · w1, . . . , vd · wd) ∈ T2,

where vi := 〈v, t(1)i 〉 and wi := 〈w, t(2)i 〉. Diagonal-
ization converts type T1 into a new type, T2 → T2, that
acts on T2 by coordinatewise scalar multiplication.

Definition 1 is inspired by how physicists have carved the
world into an orthogonal basis of meters, amps, volts etc.
The analogy is not perfect: e.g. f(x) = x2 maps meters to
square-meters, whereas types are invariant to coordinate-
wise operations. Types are looser than physical units.

1Note: πi is projection onto the ith coordinate.

Strongly-Typed Recurrent Neural Networks

2.2. Motivating examples

We build intuition by recasting PCA and feedforward neu-
ral nets from a type perspective.

Principal component analysis (PCA). Let X ∈ Rn×d

denote n datapoints {x(1), . . . ,x(n)} ⊂ Rd. PCA factor-
izes XᵀX = PᵀDP where P is a (d× d)-orthogonal ma-
trix and D = diag(d) contains the eigenvalues of XᵀX. A
common application of PCA is dimensionality reduction.
From a type perspective, this consists in:

T{ek}
P−→
(i)
T{pk}

Proj−−−→
(ii)

T{pk}
Pᵀ

−−→
(iii)

T{ek},

(i) transforming the standard orthogonal basis {ek}dk=1 of
Rd into the latent type given by the rows of P; (ii) project-
ing onto a subtype (subset of coordinates in the latent type);
and (iii) applying the inverse to recover the original type.

Feedforward nets. The basic feedforward architecture is
stacked layers computing h = f(W · x) where f(•) is a
nonlinearity applied coordinatewise. We present two de-
scriptions of the computation.

The standard description is in terms of dot-products. Rows
of W correspond to features, and matrix multiplication is
a collection of dot-products that measure the similarity be-
tween the input x and the row-features:

Wx =

· · · w1 · · ·
...

· · · wd · · ·

x =

〈w1,x〉
...

〈wd,x〉

 .

Types provide a finer-grained description. Factorize
W = PDQᵀ by singular value decomposition into D =
diag(d) and orthogonal matrices P and Q. The layer-
computation can be rewritten as h = f(PDQᵀx). From a
type-perspective, the layer thus:

Tx
Qᵀ

−−→
(i)
Tlatent

diag(d)�•−−−−−−→
(ii)

Tlatent
P−−→

(iii)
Th

f(•)−−−→
(iv)

Th,

(i) transforms x to a latent type; (ii) applies coordinatewise
scalar multiplication to the latent type; (iii) transforms the
result to the output type; and (iv) applies a coordinatewise
nonlinearity. Feedforward nets learn interleaved sequences
of type transforms and unary, type-preserving operations.

2.3. Incoherent features in classical RNNs

There is a subtle inconsistency in classical RNN designs
that leads to incoherent features. Consider the updates:

vanilla RNN: ht = σ(V · ht−1 +W · xt + b). (1)

We drop the nonlinearity, since the inconsistency is already
visible in the linear case. Letting zt := Wxt and unfolding

Eq. (1) over time obtains

ht =

t∑
s=1

Vt−s · zs. (2)

The inconsistency can be seen via dot-products and via
types. From the dot-product perspective, observe that mul-
tiplying an input by a matrix squared yields

V2z =

v1

...
vd

...
...

c1 · · · cd
...

...

 z =

〈
(vᵀ

1ci
)d
i=1

, z
〉

...〈
(vᵀ

dci
)d
i=1

, z
〉
 ,

where vi refers to rows of V and ci to columns. Each
coordinate of V2z is computed by measuring the similarity
of a row of V to all of its columns, and then measuring the
similarity of the result to z. In short, features are tangled
and uninterpretable.

From a type perspective, apply an SVD to V = PDQᵀ and
observe that V2 = PDQᵀPDQᵀ. Each multiplication by
P or Qᵀ transforms the input to a new type, obtaining

Th
DQᵀ

−−−→ Tlat1
P−→ Tlat2︸ ︷︷ ︸

V

DQᵀ

−−−→ Tlat3
P−→ Tlat4︸ ︷︷ ︸

V

.

Thus V sends z 7→ Tlat2 whereas V2 sends z 7→ Tlat4 .
Adding terms involving V and V2, as in Eq. (2), entails
adding vectors expressed in different orthogonal bases –
which is analogous to adding joules to volts. The same
problem applies to LSTMs and GRUs.

Two recent papers provide empirical evidence that recur-
rent (horizontal) connections are problematic even after
gradients are stabilized: (Zaremba et al., 2015) find that
Dropout performs better when restricted to vertical con-
nections and (Laurent et al., 2015) find that Batch Normal-
ization fails unless restricted to vertical connections (Ioffe
& Szegedy, 2015). More precisely, (Laurent et al., 2015)
find that Batch Normalization improves training but not test
error when restricted to vertical connections; it fails com-
pletely when also applied to horizontal connections.

Code using GOTO can be perfectly correct, and RNNs
with type mismatches can achieve outstanding perfor-
mance. Nevertheless, both lead to spaghetti-like informa-
tion/gradient flows that are hard to reason about.

Type-preserving transforms. One way to resolve the
type inconsistency, which we do not pursue in this paper,
is to use symmetric weight matrices so that V = PDPᵀ

where P is orthogonal and D = diag(d). From the dot-
product perspective,

ht =

t∑
s=1

PDt−sPᵀzs,

Strongly-Typed Recurrent Neural Networks

which has the simple interpretation that z is amplified (or
dampened) by D in the latent type provided by P. From the
type-perspective, multiplication by Vk is type-preserving

Th
Pᵀ

−−→ Tlat1
dk�•−−−→ Tlat1

P−→ Th︸ ︷︷ ︸
Vk

so addition is always performed in the same basis.

A familiar example of type-preserving transforms is au-
toencoders – under the constraint that the decoder Wᵀ is
the transpose of the encoder W. Finally, (Moczulski et al.,
2015) propose to accelerate matrix computations in feed-
forward nets by interleaving diagonal matrices, A and D,
with the orthogonal discrete cosine transform, C. The re-
sulting transform, ACDCᵀ, is type-preserving.

3. Recurrent Neural Networks
We present three strongly-typed RNNs that purposefully
mimic classical RNNs as closely as possible. Perhaps sur-
prisingly, the tweaks introduced below have deep structural
implications, yielding architectures that are significantly
easier to reason about, see sections 3.3 and 3.4.

3.1. Weakly-Typed RNNs

We first pause to note that many classical architectures are
weakly-typed. That is, they introduce constraints or restric-
tions on off-diagonal operations on recurrent states.

The memory cell c in LSTMs is only updated coordinate-
wise and is therefore well-behaved type-theoretically –
although the overall architecture is not type consistent.
The gating operation zt � ht−1 in GRUs reduces type-
inconsistencies by discouraging (i.e. zeroing out) unnec-
essary recurrent information flows.

SCRNs, or Structurally Constrained Recurrent Networks
(Mikolov et al., 2015), add a type-consistent state layer:

st = α · st−1 + (1− α) ·Wsxt, where α is a scalar.

In MUT1, the best performing architecture in (Jozefowicz
et al., 2015), the behavior of z and h is well-typed, although
the gating by r is not. Finally, I-RNNs initialize their recur-
rent connections as the identity matrix (Le et al., 2015). In
other words, the key idea is a type-consistent initialization.

3.2. Strongly-Typed RNNs

The vanilla strongly-typed RNN is

zt = Wxt (3)
T-RNN ft = σ(Vxt + b) (4)

ht = ft � ht−1 + (1− ft)� zt (5)

The T-RNN has similar parameters to a vanilla RNN,
Eq (1), although their roles have changed. A nonlinear-
ity for zt is not necessary because: (i) gradients do not
explode, corollary 2, so no squashing is needed; and (ii)
coordinatewise multiplication by ft introduces a nonlinear-
ity. Whereas relus are binary gates (0 if zt < 0, 1 else); the
forget gate ft is a continuous multiplicative gate on zt.

Replacing the horizontal connection Vht−1 with a verti-
cally controlled gate, Eq. (4), stabilizes the type-structure
across time steps. Line for line, the type structure is:

Tx
(3)−−−−−→ Th

Tx
(4)−−−−−→ Tf

diag−−−→ (Th → Th)
(Th → Th︸ ︷︷ ︸

ft

)× Th︸︷︷︸
zt

(5)−−−−−→
ht−1

Th︸︷︷︸
ht

We refer to lines (3) and (4) as learnware since they have
parameters (W,V,b). Line (5) is firmware since it has no
parameters. The firmware depends on the previous state
ht−1 unlike the learnware which is stateless. See sec-
tion 3.4 for more on learnware and firmware.

Strongly-typed LSTMs differ from LSTMs in two re-
spects: (i) xt−1 is substituted for ht−1 in the first three
equations so that the type structure is coherent; and (ii) the
nonlinearities in zt and ht are removed as for the T-RNN.

zt = τ(Vzht−1 +Wzxt + bz)

ft = σ(Vfht−1 +Wfxt + bf)

LSTM ot = τ(Voht−1 +Woxt + bo)

ct = ft � ct−1 + (1− ft)� zt

ht = τ(ct)� ot

zt = Vzxt−1 +Wzxt + bz

ft = σ(Vfxt−1 +Wfxt + bf)

T-LSTM ot = τ(Voxt−1 +Woxt + bo)

ct = ft � ct−1 + (1− ft)� zt

ht = ct � ot

We drop the input gate from the updates for simplicity; see
(Greff et al., 2015). The type structure is

Tx −−→ Tc
Tx −−→ Tf

diag−−−→ (Tc → Tc)
Tx −−→ Th

(Tc → Tc)× Tc −−−→
ct−1

Tc
diag−−−→ (Th → Th)

(Th → Th)× Th −−→ Th

Strongly-Typed Recurrent Neural Networks

Strongly-typed GRUs adapt GRUs similarly to how
LSTMs were modified. In addition, the reset gate zt is re-
purposed; it is no longer needed for weak-typing.

zt = σ(Vzht−1 +Wzxt + bz)

GRU ft = σ(Vfht−1 +Wfxt + bf)

ot = τ
(
Vo(zt � ht−1) +Woxt + bo

)
ht = ft � ht−1 + (1− ft)� ot

zt = Vzxt−1 +Wzxt + bz

T-GRU ft = σ(Vfxt−1 +Wfxt + bf)

ot = τ(Voxt−1 +Woxt + bo)

ht = ft � ht−1 + zt � ot

The type structure is

Tx −−→ Th
Tx −−→ Tf

diag−−−→ (Th → Th)
Tx −−→ To

diag−−−→ (Th → Th)
(Th → Th) × (Th → Th)× Th −−−→

ht−1

Th

3.3. Feature Semantics

The output of a vanilla RNN expands as the uninterpretable

ht = σ(Vσ(Vσ(· · ·) +Wxt−1 + b) +Wxt + b),

with even less interpretable gradient. Similar considera-
tions hold for LSTMs and GRUs. Fortunately, the situation
is more amenable for strongly-typed architectures. In fact,
their semantics are related to average-pooled convolutions.

Convolutions. Applying a one-dimensional convolution
to input sequence x[t] yields output sequence

z[t] = (W ∗ x)[t] =
∑
s

W[s] · x[t− s]

Given weights fs associated with W[s], average-pooling
yields ht =

∑t
s=1 fs · z[s]. A special case is when the

convolution applies the same matrix to every input:

W[s] =

{
W if s = 0

0 else.

The average-pooled convolution is then a weighted average
of the features extracted from the input sequence.

Dynamic temporal convolutions. We now show that
strongly-typed RNNs are one-dimensional temporal con-
volutions with dynamic average-pooling. Informally,

strongly-typed RNNs transform input sequences into a
weighted average of features extracted from the sequence

x1:t 7→ E
Px1:t

[
W ∗ x

]
=

t∑
s=1

Px1:t(s) · (W · xs) =: h[t]

where the weights depends on the sequence. In detail:

Theorem 1 (feature semantics via dynamic convolutions).
Strongly-typed features are computed explicitly as follows.

• T-RNN. The output is ht = Es∼Px1:t

[
Wxs

]
where

Px1:t
(s) =

{
1− ft if s = t

ft � Px1:t−1
(s) else.

• T-LSTM. Let U• := [V•;W•;b•] and x̃t :=
[xt−1;xt; 1] denote the vertical concatenation of the
weight matrices and input vectors respectively. Then,

ht = τ
(
Uox̃t

)
� E

s∼Px1:t

[
Uzx̃s

]
where Px1:t

is defined as above.

• T-GRU. Using the notation above,

ht =

t∑
s=1

Fs �
(
τ
(
Uox̃s

)
�Uzx̃s

)
where

Fs =

{
1 if s = t

fs � Fs+1 else.

Proof. Direct computation.

In summary, T-RNNs compute a dynamic distribution over
time steps, and then compute the expected feedforward fea-
tures over that distribution. T-LSTMs store expectations
in private memory cells that are reweighted by the output
gate when publicly broadcast. Finally, T-GRUs drop the
requirement that the average is an expectation, and also in-
corporate the output gate into the memory updates.

Strongly-typed gradients are straightforward to compute
and interpret:

Corollary 2 (gradient semantics). The strongly-typed gra-
dients are

• T-RNN:

∂ht

∂W
= E

s∼Px1:t

[∂

∂W
(zs)

]
∂ht

∂V
= E

s∼Px1:t

[
zs �

∂

∂V

(
logPx1:t(s)

)]
and similarly for ∂

∂b .

Strongly-Typed Recurrent Neural Networks

• T-LSTM:

∂ht

∂Uo
=

∂

∂Uo
(ot)� E

s∼Px1:t

[
zs

]
∂ht

∂Uz
= ot � E

s∼Px1:t

[∂

∂Uz
(zs)

]
∂ht

∂Uf
= ot � E

s∼Px1:t

[
zs �

∂

∂Uf

(
logPx1:t(s)

)]

• T-GRU:

∂ht

∂Uo
=

t∑
s=1

Fs �
∂

∂Uo
(os)� zs

∂ht

∂Uz
=

t∑
s=1

Fs � os �
∂

∂Uz
(zs)

∂ht

∂Uf
=

t∑
s=1

∂

∂Uf

(
Fs

)
� os � zs

It follows immediately that gradients will not explode for
T-RNNs or LSTMs. Empirically we find they also behave
well for T-GRUs.

3.4. Feature Algebra

A vanilla RNN can approximate any continuous state up-
date ht = g(xt,ht−1) since span{s(wᵀx) |w ∈ Rd} is
dense in continuous functions C(Rd) on Rd if s is a non-
polynomial nonlinear function (Leshno et al., 1993). It fol-
lows that vanilla RNNs can approximate any recursively
computable partial function (Siegelmann & Sontag, 1995).

Strongly-typed RNNs are more constrained. We show the
constraints reflect a coherent design-philosophy and are
less severe than appears.

The learnware / firmware distinction. Strongly-typed
architectures factorize into stateless learnware and state-
dependent firmware. For example, T-LSTMs and T-GRUs
factorize2 as

(ft, zt,ot) = T-LSTMlearn
{V•,W•,b•}(xt−1,xt)

(ht, ct) = T-LSTMfirm(ft, zt,ot; ct−1︸︷︷︸
state

)

(ft, zt,ot) = T-GRUlearn
{V•,W•,b•}(xt−1,xt)

ht = T-GRUfirm(ft, zt,ot;ht−1︸︷︷︸
state

).

2A superficially similar factorization holds for GRUs and
LSTMs. However, their learnware is state-dependent, since
(ft, zt,ot) depend on ht−1.

Firmware decomposes coordinatewise, which prevents
side-effects from interacting: e.g. for T-GRUs

T-GRUfirm(f , z,o;h) =
(
ϕ(f (i), z(i), o(i);h(i))

)d
i=1

where ϕ(f, z, o;h) = fh+ zo

and similarly for T-LSTMs. Learnware is stateless; it has
no side-effects and does not decompose coordinatewise.
Evidence that side-effects are a problem for LSTMs can be
found in (Zaremba et al., 2015) and (Laurent et al., 2015),
which show that Dropout and Batch Normalization respec-
tively need to be restricted to vertical connections.

In short, under strong-typing the learnware carves out fea-
tures which the firmware uses to perform coordinatewise
state updates hit = g(hit−1, z

i
t−1). Vanilla RNNs allow

arbitrary state updates ht = g(ht−1,xt). LSTMs and
GRUs restrict state updates, but allow arbitrary functions of
the state. Translated from a continuous to discrete setting,
the distinction between strongly-typed and classical archi-
tectures is analogous to working with binary logic gates
(AND, OR) on variables zt learned by the vertical connec-
tions – versus working directly with n-ary boolean opera-
tions.

Representational power. Motivated by the above, we
show that a minimal strongly-typed architecture can span
the space of continuous binary functions on features.

Theorem 3 (approximating binary functions). The
strongly-typed minimal RNN with updates

T-MR: ht = ρ(b� ht−1 +Wxt + c)

and parameters (b, c, W) can approximate any set of con-
tinuous binary functions on features.

Proof sketch. Let z = wᵀx be a feature of interest.
Combining (Leshno et al., 1993) with the observation that
aρ(bh + z + c) = ρ(abh + az + ac) for a > 0 im-
plies that span{ρ(b · ht−1 + zt) | b, c ∈ R} = C(R2). As
many weighted copies az of z as necessary are obtained by
adding rows to W that are scalar multiples of w.

Any set of binary functions on any collection of features
can thus be approximated. Finally, vertical connections can
approximate any set of features (Leshno et al., 1993). �

4. Experiments
We investigated the empirical performance of strongly-
typed recurrent nets for sequence learning. The perfor-
mance was evaluated on character-level and word-level text
generation. We conducted a set of proof-of-concept exper-
iments. The goal is not to compete with previous work or

Strongly-Typed Recurrent Neural Networks

Table 1. The (train, test) cross-entropy loss of RNNs and T-RNNs on WP dataset.
Model vanilla RNN T-RNN
Layers 1 2 3 1 2 3
64 (no dropout) (1.365, 1.435) (1.347, 1.417) (1.353, 1.423) (1.371, 1.452) (1.323, 1.409) (1.342, 1.423)
256 (1.215, 1.274) (1.242, 1.254) (1.257, 1.273) (1.300, 1.398) (1.251, 1.276) (1.233, 1.266)

Table 2. The (train, test) cross-entropy loss of LSTMs and T-LSTMs on WP dataset.
Model LSTM T-LSTM
Layers 1 2 3 1 2 3
64 (no dropout) (1.496, 1.560) (1.485, 1.557) (1.500, 1.563) (1.462, 1.511) (1.367, 1.432) (1.369, 1.434)
256 (1.237, 1.251) (1.098, 1.193) (1.185, 1.213) (1.254, 1.273) (1.045, 1.189) (1.167, 1.198)

Table 3. The (train, test) cross-entropy loss of GRUs and T-GRUs on WP dataset.
Model GRU T-GRU
Layers 1 2 3 1 2 3
64 (no dropout) (1.349, 1.435) (1.432, 1.503) (1.445, 1.559) (1.518 ,1.569) (1.337, 1.422) (1.377, 1.436)
256 (1.083, 1.226) (1.163, 1.214) (1.219, 1.227) (1.142, 1.296) (1.208, 1.240) (1.216, 1.212)

to find the best performing model under a specific hyper-
parameter setting. Rather, we investigate how the two
classes of architectures perform over a range of settings.

4.1. Character-level Text Generation

The first task is to generate text from a sequence of char-
acters by predicting the next character in a sequence. We
used Leo Tolstoy’s War and Peace (WP) which consists of
3,258,246 characters of English text, split into train/val/test
sets with 80/10/10 ratios. The characters are encoded into
K-dimensional one-hot vectors, where K is the size of the
vocabulary. We follow the experimental setting proposed in
(Karpathy et al., 2015). Results are reported for two con-
figurations: “64” and “256”, which are models with the
same number of parameters as a 1-layer LSTM with 64
and 256 cells per layer respectively. Dropout regulariza-
tion was only applied to the “256” models. The dropout
rate was taken from {0.1, 0.2} based on validation perfor-
mance. Tables 2 and 3 summarize the performance in terms
of cross-entropy loss H(y,p) =

∑K
i=1 yi log pi.

We observe that the training error of strongly-typed models
is typically lower than that of the standard models for ≥ 2
layers. The test error of the two architectures are compa-
rable. However, our results (for both classical and typed
models) fail to match those reported in (Karpathy et al.,
2015), where a more extensive parameter search was per-
formed.

4.2. Word-level Text Generation

The second task was to generate word-level text by pre-
dicting the next word from a sequence. We used the Penn

Table 4. Perplexity on the Penn Treebank dataset.
Model Train Validation Test

small, no dropout
vanilla RNN 416.50 442.31 432.01
T-RNN 58.66 172.47 169.33
LSTM 36.72 122.47 117.25
T-LSTM 28.15 215.71 200.39
GRU 31.14 179.47 173. 27
T-GRU 28.57 207.94 195.82

medium, with dropout
LSTM (Zaremba et al., 2015) 48.45 86.16 82.70
LSTM (3-layer) 71.76 98.22 97.87
T-LSTM 50.21 87.36 82.71
T-LSTM (3-layer) 51.45 85.98 81.52
GRU 65.80 97.24 93.44
T-GRU 55.31 121.39 113.85

Treebank (PTB) dataset (Marcus et al., 1993), which con-
sists of 929K training words, 73K validation words, and
82K test words, with vocabulary size of 10K words. The
PTB dataset is publicly available on web.3

We followed the experimental setting in (Zaremba et al.,
2015) and compared the performance of “small” and
“medium” models. The parameter size of “small” models is
equivalent to that of 2 layers of 200-cell LSTMs, while the
parameter size of “medium” models is the same as that of
2 layers of 650-cell LSTMs. For the “medium” models, we
selected the dropout rate from {0.4, 0.5, 0.6} according to

3http://www.fit.vutbr.cz/˜imikolov/rnnlm/
simple-examples.tgz

Strongly-Typed Recurrent Neural Networks

validation performance. Single run performance, measured
via perplexity, i.e., exp(H(y,p)), are reported in Table 4.

Perplexity. For the “small” models, we found that the
training perplexity of strongly-typed models is consistently
lower than their classical counterparts, in line with the re-
sult for War & Peace. Test error was significantly worse
for the strongly-typed architectures. A possible explana-
tion for both observations is that strongly-typed architec-
tures require more extensive regularization.

An intriguing result is that the T-RNN performs in the same
ballpark as LSTMs, with perplexity within a factor of two.
By contrast, the vanilla RNN fails to achieve competitive
performance. This suggests there may be strongly-typed
architectures of intermediate complexity between RNNs
and LSTMs with comparable performance to LSTMs.

The dropout-regularized “medium” T-LSTM matches the
LSTM performance reported in (Zaremba et al., 2015).
The 3-layer T-LSTM obtains slightly better performance.
The results were obtained with almost identical param-
eters to Zaremba et al (the learning rate decay was al-
tered), suggesting that T-LSTMs are viable alternatives to
LSTMs for sequence learning tasks when properly regular-
ized. Strongly-typed GRUs did not match the performance
of GRUs, possibly due to insufficient regularization.

Gradients. We investigated the effect of removing gra-
dient clipping on medium-sized LSTM and T-LSTM. T-
LSTM gradients are well-behaved without clipping, al-
though test performance is not competitive. In contrast,
LSTM gradients explode without clipping and the archi-
tecture is unusable. It is possible that carefully initialized
T-LSTMs may be competitive without clipping. We defer
the question to future work.

Runtime. Since strongly-typed RNNs have fewer non-
linearities than standard RNNs, we expect that they should
have lower computational complexity. Training on the PTB
dataset on an NVIDIA GTX 980 GPU, we found that T-
LSTM is on average ∼ 1.6× faster than LSTM. Similarly,
the T-GRU trains on average ∼ 1.4× faster than GRU.

5. Conclusions
RNNs are increasingly important tools for speech recog-
nition, natural language processing and other sequential
learning problems. The complicated structure of LSTMs
and GRUs has led to searches for simpler alternatives with
limited success (Bayer et al., 2009; Greff et al., 2015; Joze-
fowicz et al., 2015; Le et al., 2015; Mikolov et al., 2015).
This paper introduces strong-typing as a tool to guide the
search for alternate architectures. In particular, we suggest
searching for update equations that learn well-behaved fea-

tures, rather than update equations that “appear simple”.
We draw on two disparate intuitions that turn out to be sur-
prisingly compatible: (i) that neural networks are analo-
gous to measuring devices (Balduzzi, 2012) and (ii) that
training an RNN is analogous to writing code.

The main contribution is a new definition of type that is
closely related to singular value decomposition – and is
thus well-suited to deep learning. It turns out that classical
RNNs are badly behaved from a type-perspective, which
motivates modifying the architectures. Section 3 tweaked
LSTMs and GRUs to make them well-behaved from a typ-
ing and functional programming perspective, yielding fea-
tures and gradients that are easier to reason about than clas-
sical architectures.

Strong-typing has implications for the depth of RNNs. It
was pointed out in (Pascanu et al., 2014) that unfolding hor-
izontal connections over time implies the concept of depth
is not straightforward in classical RNNs. By contrast, depth
has the same meaning in strongly-typed architectures as in
feedforward nets, since vertical connections learn features
and horizontal connections act coordinatewise.

Experiments in section 4 show that strongly-typed RNNs
achieve comparable generalization performance to classi-
cal architectures when regularized with dropout and have
consistently lower training error. It is important to empha-
size that the experiments are not conclusive. Firstly, we did
not deviate far from settings optimized for classical RNNs
when training strongly-typed RNNs. Secondly, the archi-
tectures were chosen to be as close as possible to classi-
cal RNNs. A more thorough exploration of the space of
strongly-typed nets may yield better results.

Towards machine reasoning. A definition of machine
reasoning, adapted from (Bottou, 2014), is “algebraically
manipulating features to answer a question”. Hard-won
experience in physics (Chang, 2004), software engineering
(Dijkstra, 1968), and other fields has led to the conclusion
that well-chosen constraints are crucial to effective reason-
ing. Indeed, neural Turing machines (Graves et al., 2014)
are harder to train than more constrained architectures such
as neural queues and deques (Grefenstette et al., 2015).

Strongly-typed features have a consistent semantics, theo-
rem 1, unlike features in classical RNNs which are rotated
across time steps – and are consequently difficult to rea-
son about. We hypothesize that strong-typing will provide
a solid foundation for algebraic operations on learned fea-
tures. Strong-typing may then provide a useful organizing
principle in future machine reasoning systems.

Acknowledgements. We thank Tony Butler-Yeoman,
Marcus Frean, Theofanis Karaletsos, JP Lewis and Brian
McWilliams for useful comments and discussions.

Strongly-Typed Recurrent Neural Networks

References
Balduzzi, D. On the information-theoretic structure of distributed

measurements. Elect. Proc. in Theor. Comp. Sci., 88:28–42,
2012.

Bayer, Justin, Wierstra, Daan, Togelius, Julian, and Schmidhuber,
Juergen. Evolving memory cell structures for sequence learn-
ing. In ICANN, 2009.

Bengio, Yoshua, Simard, P, and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE Trans.
Neur. Net., 5(2):157–166, 1994.

Bottou, Léon. From machine learning to machine reasoning: An
essay. Machine Learning, 94:133–149, 2014.

Bridgman, P W. Dimensional analysis. Yale University Press,
1922.

Chang, Hasok. Inventing Temperature: Measurement and Scien-
tific Progress. Oxford University Press, 2004.

Cho, Kyunghyun, van Merriënboer, Bart, Gulcehre, Caglar, Bah-
danau, Dzmitry, Bougares, Fethi, Schwenk, Holger, and Ben-
gio, Yoshua. Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation. In
EMNLP, 2014.

Dijkstra, Edsger W. Go To Statement Considered Harmful.
Comm. ACM, 11(3):147–148, 1968.

Girard, Jean-Yves. Proofs and Types. Cambridge University
Press, 1989.

Graves, Alex, Mohamed, A, and Hinton, GE. Speech recognition
with deep recurrent neural networks. In ICASSP, 2013.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural Turing
Machines. In arXiv:1410.5401, 2014.

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman,
Mustafa, and Blunsom, Phil. Learning to Transduce with Un-
bounded Memory. In Adv in Neural Information Processing
Systems (NIPS), 2015.

Greff, Klaus, Srivastava, Rupesh Kumar, Koutnı́k, Jan, Steune-
brink, Bas R, and Schmidhuber, Juergen. LSTM: A Search
Space Odyssey. In arXiv:1503.04069, 2015.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, Rezende,
Danilo Jimenez, and Wierstra, Daan. DRAW: A Recurrent
Neural Network For Image Generation. In ICML, 2015.

Hart, George W. Multidimensional Analysis: Algebras and Sys-
tems for Science and Engineering. Springer, 1995.

Hochreiter, S and Schmidhuber, J. Long Short-Term Memory.
Neural Comp, 9:1735–1780, 1997.

Hochreiter, Sepp. Untersuchungen zu dynamischen neuronalen
Netzen. Master’s thesis, Technische Universität München,
1991.

Ioffe, Sergey and Szegedy, Christian. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. In arXiv:1502.03167, 2015.

Jozefowicz, Rafal, Zaremba, Wojciech, and Sutskever, Ilya. An
Empirical Exploration of Recurrent Network Architectures. In
ICML, 2015.

Karpathy, Andrej and Fei-Fei, Li. Deep Visual-Semantic Align-
ments for Generating Image Descriptions. In CVPR, 2015.

Karpathy, Andrej, Johnson, Justin, and Fei-Fei, Li. Visu-
alizing and understanding recurrent neural networks. In
arXiv:1506.02078, 2015.

Laurent, C, Pereyra, G, Brakel, P, Zhang, Y, and Bengio,
Yoshua. Batch Normalized Recurrent Neural Networks. In
arXiv:1510.01378, 2015.

Le, Quoc, Jaitly, Navdeep, and Hinton, Geoffrey. A Simple Way
to Initialize Recurrent Networks of Rectified Linear Units. In
arXiv:1504.00941, 2015.

Leshno, Moshe, Lin, Vladimir Ya., Pinkus, Allan, and Schocken,
Shimon. Multilayer Feedforward Networks With a Nonpoly-
nomial Activation Function Can Approximate Any Function.
Neural Networks, 6:861–867, 1993.

Macedo, Hugo Daniel and Oliveira, José Nuno. Typing linear
algebra: A biproduct-oriented approach. Science of Computer
Programming, 78(11):2160 – 2191, 2013.

Marcus, Mitchell P., Marcinkiewics, Mary Ann, and Santorini,
Beatrice. Building a large annotated corpus of english: The
penn treebank. Comp. Linguistics, 19(2):313–330, 1993.

Mikolov, Tomas, Joulin, Armand, Chopra, Sumit, Mathieu,
Michael, and Ranzato, Marc’Aurelio. Learning Longer Mem-
ory in Recurrent Neural Networks. In ICLR, 2015.

Moczulski, Marin, Denil, Misha, Appleyard, Jeremy, and de Fre-
itas, Nando. ACDC: A Structured Efficient Linear Layer. In
arXiv:1511.05946, 2015.

Olah, Christopher. Neural Networks, Types, and Functional
Programming, 2015. URL http://colah.github.io/
posts/2015-09-NN-Types-FP/.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. On the
difficulty of training recurrent neural networks. In ICML, 2013.

Pascanu, Razvan, Gulcehre, Caglar, Cho, Kyunghyun, and Ben-
gio, Yoshua. How to Construct Deep Recurrent Networks. In
ICLR, 2014.

Pierce, Benjamin C. Types and Programming Languages. MIT
Press, 2002.

Reynolds, J C. Towards a theory of type structure. In Paris collo-
quium on programming, volume 19 of LNCS. Springer, 1974.

Siegelmann, Hava and Sontag, Eduardo. On the Computational
Power of Neural Nets. Journal of Computer and System Sci-
ences, 50:132–150, 1995.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc. Sequence to Se-
quence Learning with Neural Networks. In Adv in Neural In-
formation Processing Systems (NIPS), 2014.

Vinyals, Oriol, Toshev, Alexander, Bengio, Samy, and Erhan, Du-
mitru. Show and tell: A neural image caption generator. In
CVPR, 2015.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol. Re-
current Neural Network Regularization. In arXiv:1409.2329,
2015.

