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A. Vectorized Darmois-Skitovich theorem

The Darmois-Skitovich theorem is provided below as
Lemma A.1. It is used for proving the identifiability of in-
dependent component analysis (Comon, 1994) and lies at
the heart of the proof of Theorem 2.2.

Lemma A.1 (Vectorised Darmois-Skitovich theorem for
infinite sums, Theorem 4 in (Ibragimov, 2014)). Let
X1,X2, . . . be independent d-dimensional random vectors
and consider the linear combinations L1 =

P1
j=1 AjXj

and L2 =
P1

j=1 BjXj where Aj ,Bj are non-singular
d ⇥ d matrices. If L1 and L2 are independent and
{AjB

�1
j }j�1 as well as {BjA

�1
j }j�1 are bounded in

some matrix norm, then the random vectors X1,X2, . . .

are normally distributed.

B. Proofs

B.1. Proof of Lemma 1.2

Proof. The proof follows its univariate version (Peters
et al., 2009). We first show that if Xt =

P1
j=0 jZt�j ,

then Zt is independent of Xi, for all i < t. By defin-
ing X(n)

t :=
Pn

j=0 jZt�j , we have that X(n)
t con-

verges weakly to Xt and thus the characteristic function
of (Xt,Zt+1) obeys for all u and v

'

P(Xt,Zt+1)(u, v) = lim
n!1

'

P(X
(n)
t ,Zt+1)(u, v)

= lim
n!1

'

PX
(n)
t

(u)'PZt+1 (v)

= 'PXt (u)'PZt+1 (v)

= 'PXt⌦PZt+1 (u, v).

This results in independence of Zt and Xi, i < t by
uniqueness of the characteristic function.

In order to prove the “if”-part, we need to show that for
a causal process Xt, all coefficients  i are equal to zero
for i < 0 in the Laurent expansion Xt =

P
i2Z iZt�i

(see (Lütkepohl, 2010)). Assume otherwise, i.e., there is a
coefficient i0 < 0 such that i0 6= 0. Then

 i0Zt�i0 +
X

i2Z�i0

 iZt�i = Xt ??  i0Zt�i0 . (10)

Because  i0Zt�i0 and
P

i2Z�i0
 iZt�i are independent

with the same reasoning as above, (10) results in a contra-
diction.

B.2. Proof of Proposition 2.1

Proof. Defining

eZt := Xt � cov(Xt,Xt+1) · cov(Xt+1,Xt+1)
�1Xt+1

and

e� := cov(Xt,Xt+1) · cov(Xt+1,Xt+1)
�1

,

it follows that

e�Xt+1 + eZt = cov(Xt,Xt+1) · cov(Xt+1,Xt+1)
�1Xt+1

+Xt � cov(Xt,Xt+1)cov(Xt+1,Xt+1)
�1Xt+1 = Xt.

In addition, we have

cov(eZt,Xt+1) = cov(Xt � cov(Xt,Xt+1)

· cov(Xt+1,Xt+1)
�1Xt+1,Xt+1)

= cov(Xt,Xt+1)� cov(Xt,Xt+1)

· cov(Xt+1,Xt+1)
�1cov(Xt+1,Xt+1)

= 0.

By the assumption of the Gaussian distribution, the inde-
pendence of eZt and Xt+1 follows. It remains to show that
eZt and Xt+k are independent for k � 2. By the multi-
variate form of the Yule-Walker equations for the VAR(1)
process, i.e., �k := cov(Xt,Xt+k) = ��k�1 (see 2.1.31
in (Lütkepohl, 2010)), we obtain that

cov(eZt,Xt+k) = cov(Xt � cov(Xt,Xt+1)

· cov(Xt+1,Xt+1)
�1Xt+1,Xt+k)

= cov(Xt,Xt+k)� cov(Xt,Xt+1)

· cov(Xt+1,Xt+1)
�1cov(Xt+1,Xt+k)

= cov(Xt,Xt+k)���0�
�1
0

· cov(Xt+1,Xt+k) = �k ���k�1 = 0.

B.3. Proof of Lemma 3.1

Proof. The statement follows from considering determi-
nants, see Lemma 1.1.

det(1K(p+q) �⌥z) = det(1Kp �⌥11z)

· det(1Kq �⌥22z)

= det(1K ��1z � · · ·��pz
p)
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C. Additional Formula to Section 3.2

The following submatrices of ⌥ =


⌥11 ⌥12

0Kq⇥Kp ⌥22

�
are

used to represent a VARMA process as a VAR process of
order one:

⌥11 :=

2

666664

�1 �2 . . . �p�1 �p

1K 0 . . . 0 0
0 1K . . . 0 0
...

. . . 0
...

0 . . . 0 1K 0

3

777775
,

⌥12 :=

2

666664

⇥1 ⇥2 . . . ⇥q�1 ⇥q

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

0 0 . . . 0 0

3

777775

and

⌥22 :=

2

666664

0 0 . . . 0 0
1K 0 . . . 0 0
0 1K . . . 0 0
...

. . . 0
...

0 . . . 0 1K 0

3

777775
.


