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Abstract

We consider the problem of learning sparse rep-
resentations of data sets, where the goal is to re-
duce a data set in manner that optimizes mul-
tiple objectives. Motivated by applications of
data summarization, we develop a new model
which we refer to as the two-stage submodu-
lar maximization problem. This task can be
viewed as a combinatorial analogue of repre-
sentation learning problems such as dictionary
learning and sparse regression. The two-stage
problem strictly generalizes the problem of car-
dinality constrained submodular maximization,
though the objective function is not submodu-
lar and the techniques for submodular maximiza-
tion cannot be applied. We describe a continuous
optimization method which achieves an approx-
imation ratio which asymptotically approaches
1 — 1/e. For instances where the asymptotics do
not kick in, we design a local-search algorithm
whose approximation ratio is arbitrarily close to
1/2. We empirically demonstrate the effective-
ness of our methods on two multi-objective data
summarization tasks, where the goal is to con-
struct summaries via sparse representative sub-
sets w.r.t. to predefined objectives.

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

ERICBALKANSKI@ G.HARVARD.EDU

KRAUSEA @ETHZ.CH

BAHARANM @INF.ETHZ.CH

YARON @ SEAS.HARVARD.EDU

1. Introduction

In this paper, we consider the task of learning combinatorial
representations of data. We are motivated by the following
genre of multi-objective summarization tasks: Given a col-
lection of articles (say all articles about ML on Wikipedia),
as well as a set of subcategories (kernel methods, neural
networks, etc.), pick a set of articles that are representative
with respect to the whole corpus (field of ML). We study
such problems through a novel model we call two-stage
submodular maximization.

Submodularity is a natural diminishing returns condition
which serves as a rich abstraction of combinatorial infor-
mation measures such as entropy (Rényi, 1961), mutual
information (Guiasu, 1977), coverage (Wolsey, 1982) etc.
Much recent work in machine learning has explored sub-
modular maximization as a natural abstraction for data
summarization tasks (e.g., extractive summarization of
documents, image collections, videos etc. (Lin and Bilmes,
2011; 2012; Tschiatschek et al., 2014)). In these applica-
tions, one typically designs (or learns) a submodular utility
function f, which quantifies the representativeness f(.S) of
a subset .S of items (e.g, pictures, sentences) w.r.t. a large
data set (image collection, document). Given a constraint
on the size of the desired summary, the combinatorial prob-
lem of finding a summary S of maximum utility reduces to
constrained submodular optimization, for which a wealth
of efficient algorithms with strong theoretical guarantees
have been developed.

In order to model the task of learning data representations,
we depart from the classical (single-stage) setup, and con-
sider a more general, two-stage task: We are given multiple
submodular objectives f1, ..., fin, and aim to select a set S
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of size at most [ that can serve as a ground set that yields a
high value for all objectives. That is, we aim to select S's.t.
for each f;, when the optimal subset .S; C S of size at most
k is selected, the sum over all f;(S;) is maximized. Clearly,
if m = 1, or if | = k, this problem reduces to standard
cardinality constrained submodular maximization. The re-
strictions £ < [ and m > 1 however allows modeling a
much richer class of problems. In our multi-objective sum-
marization task for example, for each subcategory i, we use
a different submodular objective which quantifies the rep-
resentativeness of a set of articles w.r.t. all articles in the
subcategory. Here, the two-stage setup ensures that no sin-
gle category dominates the overall summary.

Two-stage submodular maximization can also be viewed as
a combinatorial analogue of representation learning tasks
such as dictionary learning (Mairal et al., 2009; Zhou et al.,
2009), (convolutional) auto encoders (Vincent et al., 2010),
topic modeling (Maas et al., 2011) etc. Concretely, in dic-
tionary learning, we are given a collection of signals (say
images represented as vectors), and seek to select a basis,
which allows to sparsely reconstruct each signal. Here, the
task of sparse reconstruction is analogous to single-stage
submodular maximization; dictionary learning is analo-
gous to two-stage submodular maximization, where in the
first stage the dictionary is selected, and in the second stage,
it is used for multiple sparse reconstruction tasks (one for
each signal).

Single-stage submodular maximization can be near-
optimally solved using greedy techniques (Nemhauser
et al., 1978), however the two-stage objective is not sub-
modular (see Appendix A). In this paper we consider two
approaches that yield provable guarantees for the two-stage
submodular optimization problem:

e Continuous optimization. We begin by describing
a general framework for solving two-stage submodu-
lar maximization problems via continuous optimiza-
tion. This approach provides an approximation arbi-
trarily close to 1 — 1/e for sufficiently large values of
k. At a high level, we relax the problem to a continu-
ous program whose integral solutions identify with the
discrete two-stage problem, solve the relaxation, and
then round the solutions. Unlike standard relaxation
methods for submodular optimization, constructing
the relaxations involves interpreting fractional solu-
tions as correlated distributions, and we design a de-
pendent rounding technique s.t. variables correspond-
ing to elements in the second stage are rounded in a
manner that depends on elements rounded in the first
stage.

e Local-search. For cases in which k is small, we de-
velop a framework based on local-search which guar-
antees an approximation arbitrarily close to 1/2. This

guarantee dominates that of the continuous approach
for small k. At a high level, we perform a local search
by initializing a suboptimal solution and iteratively re-
placing elements that improve a potential function.

2. Two-Stage Submodular Maximization

To formally describe the two-stage problem, let F =
{f1(:),++, fm(:)} denote a class of m functions, each de-
fined over N = {a1,...,a,}, ie, fj : 2 — R. The
goal is to find a subset of size [ whose subsets of size k
maximize the sum over %;,

We denote the objective value by F(S), ie., F(S) =
Z;nzl maxrcg,|r|<k fj(T). The crucial underlying as-
sumption is that the functions {f;}], are all submodu-
lar, normalized (f(0) = 0) and monotone (S C T im-
plies f(S) < f(T)). A function f : 2V — R, is
submodular if f(SUT) < f(S)+ f(T) - f(SNT).
Equivalently, a function is submodular if it has a natural
diminishing returns property: for any S € 7' C N and
a € N\ T a function is submodular if fs(a) > fr(a),
where fs(a) = f(SU{a}) — f(S). We also note that our
results extend to the case where the cardinality constraint in
the second stage is a different k; for each f;. Fig. 1 depicts
the two-stage problem.

2.1. Warm up: two-stage modular optimization

To gain some intuition about the problem, we can con-
sider the case in which the underlying functions {f;}",
are modular. Recall that f : 2V — R is modular if the
value of a set equals the sum of the values of its single-
tons, ie., f(S) = > ,cq f(a). In the case the functions
fi are modular it is not difficult to show that the objec-
tive function of the two stage problem is actually monotone
submodular. This implies that we can apply the seminal
greedy algorithm, which at every step selects the element
with the largest marginal contribution, and obtaina 1 —1/e
approximation to the optimal solution (Nemhauser et al.,
1978).

Are constant factor approximation guarantees achievable
for two-stage optimization of general monotone
submodular functions?

2.2. General monotone submodular functions

When the underlying functions are not modular, the two-
stage objective ceases to be submodular (see example in
Appendix A) and we no longer have the approximation
guarantees of the greedy algorithm. Slight relaxations
of submodularity lead to strong inapproximability results,
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Figure 1. Example of the optimization problem with N =
{a1,a2,a3},m=3,1=2,and k = 1.

even for maximization under a cardinality constraint which
is a degenerate case of our problem (Mirrokni et al., 2008).
The main contribution of this paper is the general optimiza-
tion frameworks we develop for the case in which the un-
derlying functions are general monotone submodular.

3. Continuous Optimization

In this section, we describe a general technique which leads
to an approximation that is arbitrarily close to the optimal
1 — 1/e approximation ratio (unless P=NP) for sufficiently
large k. At a high level, we show that the two-level op-
timization problem can be solved through continuous op-
timization methods and a novel dependent rounding tech-
nique that may be of independent interest. In Appendix E,
we extend this technique to obtain an approximation ar-
bitrarily close to 1/e for non-monotone submodular func-
tions.

A new ground set. Our formulation involves a ground set
of size n X (m + 1) which includes the elements from the
original ground set as well as an element for each possible
(element, function) pair. That is, our new ground set is
N'" = N U {aij}ien),jeim)- The unconstrained objective
for the two stage problem over this new ground set is:

9(S) =>_ fi({ai : aij € S}).
j=1

The continuous problem. We associate each element
from N’ with a continuous variable z; € [0, 1] for all a;

and z;; € [0, 1] for all a,;. We then aim to optimize:

max G(x) ()
s.t. le <l (2
zy; < x; Y(i,j) € [n] x [m] 4)

z; <1 (5

Constraints (2) and (3) correspond to the cardinality con-
straints for the first and second stages; (4) ensures that
an element can only be picked in the second stage if it is
picked in the first stage. The objective function G(x) is the
expected value of the integral solution when each element
is picked with probability according to x:

G(x) = Esupx)[9(9)]

where D(x) is a distribution with marginal probabilities
x that we now define. To satisfy constraint (4), given
x € [0,1]"t"™ we construct a correlated distribution
D(x) with the following key properties’:

1. a; € S ~ D(x) for each ¢ independently with proba-
bility x;,

2. aij € S ~ D(x) for each i and for each j inde-
pendently with probability x;;/x; if a; € S and with
probability O otherwise.

We now discuss how we solve this continuous problem,
which will return a fractional solution that results in the
cardinality constraints only holding in expectation. We will
later discuss the dependent randomized rounding scheme
we develop, which ensures the constraints on every in-
stance (albeit loses a fraction of the approximation guar-
antee that depends on k).

Optimiziation via continuous greedy. A seminal result
by Vondrak shows that for any monotone submodular func-
tion, a polynomial-time continuous greedy algorithm can
obtain an approximation arbitrarily close to 1 — 1/e of the
optimal solution of the multilinear extension (ME). This
guarantee holds when the solution x is constrained by a
downward-closed solvable polytope (i.e. there is a poly-
time separation oracle for the polytope) (Vondrak, 2008).
The multilinear extension G g (x) of a submodular func-
tion g(+) is the expected value of g(.S) when each element is
picked independently with probability according to x, i.e.,
Gue(x) = Egsx[g(S)]. The crucial difference between

"Note that if we pick elements independently, the constraint
for the discrete problem that an element can only be picked in the
second stage if it is picked in the first stage might be violated.
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the multilinear extension of the objective function of (1) is
that the distribution is correlated. Despite this difference,
we will use the continuous greedy algorithm to optimize
program (1) and obtain a 1 — 1/e approximation, justified
in two steps:

1. We show that the ME of g(.5) equals G(x);

2. we observe that the constraints of the program (1) can
be expressed as a downward-closed polytope.

With the distribution D(x) we constructed, the elements
are picked dependently across functions and independently
for a given function, so since g(5) is additive over func-
tions, the multilinear extension of ¢g(S) equals G(x). The
proof is deferred to Appendix B.

Lemma 3.1. For any solution x € [0, 1]"+"™:
G(X) = GME(X)

Now observe that program (1) can be equivalently refor-
mulated over the same space of variables x; and x;;, but
without any dependence on variables x;, so that the feasi-
ble region is downward-closed.

max G/(x) (6)
s.t. ;Injaxxij <l
> wiy <k Vje[m]
zi; <1 V(i,7) € [n] x [m]

Combining our previous observations, we can use continu-
ous greedy to optimize program (6) and obtain a fractional
solution that is a 1 — 1/e approximation to the optimal so-
lution to the discrete problem.

Theorem 3.2. Let x be the solution returned by the con-
tinuous greedy algorithm with program (6), and S* be the
optimal solution to the two stage problem. Then, for any
6 > poly(1/n),

G(x) > (1—1/e — 8)F(S¥)

Proof. We know that continuous greedy returns a solution
x thatis a 1 — 1/e — ¢ approximation to G(x*) where x*
is the optimal solution for maximizing the multilinear ex-
tension of a submodular function under a downward-closed
solvable polytope, for any § that is not smaller than polyno-
mial in 1/n.2 By Lemma 3.1, the objective of program (6)
is the multilinear extension of g(-). The feasible region to
program (6) is downward closed and solvable since there
are polynomially many constraints.

?Since G(+) cannot be evaluated in polynomial time, it is esti-
mated by sampling, which causes an additional J loss.

It remains to show that G(x*) > F(S*), which we
do by showing that the integral point xg+ corresponding
to S* is feasible. We formally define xg+ as xg+; =
1if ¢ € S and 0 otherwise, and xg+;; = 1 if
i € argmaxpcgs i<k fj(T) and O otherwise. Since
max; Xg+ ;; = 1 only if xg«; = 1, the satisfiability of
the constraints of program (6) then follow from S* being
feasible to the discrete two stage problem. O

Dependent rounding. We wish to ensure that the cardi-
nality constraints not only hold in expectation but on every
instance. At a high level, this is achieved by first solving
the continuous problem for smaller values of [ and k. We
then construct a rounding scheme where each element is
picked for each function with probability corresponding to
the fractional solution and in a dependent way across func-
tions for a fixed element. The solution obtained for this
over-constrained problem satisfies the original constraints
with high probability, and discarding instances where the
original constraints do not hold only causes a small loss in
the objective value. The formal construction and the anal-
ysis of this dependent rounding scheme use the framework
of contention resolution schemes (Calinescu et al., 2011)
discussed in Appendix C.

Theorem 3.3. For any 0 < € < 1/2 and 6 >
poly(1/n), the continuous optimization method results in
a polynomial-time algorithm whose approximation ratio is

1—1/e—1/k1/2 — 272 _g,

3.1. Optimization via LPs

The continuous greedy algorithm may be slow in practice.
In Appendix D, we consider the case of coverage functions
and formulate the continuous problem as a linear program,
which can be solved substantially faster than continuous
greedy. A function f : 2V — R is called coverage if there
exists a family of sets {T},...,T,,} that are subsets of a
universe U s.t. f(S) = | Ujes Ti|. Coverage functions
are a special class of monotone submodular functions and
often model diversity and representation objectives. In our
case, selecting the most representative articles of a corpus
is a special cases of two-stage maximization with cover-
age functions. The approximation ratio obtained with this
linear programming approach is 1 — 1/e as well and the
rounding is solved via the dependent rounding technique.

4. Local Search

We now describe the LOCAL-SEARCH algorithm, which
provides an approximation arbitrarily close to (e — 1)/2e
for coverage functions and 1/2 for cases in which & is con-
stant. For general k£ and general submodular functions, we
slightly modify the algorithm in experiments with a heuris-
tic which performs very well empirically.
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The potential function. The main idea behind the algo-
rithm is to (approximately) optimize a potential function
through local search. The potential function is not sub-
modular, yet has desirable properties amendable to prov-
able guarantees. We begin by describing the approach for
coverage functions with general parameter k and later de-
fine the approach for general submodular functions. For
F = {f;}7L, the potential function is:
m

B(S) =

max
— support(x)CS
= 3 wi<k

Lj(x)

where L; denotes the piecewise-linear relaxation of f;:

Lj(x)= Z min{1, Z Tat

u€Uj acCj(u)

where C;(u) denotes the set of elements in the ground set
that cover u from the universe Uj; in coverage function f;.
Note that the piecewise linearity of L; enables computing
the optimal solution efficiently.

The local search algorithm. Algorithm 1 simply initial-
izes a set .S that includes the singleton with the largest con-
tribution to the potential function together with [ — 1 ar-
bitrary elements. For a given (fixed) precision parameter
€ > 0, the algorithm then iteratively replaces a single ele-
ment in its current solution S if there is an element whose
marginal contribution to the potential function is at least
1 + € of the minimal marginal contribution in the current
solution.

Algorithm 1 LOCAL-SEARCH

1: input constraints [, k, precision € > 0

2: S+ argmax; ¢y $(a;) U arbitrary [ — 1 elements

3: while3i € S,j & S: (1 —¢€)Ps(a;) > Pg\q,(a;) do
4 S (S\{ai}) U{as}

5: end while

6: return S

Analysis of the algorithm. We first claim that the num-
ber of function evaluations is polynomial in the size of the
problem (proof in Appendix F). We then bound the per-
formance in terms of the potential function, which almost
immediately gives the approximation guarantee.

Claim 4.1. For any fixed € > 0 the LOCAL-SEARCH algo-
rithm makes O(k - m - | - n? log n) function evaluations.

The following lemma shows that the marginal con-
tribution of increasing some ] to L’(-) decreases
as other z7 We use the following no-

i
< increase.

tation: x7J = arg MaXgppor(x)C 5,5, 2 <k L, (x),
Xj’li = {le,‘...,xg,O,...,O}, and x’; =
{x1,...,x]_1,0,x],, ..., x}}. The proof is deferred to
Appendix F.

Lemma 4.2. The concave relaxation satisfies the following
diminishing returns property:
Li(x?) = L") > Li(x)) = Lj(xL,).

—1

Lemma 4.3. Let S be the set returned by LOCAL-
SEARCH, initialized with € > 0. Then:

2(s)> (5 -0t

Proof. We first show that the potential is lower bounded by
its marginals:

j=1
> D L)~ Li(xy)
j=11i=1
> max L;(x)— max L;(x
T Z:support(x)gs '7( ) support(x) CS\a; ( )
J=li=l s i<k >, i<k
= (I)S\ai(ai)
a; €S

Now note that if S is the solution returned by LOCAL-
SEARCH, this implies that no element a; ¢ S can improve
the solution. That is: ®g(a;) < (1 + €)®g\,, (a;) for all
a; € Sand a; ¢ S. Therefore, using S* to denote the op-
timal solution to maxy,|p|<¢ ®(7") and combining with the
previous observations, we get:

B(S) > Y Bg\a(a:)

a; €8
> Y (1+e)ds(ay)

a; €S
= (1—€e)®s(57)
=1 =e)(2(SUS") —2(9))
2 (1=e)(2(57) — 2(9))

which concludes the proof. O

Theorem 4.4. For any fixed ¢ > 0 the LOCAL-SEARCH
algorithm makes O(k-m - {-n?logn) function evaluations
and returns a set S that respects:

F(S) > (; (1 - i) - O(e)) OPT

Proof. Let O be the optimal solution to the two-stage sub-
modular maximization problem. It is well known that the
concave relaxation of a coverage function upper bounds the
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cover function and is no more than a 1 — 1/e factor away
from it, thus:

F(0)

IN

(1) (-00)) "o

where the third inequality follows from Lemma 4.3. O

General submodular functions. For general submodu-
lar functions we apply the local search method for small
constant k£ when the approximation ratio from the previous
section is strictly worse than 1/2. We replace the poten-
tial function with the true objective F'(-). For constant k,
we can compute F'(S) by enumerating over all sets of size
k for each function. We defer details and proofs to Ap-
pendix F. For large k one can compute a heuristic by com-
puting the greedy solution instead of the optimal solution,
as discussed in the following section.

S. Experiments

We conduct data summarization experiments using two
datasets: one of Wikipedia pages and one of images. The
functions f;(-) that we consider are coverage functions for
the Wikipedia pages and more general submodular func-
tions for the collection of images.

5.1. Datasets

Wikipedia pages. We apply our methods on the problem
of picking a collection of articles that are most relevant for
a set of diverse topics. We study the instance of such a
problem where the articles are Wikipedia pages in a certain
category and the different topics are subcategories of this
category. The function f;(S) for each subcategory mea-
sures how relevant set S of Wikipedia pages is to subcate-
gory 4. More precisely, f;(.S) is the number of Wikipedia
pages that belong to subcategory ¢ with a link to at least
one page in S. Clearly, f;(S) is a cover function. For our
experiments, the category of interest is machine learning,
which contains n = 575 Wikipedia pages and has m = 23
subcategories. Fig. 2a shows an example of subcategories
of machine learning, along with a solution of five pages for
I = 5 and k = 3. Each subcategory points to its three most
relevant pages.

Image collection summarization. In the image collec-
tion summarization problem, the goal is to select a small
subset of images that best represents different categories.
For example, one may have a collection of images taken on

a holiday trip, and want to select a small subset that con-
cisely represents all the diversity from the trip. Our exper-
imental dataset is a collection of 100 images from Tschi-
atschek et al. (2014). We assigned each image to a subset
of the following eight categories: human, building, tree,
ocean, sky, mountain, road, and vehicle. Submodular func-
tion f;(.S) indicates to what extent category i is represented
by the summary set S. Formally, each f;(.5) is a weighted
linear combination of multiple submodular functions that
capture different notions of representativeness. These func-
tions are Facility Location, which measures the similarity
of each image in category ¢ to the closest image in S, Sum
Coverage which measures the average similarity of each
image in ¢ to all images in S, Truncated Graph Cut which
is similar to Sum Coverage but with some thresholding, as
well as two functions rewarding diversity, Clustered Facil-
ity Location, which measures the similarity of each image
in category ¢ to the closest image from the same category
in S, and Clustered Diversity that rewards selecting images
from different categories. Details of all these functions can
be found in (Tschiatschek et al., 2014). Fig. 2b shows three
categories of images from an image collection, along with
their most representative images from the collection.

Neural Classification Markov
F networks Fs algorithms F3 models

Artificial neural Decision tree Statistical : Hidden Markov
network learning classification Markov.chain model
(a) Wikipedia
Human Ocean Building
F1 Fz 3
(ol
-
A

(b) Images
Figure 2. Example of the most representative elements found by
local search for constraints [ = 5 and £ = 3. The ovals show

(sub)categories and below are their most relevant pages for (a)
and their most representative images for (b).

5.2. Algorithms and baselines

LOCAL-SEARCH. We initialize LOCAL-SEARCH with
the solution obtained by the greedy algorithm on the
potential function F'(S) = >iem) i(Gi(S,k)), where
G, (S, k) is the greedy solution with & elements for the sec-
ond stage (i.e. not the optimal solution) w.r.t. f;. To avoid
enumerating over all subsets of size k, we executed a vari-
ant of the LOCAL-SEARCH algorithm for general submod-
ular function where the potential function is evaluated with

F'(S) as above. In theory, substituting the optimal solution
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with the greedy algorithm in the evaluation of the potential
function breaks the approximation guarantees. However,
as we will see, this approach nonetheless is nearly opti-
mal in practice. For the Wikipedia articles, we also run
LOCAL-SEARCH with potential function ¢(.5) and initial-
ized as above. We obtain near identical results as with the
above approach.

CONTINUOUS-OPT. For CONTINUOUS-OPT we low-
ered the constraints k and [ by a factor 1 — ¢ = 4/5 for
the rounding, which is an approximation of the optimal ¢
for these experiments.

Baselines. We compare our two algorithms, LOCAL-
SEARCH and CONTINUOUS-OPT, to several natural base-
lines. Since continuous greedy is slow in practice, we
applied CONTINUOUS-OPT only in the Wikipedia exper-
iments with the linear programming approach for coverage
functions. The baselines are natural variants of the greedy
algorithm applied on various modifications of the objective
functions that are submodular.

GREEDY-SUM first runs the greedy algorithm as if the car-
dinality constraint in the second stage was [, so it runs
greedy on F(S) = .., fi(S) (which is a mono-
tone submodular function) with cardinality constraint [.
After a set S of [ elements has been picked, we run
the greedy algorithm over ground set S with cardinality
constraint k£ for each function to obtain a feasible solu-
tion. MODULAR-APPROX. approximates the submod-
ular functions in the second stage as if they were mod-
ular with each element having value f;(a). We then
run the greedy algorithm on this approximation F(S) =
Z;”zl maxrcg:r|<k 2qer Ji(a). Recall from our ear-
lier discussion that if the functions f;(1") are modular, the
two-stage problem is a special case of monotone submodu-
lar maximization under cardinality constraint. CONCAVE-
RELAXATION (upper bound) is the value of the frac-
tional solution with the concave relaxation objective for
cover functions. This is an upper bound since we are able
to compute the optimal solution to this concave relaxation
which upper bounds the true objective. GREEDY-MERGE
(upper bound) runs the greedy algorithm on each function
in the second stage with a constraint of k. The solution may
violate the constraint in the first stage. This upper bound
can be applied to the images data set where the functions
are not coverage.

5.3. Results

Fig. 3b and 3a show the performance of LOCAL-SEARCH
and CONTINUOUS-OPT compared to the baselines for the
Wikipedia dataset for varying [ and k respectively. Fig. 3c
and 3d are the results from the image dataset for varying
[ and k, where at most two categories from the categories
listed previously are assigned to each image. Fig. 3e, and
3f show the same quantity when at most four categories are

assigned to each image.

LOCAL-SEARCH is near optimal for the Wikipedia pages
since there is very small gap compared to the upper bound
CONCAVE-RELAXATION. It therefore performs much bet-
ter in our experiments than its theoretical guarantee. It
also outperforms all the baselines in each experiment. We
also observed in the experiments that LOCAL-SEARCH
with GREEDY initialization is fast: it requires fewer iter-
ations than the theoretical upper bound given in Section 4.
In fact, in most experiments, the solution returned by
the GREEDY initialization is locally optimal and LOCAL-
SEARCH does not perform any swaps. The performance
of CONTINUOUS-OPT is dominated by that of LOCAL-
SEARCH, and in most cases even dominated by the base-
lines. The theoretical guarantees for CONTINUOUS-OPT
asymptotically improve as k and [ grow large, the small val-
ues for [ and k in our experiments cause a significant loss
due to the rounding. The algorithms ranked in decreasing
order of performance are LOCAL-SEARCH, GREEDY-SUM,
MODULAR-APPROX., and CONTINUOUS-OPT. A further
discussion of these experiments is in Appendix G.

6. Related Work

Submodular optimization has found numerous applications
in machine learning and related fields, ranging from opti-
mal sensor placement and variable selection in probabilistic
models (Krause and Guestrin, 2005) to structure learning
(Pernkopf and Bilmes, 2005) to approximate inference in
probabilistic models (Djolonga and Krause, 2014). In par-
ticular, submodular maximization has been found to be a
natural abstraction of data summarization tasks (Lin and
Bilmes, 2011; 2012; Tschiatschek et al., 2014; El-Arini
et al., 2009). These approaches can be viewed as single-
stage submodular maximization, which is strictly general-
ized by our approach.

Submodularity has been recently discovered to be relevant
in tasks related to sparse reconstruction. For example, Bach
(2010) shows how submodular functions can be used to de-
fine structured-sparse regularizers. Perhaps closest to our
work is an approach of Cevher and Krause (2011); Das and
Kempe (2011) on dictionary selection. Here, the goal is
to select a collection of atoms (vectors in R?), which al-
low to sparsely represent a collection of signals. This prob-
lem is closely related to our two-stage maximization task,
with the crucial difference that their individual objectives
f1, ..., fm quantifying reconstruction performance for the
m signals are (approximately) modular. Hence their set-
ting can be solved using classical submodular maximiza-
tion (see Section 2.1).

There has also been recent significant interest in scaling
submodular optimization to massive problems. For exam-
ple, Mirzasoleiman et al. (2013) provided a simple two-
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Figure 3. Performance of LOCAL-SEARCH compared to the baselines. (a) shows the solution value for vertex cover on the Wikipedia
dataset, for k = 5 and varying the solution size [, (b) shows the same quantity for | = 30, and varying k, (c) shows the solution value for
summarizing a collection of 100 images according to the eight listed categories with [ = 20 and varying k, (d) shows the same quantity
for varying [ and k = 5, (e) and (f) shows the same quantity for having additional categories per image for [ = 20 and varying k, and

for varying [ and k = 5 respectively.

stage distributed algorithm for submodular maximization
under cardinality constraints. There have also been re-
cent efforts to make use of stochastic methods to acceler-
ate the running time of the centralized greedy algorithms
(Mirzasoleiman et al., 2015). Streaming algorithms have
also been proposed as another natural approach to scale
up submodular optimization (Badanidiyuru et al., 2014).
Wei et al. (2014); Kumar et al. (2013) have introduced
multi-stage approaches. However, their goal is to accel-
erate performance, not to jointly optimize the performance
over multiple stages as we do in this paper. Scaling our
approach to massive problems using distributed/streaming
computation is an exciting direction for future work.

7. Conclusions

In this paper, we have introduced a novel two-stage sub-
modular optimization problem. This problem has natu-
ral applications in multi-objective summarization tasks, as
we demonstrate in our experiments, and can be viewed
as a novel combinatorial variant of representation learn-
ing tasks such as dictionary learning. We have presented
two approaches: One based on continuous optimization,

which handles general submodular functions, but is slow
in practice, and another local search approach, which pro-
vides strong guarantees for special cases of the problem.
Our experiments demonstrate the effectiveness and near-
optimality of our approach.
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