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1. Heavy noise encompasses several Noise
models

Recall the Heavy noise model assumed in Assumption D4.

∀T ⊆ [n] , with |T | ≥ εn , 1

|T |
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1

≤ ε2. (1)

It subsumes several noise models which include i.i.d Gaus-
sian, Multinomial and Heavy Tailed Distribution. The fo-
cus of this section is to make these relations explicit.

To help exposition we define the following event for a ran-
dom N .

E : ∃T ⊆ [n], |T | ≥ ε4n with
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1

≥ ε24|T |.

(2)
Our strategy will be to argue that this event occurs with
extremely low probability for various noise models.

Gaussian Noise-IID Case Consider the following
lemma when the entries of N are i.i.d. N (0, σ2) random
variables.

Lemma 1. Suppose N is a d × n matrix with n ≥ d with

i.i.d. entries drawn from N (0, σ2), where σ ≤ ε
5/2
4

4
√
n

. For n
large enough, Prob(E) ≤ 0.01.

Proof. By Random Matrix Theory (see for example The-
orem 5.31 in (Vershynin, 2010)) we have that the largest
singular value of N is at most 4σ

√
n with probability 0.99

For contradiction, assume that there is some T , |T | ≥
ε4n with

∣∣∣∣∣∣∑j∈T N·,j
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1
≥ ε24|T |. This implies that∣∣∣∣∣∣∑j∈T N·,j
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2
≥ ε24|T |/

√
d. But
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2
≤

||N ||2
√
|T | ≤ 4σ

√
n
√
|T | producing the contradic-

tion.

If σ ≤ ε
5/2
4 /4

√
d, (1) is satisfied. Furthermore, if σ >

cε/d, then, with high probability, a CONSTANT FRAC-
TION of the columns j violate the condition ||N·,j ||1 ≤ ε
required by previous algorithms to hold for EVERY col-
umn.
Lemma 2. Suppose k = 1, n ≤ c0d, ||C·,j ||1 = 1 for
all j and N has i.i.d. entries drawn from N (0, σ2), where,
σ > c1/

√
d for a large constant c1. Then, given A =

BC +N , the Maximum Likelihood Estimator B̃ of B with
high probability satisfies∣∣∣∣∣∣B̃·,1 −B·,1∣∣∣∣∣∣

1
> ε.

Proof. Since k = 1, it is easy to see that the MLE is just
the average of all columns of A. Since Var(

∑n
j=1Nij) =

nσ2, with high probability, for a constant fraction of
i, we have

∣∣∣∑n
j=1Nij

∣∣∣ > √nσ/10 which implies that

1
n

∣∣∣∣∣∣∑n
j=1N·,j

∣∣∣∣∣∣
1
≥ σ
√
nd/10, from which the Lemma

follows.

General Correlated Noise: While noise in different data
points may be independent, noise in different coordinates
of the same data point need not be. [For example, in Hy-
perspectral Imaging, where NMF is applied, each column
ofA corresponds to a pixel, noise in its intensity at different
frequencies (these are the coordinates) are not necessarily
independent.] We can model this more general case by hav-
ing N·,j be independent vector-valued zero-mean random
variables. Suppose Σj is the covarience matrix of N·,j for
j = 1, 2, . . . , n. [The Σj need not be the same.]

Σj = E
(
N·,jN

T
·,j
)
.

Lemma 3. Suppose n ≥ d. If ||Σj ||2 ≤ ε54/8n, then, for n
large enough,

Pr (E) ≤ 0.01.

Note that for the i.i.d. spherical Gaussian case, ||Σj ||2 =
σ2, so Lemma (1) is essentially a special case.
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Proof. Recent results from Random Matrix Theory apply
to matrices with independent vector-valued random vari-
ables as columns (so no independence among rows is as-
sumed) (for example, Theorem 5.48 and Remark 5.49 of
((Vershynin, 2010))), and assert:

||N ||2 ≤ 4||Σ||2n

with high probability. Arguing as in Lemma 1 yields the
current Lemma.

Multinomial Noise For this, assume ||C·,j ||1 = ||A·,j ||1 =
1. We also assume there is d × n matrix P with non-
negative entries and column sums 1. P could be just BC.
N·,j is the average of m i.i.d. Multinomial trials, each of
which picks a unit vector ei with probabilities proportional
to Pi,j . Subtract the mean to make E(Nij) = 0. So,

E(Nij) = 0 ; Var(Nij) =
Pij
m
.

[In the example of Topic Modeling, the process above has
picked m words in each document. Usually, m << n, d]
Almost all data points can violate the condition ||N·,j ||1 ≤
ε. However, we will also show using the bounded dif-
ference martingale inequality (McDiarmid, 1989) that our
noise assumption is satisfied.

Lemma 4. SupposeN·,j is the average ofm i.i.d. Multino-
mial trials, each of which picks a unit vector ei with proba-
bilities proportional to (BC)i,j . Subtract the mean to make
E(Nij) = 0. For n large enough, the Prob(E) ≤ 0.01

Proof. The proof follows from Lemma 5.

Heavy noise We now discuss a more general case of Heavy
noise where each column of N can have large norm.

Lemma 5. Suppose ||C·,j ||1 = ||A·,j ||1 = 1 and sup-
pose each column N·,j of N is the average of m ≥
8c20 log(e/ε4)/ε44 independent zero-mean vector-valued
random variables N (1)

·,j , N
(2)
·,j , . . . , N

(m)
·,j - with ||N (t)

·,j ||1 ≤
c0. 1 Then, (1) is satisfied whp.

Proof. Fix attention on one T ⊆ [n], |T | ≥ ε4n for now.
Let

X =
1

m|T |
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j∈T,t∈[m]

N
(t)
·,j
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1

.

The random variable X is a function of m|T | independent
random variables {N (t)

·,j : j ∈ T, t = 1, 2, . . . ,m}. Fur-
ther changing any one of these random variables causes
a maximum change of c0/m|T | in X since we assumed

1Note that this allows the noise to be as large (in l1 norm) as
data.

||N (t)
·,j ||1 ≤ c0 with probability 1. So applying the bounded

difference inequality for Martingales (McDiarmid, 1989)
directly, we get that for all λ > 0,

Pr (|X − EX| ≥ λ) ≤ 2 exp
(
−λ2m|T |/8c20

)
.

Put λ = 8c0
√

ln(e/ε4)/
√
m in the above.

So far we have bounded the probability that a single T vio-
lates (1). We wish to take the union bound over all such T .
For this, note that the number of T of cardinality t is(

n

t

)
≤ et ln(e/ε4),

noting that t ≥ ε4n. Plugging this in, we see that the prob-
ability that (1) does not hold for a particular t is at most
1/n2. Again taking the union bound over all t, we get the
Lemma.

On Assumption D3 To ensure identifiability in presence
of noise we need few Pure Documents to be present in the
corpus, assumption D3. Consider the case when k = 2
and say there are less than ε4n/2 nearly pure records for
l = 1. These can all be corrupted when noise is adversar-
ial. Then, it is easy to see that B̃ with B̃·,1 = a convex
combination of B·,1 and B·,2 which is not near B·,1 can
satisfy ‖B·1 − B̃·1‖1 ≤ ε. This shows the necessity of D3
for Identifiability under heavy noise.

2. TSVDNMF : A SVD based Algorithm for
NMF

In this section we prove the correctness of TSVDNMF .

2.1. Notation

Let 2 α, β, ρ, ε, ε0, ε4 be non-negative reals in (0, 1) satis-
fying:

ε < ε0/20. (3)

β + ρ ≤ Min ((1− 5ε)α, 0.6− 4αε) . (4)

ε4 ≤ αγε/2 ,
ε0w0p0
16k3

, ε20/4.. (5)

Algorithm Input: Un-normalized matrix A; Output: Ba-
sis matrix B.

1. Thresholding: Apply the Thresholding procedure
(see below) to get D and k.

2. SVD: Find the best rank k approximation D(k) to D.

2 The algorithm uses the actual values of γ, ε4 only for a tech-
nical reason in the proof. The terms γ − 2ε4 and −2ε4 can be
dropped for small size problems.
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3. Identify Dominant Basis Vectors for each record:

(a) Project and Cluster Find (approximately) opti-
mal k-means clustering of the columns of D(k).

(b) Lloyd’s Algorithm Using the clustering found in
Step 3(a) as the starting clustering, apply Lloyd’s
k-means algorithm to the columns of D (D, not
D(k)).

(c) LetR1, R2, . . . , Rk be the k−partition of [n] cor-
responding to the clustering after Lloyd’s.

4. Identify Dominant Features for each basis vector:

(a) For each i, l, compute g(i, l) = the (bε0n/2c)th
highest element of {Aij : j ∈ Rl}.

(b) Jl = {i : g(i, l) > Max(γ −
2ε4,Maxl′ 6=lνg(i, l′))}, where, ν = 1−αε

β+ρ+2αε .

5. Find Basis Vectors Find the bε0n/4c highest∑
i∈Jl Aij among all j ∈ [n] and return the average

of these A·,j as our approximation B̂·,l to B·,l.

2.2. Thresholding Procedure

1. Initialize R := [d]. /* R is the set of unpruned
words.*/

2. For each i,

(a) compute νi the (1 − ε0
2 )−fractile of row i of A.

Let ζi := ανi − 2ε4. (ζi is the threshold for row
i of A.)

(b) If ζi ≥ 0, set Wi := {j : Aij ≥ ζi}. Set Dij :=√
ζi for j ∈Wi and Dij := 0 for j /∈Wi.

(c) If ζi < 0, then, set Wi := ∅ ; Dij :=
0 ∀j ; R := R \ {i}.

3. Sort the |Wi| in ascending order. For convenience,
renumber the i so that now |Wi| are in the ascending
order.

4. For i = 1, 2, . . . , in R: (If Wi⊆̃Wi′ , we “prune” i′ by
zeroing out all entries not in Wi.)

• For i′ > i with i′ ∈ R, and |Wi| ≤ |Wi′ | −
ε0n/8, if Wi⊆̃Wi′ , 3 set Di′,j := 0 for all j ∈
Wi′ \Wi; set Wi′ to Wi and delete i′ from R.

D is the d× n matrix after thresholding.
Theorem 1. Given a d × n matrix A and under assump-
tions, D1-4, the algorithm TSVDNMF finds for each l, an
approximation B̂·,l satisfying∥∥∥B·,l − B̂·,l∥∥∥

1
≤ ε0.

Before we state the main proof we establish a few lemmas
which will help in deriving the proof.

3If W,W ′ ⊆ [n], we write W ⊆̃W ′ to denote: |W \W ′| ≤
ε0n/4

2.3. Dominant Features and Primary Basis Vectors

Wlg Assume |B·,j |1 = 1 and |A·,j |1 ≤ 1 for all j. These
imply |C·,j |1 ≤ 1.

Dominant Basis Vector Assumption There are
T1, T2, . . . , Tk ⊆ [n] satisfying

∀j ∈ Tl, l′ 6= l, Cl,j ≥ α and Cl′j ≤ β (6)
∀l, |Tl| = wln. (7)

We assume wl ≥ w0 for all l.

Nearly Pure Records Assumption For each l, there are at
least ε0n records in each of which the l th basis vector has
coefficient at least 1− ε4. I.e.,

∀l,∃ ≥ ε0n j with Clj ≥ 1− ε4. (8)

Dominant Features Assumption: There are k disjoint sets
of features - S1, S2, . . . , Sk such that

∀i ∈ Sl, ∀l′ 6= l, Bil′ ≤ ρBil (9)∑
i∈Sl

Bil ≥ p0 (10)

∀i ∈ Sl, Bil ≥ γ. (11)

Noise:

∀T ⊆ [n] with |T | ≥ ε4n ,
1

|T |

∣∣∣∣∣∣
∑
j∈T

(A−BC)·,j

∣∣∣∣∣∣
1

≤ ε24.

(12)

Lemma 6. For i ∈ [d], let l(i) = arg maxlBil. Consider
the Wi at the end of step 6. If Wi 6= ∅, then,

|Tl(i) \Wi| ≤ 2ε4n.

In addition, if i ∈ Sl, then

|Wi \ Tl| ≤ 2ε4n.

Proof. Fix attention on one i with |Wi| 6= 0 and let l =
l(i). Wi initially has at least ε0n/2 elements. If it ever
gets pruned by another W , it is easy to see that it will not
become empty and remains non-empty.

For any j, (BC)ij =
∑
l′ Bil′Cl′j ≤ Bil, since, Bil′ ≤

Bil and
∑
l′ Cl′j ≤ 1. Let

Hi = {j : |Aij − (BC)ij | ≥ ε4}. (13)

We claim that |Hi| ≤ 2ε4n. To see this, let H+
i = {j :

Aij ≥ (BC)ij + ε4}.
∑
j∈H+

i
(A − BC)ij ≥ ε4|H+

i |.
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So, (12) implies |H+
i | ≤ ε4n. Similarly for H−i = {j :

(A−BC)ij ≤ −ε4}.

For j /∈ Hi, Aij ≤ Bil + ε4 and so we have with νi as
defined in the thresholding procedure, νi ≤ Bil+ε4 (using
(3, 5) from which it follows that

ζi ≤ αBil − (2− α)ε4. (14)

If j ∈ Tl, then Clj ≥ α implies (BC)ij ≥ BilClj ≥ αBil.
So for j ∈ Tl \Hi, Aij ≥ αBil−ε4 ≥ ζi (by (14)) proving
the first assertion of the theorem.

To prove the second assertion, now suppose i ∈ Sl. By
Assumption (8), there are ε0n nearly pure records and
since ε4 ≤ ε0/16 (3, 5), we have at least ε0n/2 of
these nearly pure records must not be in Hi and so have
|Aij−(BC)ij | ≤ ε4. So, we have νi ≥ Bil(1−ε4)−ε4 ≥
Bil − 2ε4 (since for pure records, (BC)ij ≥ (1 − ε4)Bil)
which implies (using ε4 ≤ αγ/8 from (5))

ζi ≥ αBil − 4ε4 > 0, (15)

since by (11), Bil ≥ γ > 4ε4/α.

For j /∈ Tl,

(BC)i,j = BilClj +
∑
l′ 6=l

Bil′Cl′j

≤ BilClj + ρBil(1− Clj)
≤ Bil(β + ρ)

≤ Bilα(1− 5ε),

since Clj ≤ β by (6) and by (3), β + ρ ≤ (1− 5ε)α.

Now consider j /∈ (Tl ∪Hi).

Aij ≤ Bilα(1− 5ε) + ε4 < αBil − 4ε4 ≤ ζi,

where, for the last inequality, we have used (15) and for
the previous step, (3) and (11). This implies the second
assertion of the Lemma.

Lemma 7 (No Threshold Splits any Tl). At the end of the
thresholding step of the Algorithm, for every i, (i need not
be in any Sl), and every l, we have that either there are at
most 4ε4n j ∈ Tl with Dij > 0 or at most 4ε4n j ∈ Tl
with Dij = 0.

Proof. From the previous Lemma, for i ∈ Sl, we see that

|Tl \Wi| , |Wi \ Tl| ≤ 2ε4n.

We claim that for i ∈ Sl, there is no i′ such that |Wi′ | ≤
|Wi| − ε0n/8 and Wi′⊆̃Wi (and hence, the pruning step
5 does not modify the assignment Dij =

√
ζi made in

step 4 for all j ∈ Wi). Clearly this suffices to prove the
Lemma for i ∈ Sl. Now for the claim: suppose for some
i′,Wi′⊆̃Wi. By Lemma (6),Wi′ must contain almost all of
some Tl′ . If l′ = l, then, |Wi′ | ≥ |Tl|−2ε4n ≥ |Wi|−3ε4n
contradicting the hypothesis of the Claim (by (3, 5). If
on the other hand, l′ 6= l, then, we must have that Wi

also contains all but 2ε4n elements of Tl′ contradicting
|Wi \ Tl| ≤ 3ε4n. This proves the claim and the Lemma
for i ∈ Sl.

Now for i /∈ ∪lSl. If |Wi| ≤ |Tl(i)| + 2ε4n, then, since
Wl(i) already contains all but 2ε4n of Tl(i). it must contain
at most 4ε4n elements of any Tl, l 6= l(i), and so cannot
split any Tl. So assume |Wi| > |Tl(i)| + 2ε4n . Take i′ ∈
Sl(i). |Wi′ \ Tl(i)| ≤ 2ε4n implies that |Wi′ | ≤ |Tl(i)| +
2ε4n. So Wi′ comes before Wi Also, |Wi| ≥ |Wi′ | +
(ε0n/8). So i′ prunes Wi if it is not pruned already. We
have proved that Wi is pruned from some i′ ∈ ∪lSl and it
is easy to see that after pruning, it cannot split any Tl.

Let µ be a d× n matrix whose columns are given by

∀j ∈ Tl , µ.,j =
1

|Tl|
∑
j∈Tl

D.,j .

µ ’s columns corresponding to all j ∈ Tl are the same.

Lemma 8.

∀l,∀j ∈ Tl,∀i, µij ≤
4ε4
wl

√
ζi OR µij ≥

√
ζi(1−

4ε4
wl

)

1

|Tl|
∑
j∈Tl

(Dij − µij)2 ≤
8ε4
wl

ζi, where, |Tl| = wln.

Thus,
||D − µ||2F ≤ 16αk2ε4n.

Proof. Fix attention on one i. Let

al =
∣∣∣{j ∈ Tl : Dij =

√
ζi}
∣∣∣ .

From Lemma (7), we know that al is either at least (wl −
4ε4)n or at most 4ε4n do. Consider the first case. Then,
clearly,

µ ≥ (wl − 4ε4)n

wln

√
ζi =

(
1− 4ε4

wl

)√
ζi.

Also, in this case,

1

|Tl|
∑
j∈Tl

(Dij − µij)2 ≤
ζi
wln

(
al

16ε24
w2
l

+ (wln− al)
)
.

Now, from (3, 5) and the fact that w0 ≥ ε0, we know that
4ε4 < w0 ≤ wl, so in the above expression, the maximum
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value is when al = (wl − 4ε4)n. From this, the first two
assertions of the Lemma follow for this case. The other
case is symmetrically handled.

To bound ||D − µ||2F , it is first clear that ||D − µ||2F ≤∑
l
ε3
wl
wln

∑
i ζi. it remains to bound

∑
i ζi. Let I = {i :

ζi > 0}. For i ∈ I , ανi ≥ 2ε4 (by the way ζi is determined
in the algorithm.) Now,

νi ≤ Bl(i),i + ε4 ≤ 2Bl(i),i,

for i ∈ I , since, |Hi| ≤ 2ε4n < ε0n/3. Thus, ζi ≤ νi ≤
2Bl(i),i. This implies that∑

i

ζi ≤ 2
∑
i

Bl(i),i ≤ 2
∑
i,l

Bil ≤ 2k, (16)

since, B has column sums equal to 1. The last assertion of
the Lemma follows.

Lemma 9. For j ∈ Tl and j′ ∈ Tl′ with l′ 6= l,

|µ·,j − µ·,j′ |2 ≥ cαp0.

Proof. From Lemma (6), it follows that for i ∈ Sl, at most
ε4n j ∈ Tl have Dij = 0 and at most ε4n j′ /∈ Tl have
Dij =

√
ζi. This implies that |µi,j−µi,j′ | ≥ 1

4

√
ζi. Squar-

ing and adding over all i ∈ Sl, we get

|µi,j − µi,j′ |2 ≥
1

16

∑
i∈Sl

ζi.

Now we show that
∑
i∈Sl

ζi is high enough to prove the
Lemma. We showed in the proof of Lemma (6) that Hi as
defined there satisfies |Hi| ≤ ε4n. For the ε0n pure records
of l, we have (BC)ij ≥ (1− ε4)Bl,i. So at least ε0n/2 of
these do not belong to Hi and have Aij ≥ (BC)ij − ε4 ≥
Bil(1 − ε4) − ε4 ≥ Bil/2, (since for i ∈ Sl, Bil ≥ γ ≥
4ε4). This implies that ζi ≥ Bilα/6. So, we have∑

i∈Sl

ζi ≥ α
∑
i∈Sl

Bli/6 ≥ αpo/6, (17)

by (10).

Lemma 10.

σ2
k+1(D) ≤ 2ε4nk

2

σk(D)2 ≥ w0p0n/4.

Proof. Let U be the span of the incidence vectors of
T1, T2, . . . , Tk. Let D̂i,· be the component of Di,· orthog-
onal to U . Lemma (7) implies that ||D̂i,·||22 ≤ ε4nkζi. So,
by (16),

||D̂||2F ≤ ε4nk
d∑
i=1

ζi ≤ 2ε4nk
2,

which implies by the Min-Max Theorem the first part of
the Lemma.

For the other part, we have again by min-max:

σk(D)2 ≥ Minkl=1

1

|Tl|

d∑
i=1

∑
j∈Tl

Dij

2

≥ Minl
1

|Tl|
∑
i∈Sl

∑
j∈Tl

Dij

2

≥ Minl
|Tl|
4

∑
i∈Sl

ζi ≥ cα|Tl|p0,

by (17). So the second part of the Lemma follows.

Using a results from K-means clustering due to (Kumar
& Kannan, 2010) which states that our algorithm correctly
classifies most records by dominant basis vectors, the num-
ber of records misclassified by the algorithm being at most

k||D − µ||22
minl 6=l′ |µl − µl′ |2w0

,

which by Lemmas (9) and (8) is at mostO(k3ε4n/(w0p0))
which is at most ε0n/4 from (5) .

Lemma 11. At the end of the k−means clustering step, the
algorithm correctly identifies the dominant basis vector in
all but at most ε0n/4 records.

2.4. Identifying Dominant Features

We now show that the step of identifying dominant features
for each basis vector works correctly. This will be proved
in two lemmas which are roughly converses of each other,
asserting that Jl ≈ Sl in essence.

Lemma 12. For all l, Sl ⊆ Jl.

Proof. Suppose i ∈ Sl. By Lemma (11), we know
|Rl4Tl| ≤ εn. There are ε0n pure records for l, at least
3ε0n/4 are in Rl and at least ε0n/2 of them are not in
Hi. Thus, g(i, l) ≥ (1 − ε4)Bil − ε4 ≥ Bil(1 − αε)
(since for i ∈ Sl, Bil ≥ γ). For j /∈ Tl ∪ Hi, we have
Aij ≤ Bil(β+ρ)+ε4 ≤ Bil(β+ρ+αε). For l′ 6= l,Rl′ has
at most ε0n/4+|Hi| records j withAij ≥ Bil(β+ρ+2αε)
and this implies that g(i, l′) ≤ Bil(β + ρ + 2αε). So,
g(i, l)/g(i, l′) ≥ ν. Also, g(i, l) ≥ γ − 2ε4. So i ∈ Jl.

2.5. Finding Basis Vectors

Lemma 13. For i ∈ Jl, and l′ 6= l, we have:

Bi,l ≥ Max
(
γ

2
,

1− 2εα

β + ρ+ 5αε
Bi,l′

)
.
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Proof. Let i ∈ Jl. Let l(i) = arg maxl′ Bil′ . g(i, l) ≤
Bi,l(i) + ε4, since |Hi| ≤ ε4n. Also, g(i, l) ≥ γ − 2ε4 by
the definition of Jl. So, we have Bi,l(i) ≥ γ − 3ε4 which
implies that

ε4 ≤ Bil(i)αε. (18)

Now, for any l′, we have g(i, l′) ≥ (1− ε4)Bil′ − ε4 by the
pure records for l′ which are not in Hi. If l′ 6= l, we also
have g(i, l) ≥ (1− αε)g(i, l′)/(β + ρ+ 2αε), so we get

Bi,l(i) + ε4

(1− ε4)Bi.l′ − ε4
≥ 1− αε
β + ρ+ 2αε

Bi,l(i)(β + ρ+ 2αε) + 3ε4 ≥ (1− αε)(1− ε4)Bil′ ,
(19)

from which the Lemma follows if l(i) = l. But it is easy to
see that l(i) = l and this proves the Lemma.

Lemma 14. The number of j among the ε0n/4 highest∑
i∈Jl Aij in the Find Basis Vectors Step of the algorithm

for which Clj ≤ 1− 5αε is at most ε4n.

Proof. Let i ∈ Jl. Let Ql = {j : Clj ≥ 1 − ε4}. |Ql| ≥
ε0n by Nearly Pure Records Assumption.

∀j ∈ Ql, (BC)ij ≥ Bil(1− ε4) =⇒∑
i∈Jl

(BC)ij ≥ (1− ε4)
∑
i∈Jl

Bil. (20)

Let
H = {j :

∑
i∈Jl

(BC −A)ij ≥ ε4}.

∣∣∣∣∣∣
∑
j∈H

(A−BC)·,j

∣∣∣∣∣∣
1

≥
∑
j∈H

∑
i∈Jl

(BC −A)ij ≥ ε4|H|.

So, (12) implies |H| ≤ ε4n. For j ∈ Ql \H ,∑
i∈Jl

Aij ≥ (1− ε4)
∑
i∈Jl

Bil − ε4 ≥ (1− αε)
∑
i∈Jl

Bil,

using Bil ≥ γ/2 from Lemma (13).

This implies that the 1 − ε0/2 fractile of {
∑
i∈Jl Aij , j =

1, 2, . . . , n} is at least
∑
i∈Jl Bil(1− αε).

On the other hand, define Ĥ = {j :
∑
i∈Jl(A − BC)ij ≥

ε4}. Then, |Ĥ| ≤ ε4 by (12). if for j /∈ Hi, we have
Clj ≤ 1− 5αε, then,

(BC)ij = BilClj +
∑
l′ 6=l

Bil′Cl′j

≤ Bil(1− 5αε) +Bil
β + ρ+ αε

1− 3αε
(5αε)

≤ Bil(1− αε)

∑
i∈Jl

Aij ≤
∑
i∈Jl

Bil(1− αε/2),

for all j /∈ Ĥ .

We now present the proof of Theorem 1.

Proof. (of Theorem 1) From the last Lemma, we see that
the approximation B̂·,l the algorithm finds to B·,l is the av-
erage of a set T ⊆ [n] with |T | = ε0n/2 of A·,j ’s , at most
ε4n of which have Clj ≤ 1− 5αε. We have

For j with Clj ≥ 1− 5αε,

B·,l + u ≥ (BC)·,j ≥ (1− 5αε)B·,l

For all j, |(BC)·,j −B·,l|1 ≤ 1,

for some u with |u|1 ≤ 5αε. Adding over j ∈ T , we get

1

|T |

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈T

((BC)·,j −B·,l)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ 5αε+
ε4n

|T |
≤ ε0/4,

using (5). By (12), we also have

1

|T |

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈T

(A− (BC))·,j

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ ε0
2
.

Adding the last two inequalities, we get the theorem:

1

|T |

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈T

(A·,j −B·,l)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ ε0.

3. Uniqueness of nonnegative matrix
factorization

Given a non-negative factorization A = BC (with
||B·,l||1 = 1 for all l, without loss of generality) we
can generate many others of the form A = B′C ′ where
B′ = BP and C ′ = P−1C and P is a k × k matrix ob-
tained by applying a permutation matrix to a diagonal ma-
trix with nonnegative entries. This just amounts to scaling
and permuting of the columns of B and correspondingly of
the rows of C. If these account for all factorizations of A
then we say that A has unique NMF. For some applications
of NMF, it is desirable to have the property that the NMF
is unique: It gives us confidence that NMF has found the
“right” structure in the data and not some spurious expla-
nation. E.g., in clustering applications it tells us that the
clusters are unique, in topic modeling it tells us that the
“right” topics have been found. In general, NMF need not
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be unique and this raises the question of which matrices A
have unique NMF.

In their influential paper Donoho and Stodden (Donoho &
Stodden, 2003) consider the question of uniqueness of non-
negative matrix factorization. They give conditions on the
input matrix for uniqueness to hold. There has been consid-
erable work on understanding uniqueness conditions since
then; we refer to Huang et al. (Huang et al., 2014) and ref-
erences therein for an up-to-date review of the literature.
Some of these conditions are necessary and sufficient how-
ever they do not seem to be easy to check and use; they
are often geometric in nature and not directly related to the
application at hand. Donoho et al. gave a necessary con-
dition they called Separable Factorial Articulation Family
and applied this to an image library of special type of im-
ages, and showed that NMF gives a unique decomposition
of the images into parts. One of the conditions used for
defining Separable Factorial Articulation Family is the sep-
arability of the factorization. This condition has been influ-
ential in later work as it leads to efficient algorithms. Lau-
rberg et al. (Laurberg et al., 2008) gave further such con-
ditions and also studied the case when there is noise in the
data; see also Huang et al(Huang et al., 2014). However,
these conditions do not seem to have wide applicability.

Uniqueness can also be achieved by modifying the opti-
mization formulation of the NMF problem in some way;
e.g., the factors can be required to be sparse, a regular-
izer term can be added to the objective function, or a
determinant associated with the factorization can be re-
quired to have minimum volume. Considerable work ex-
ists on this approach; we refer to Gillis (Gillis, 2014) and
Huang et al. (Huang et al., 2014) for more details and ref-
erences.

In the present paper we give new conditions under which
NMF is unique without any change to the problem. Our
conditions are arguably natural and easy to interpret and
verify (if a factorization is given). Our condition is robust
in the sense that it can be adapted to the case when we allow
approximate factorizations. This is important because in
practice we can only expect to find approximate NMFs.

3.1. A uniqueness theorem for exact NMF

Two conditions on NMF, separability and pure records
have been studied in the literature (we already mentioned
the former). We will recall these. We will prove that these
conditions together are sufficient for uniquness of NMF.

An NMF A = BC is said to be separable if for each ` ∈
[k], there is an i ∈ [d] such that Bi,` is the unique non-zero
entry in row i of B. An NMF A = BC is said to have
the pure records property if for each ` ∈ [k], there is a j
such that C`,j = 1 (and so C`′,j = 0 for all `′ 6= `). In the

context of topic modeling, this is the same as assuming that
for each topic, there is a document purely on that topic.

Theorem 2. If an NMFA = BC, where rank(A) = k, has
both the separability and the pure records properties, then,
the NMF is unique. I.e., if for d×k and k×n (resp.) matri-
ces B′, C ′ with non-negative entries, we have A = B′C ′,
then there is a diagonal matrix D with positive diagonal
entries and a permutation matrix Π and P = DΠ, such
that B′ = BP and C ′ = P−1C.

Notice that in the second factorization A = B′C ′, we did
not make any assumptions apart from non-negativity.

Proof. We will first bring A in a convenient form by per-
muting its columns and rows. It’s clear that CH(A) ⊆
CH(B). The pure records property of factorization A =
BC gives that in fact CH(A) = CH(B) and the columns
of B occur as columns of A. Permute the columns of A,
if needed, so that the first k columns correspond to the
columns of B. Now, by the separability property of the
factorization, and permuting the rows of A if needed, we
can arrange that the top left k × k submatrix D of A is a
diagonal matrix with positive entries.

Now consider any other NMF A = B′C ′. As before, we
have CH(A) ⊆ CH(B′). A|[k] is the matrix consisting of
the first k rows of A, and similarly for B′|[k]. It is now
clear that the only way CH(D) ⊆ CH(B′|[k]) can hold is
that B′|[k] is itself a diagonal matrix with positive entries,
possibly after applying a permutation—proving the sepa-
rability of NMF B′C ′. We now permute the columns of
B′ so that B′|[k] is a diagonal matrix. Now, it is clear that
the first k columns of C ′ must also form a diagonal matrix
with positive entries—proving the pure records property of
NMF B′C ′.

3.2. A uniqueness theorem for approximate NMF

Suppose that A ∈ Rd×n+ has factorization of the form

A = BC,

where B ∈ Rd×k+ and C ∈ Rk×n+ and k = rank(A). In
addition, B and C satisfy the following properties:

• Normalization Assumption. Each column ofB sums
to 1.

• Dominant Features Assumption. There are con-
stants p1 < p0 ∈ (0, 1) and pairwise disjoint sets
S1, . . . , Sk ⊂ [d] such that for ` 6= `′ ∈ [k] we have∑

i∈S`

Bi,` ≥ p0, (21)

∑
i∈S`

Bi,`′ ≤ p1. (22)
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• Pure Records Assumption. There are pairwise dis-
joint sets R1, R2, . . . , Rk ⊆ [n] and a constant ε ∈
(0, 1) such that for each ` ∈ [k] we have∑

j∈R`

C`,j ≥ (1− ε)
∑
j∈R`

‖C·,j‖1. (23)

Under the above conditions, we have the following theo-
rem.

Theorem 3. Suppose that B,C are d × k and k × n ma-
trices with non-negative entries satisfying the Normaliza-
tion, Dominant Features and Pure Records Assumptions
above. Suppose that B′ ∈ Rd×k+ and C ′ ∈ Rk×n+ are such
that B′C ′ is close to BC in the following aggregate sense:
There is a constant δ ∈ (0, 1) such that for all ` ∈ [k] we
have

‖
∑
j∈R`

(BC)·,j −
∑
j∈R`

(B′C ′)·,j‖1 ≤ δ
∑
j∈Rl

‖C·,j‖1. (24)

Let δ′ := 2ε+6δ. Also assume that the following conditions
are satisfied for constants p0 > p1:

(p0 − δ′)2 > 4k(p1 + δ′), (25)
2δ′ < p0 − p1. (26)

Then B is close to B′ up to permutations and scalings of
the columns. More precisely, there exist a permutation π :
[k]→ [k] and constants αj ∈ R for j ∈ [k] such that

‖B.,j − αjB′.,π(j)‖1 ≤ 2δ′ +
4k(p1 + δ′)

p0 − δ′
.

Note that the second (approximate) factorization B′C ′ has
no conditions on the factors apart from nonnegativity. The
proof of the above theorem is built upon the proof for the
exact case.

Proof. Without loss of generality we may assume that each
column of B′ also sums to 1. We aggregate the columns in
C and C ′ by simply replacing the set of columns in R` by
their sum for each ` (thus replacing the set of |R`| columns
by a single column). Now assume that for l = 1, 2, . . . k,
column l ofC (respectively ofC ′) is the sum of all columns
inRl of the original C (respectively C ′). The Pure Records
condition on C can now be restated as: For ` ∈ [k]

C`,` ≥ (1− ε)‖C·,`‖1. (27)

Condition (24) becomes: for ` ∈ [k]

‖(BC)·,` − (B′C ′)·,`‖1 ≤ δ‖C·,`‖1. (28)

We first outline the proof for which we need one piece of
notation: We rescale columns of C and C ′ to get matrices

C̄ and C̄ ′, respectively, as follows: C̄.,` := C.,`/‖C ′.,`‖1
and C̄ ′.,` := C ′.,`/‖C ′.,`‖1 (note that in both cases we are
dividing by ‖C ′.,`‖1). For the outline, let’s say two matrices
P,Q are approximately equal, denoted P ≈ Q if the l1
distance between each column of P and the corresonding
column of Q is small (to be quantified later). The proof has
the following steps:

1. We first prove
B ≈ BC̄.

This plus the hypothesis (24) will imply that B ≈
B′C̄ ′ which says that the convex hull of the columns
of B, denoted CH(B) is contained in the convex hull
of the columns of B′:

CH(B) ⊆ CH(B′).

2. We prove that for any d × k matrix P with
non-negative entries and all column sums 1, with
CH(B) ⊆CH(P ), we must have P ≈ B after pos-
sibly permuting columns of P .

Note first that for ` = 1, 2, . . . , k,

‖(BC)·,` − (B′C ′)·,`‖1 = ‖BC·,` −B′C ′·,`‖1
≥
∣∣‖BC·,`‖1 − ‖B′C ′·,`‖1∣∣

=
∣∣‖C·,`‖1 − ‖C ′·,`‖1∣∣ ,

where we have used the Normalization Assumption to get
the last equation. Hence by (28) we have

k
∣∣‖C·,`‖1 − ‖C ′·,`‖1∣∣ ≤ δ‖C·,`‖1. (29)

We assume, w.l.o.g., that the columns ofB′ sum to 1. From
(29), we get

‖C·,`‖1 ≤ (1 + 2δ)‖C ′·,`‖1, (30)

and so ∣∣‖C̄·,`‖1 − 1
∣∣ ≤ δ

k

‖C·,`‖1
‖C ′·,`‖1

≤ 2δ. (31)

From (27), for ` ≤ k, C̄`,` ≥ (1−ε)‖C̄·,`‖1 ≥ (1−ε)(1−
2δ/k) and so,

∑
`′:`′ 6=` C̄`′,` ≤ ε‖C̄·,`‖1 ≤ ε(1 + 2δ).

Also, C̄`,` ≤ ‖C̄·,`‖1 ≤ 1 + 2δ/k. Using this, we show
that the first k columns of BC̄ are close to the columns of
B:

‖B.,` −BC̄.,`‖1 = ‖(1− C̄`,`)B.,` +
∑
`′:`′ 6=`

C̄`′,`B.,`′‖1

≤
∣∣1− C̄`,`∣∣+

∑
`′:`′ 6=`

∣∣C̄`′,`∣∣
≤ (ε+ 2δ) + ε(1 + 2δ)

≤ 2ε+ 4δ.
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Now it follows that the first k columns of B′C̄ ′ are close to
the columns of B:

‖B.,` −B′C̄ ′.,`‖1 ≤ ‖B.,` −BC̄.,`‖1 + ‖B′C̄ ′.,` −BC̄.,`‖1
(32)

≤ 2ε+ 4δ/k + 2δ (33)
< 2ε+ 6δ =: δ′ (say).

This completes the first step of the outline. To give some
intuition, it is useful to interpret (32) in words. Since the
column sums of C̄ ′ are all 1, the columns of B′C̄ ′ are con-
vex combinations of the columns of B′ and so we have
proved that for each column of B, there is a vector in the
convex hull of columns of B′ at l1-distance at most δ′.

The second step is proved in the following lemma:

Lemma 15. Suppose B satisfies the hypothesis and B′ is
any d× k matrix with non-negative entries and all column
sums equal to 1 such that the convex hull of the columns
of B′ contains a point at l1-distance at most δ′ from each
column ofB. Then, for ` ∈ [k] after permuting the columns
of B′, we have

‖B·,` −B′·,`‖1 ≤ δ′ +
4k(p1 + δ′)

(p0 − δ′)
.

Proof. We now have to introduce some more notation: Let

Sk+1 = [d] \ ∪k`=1S`.

We define two (k+ 1)× k matrices V,U obtained by sum-
ming the rows in each S` respectively of B′ and B′C̄:

V`,· :=
∑
i∈S`

B′i,· ; U`,· :=
∑
i∈S`

(B′C̄)i,· for ` = 1, 2, . . . , k+1.

Then, from (32) and the Dominant Features Assumption
(21), we have for ` ∈ [k],

Ul,l ≥ p0−δ′ =: q0 ; Ul′,l ≤ p1+δ′ =: q1 for ` 6= `′ ∈ [k].
(34)

Note that q0 > 0 by our hypothesis (26). Clearly, we have

U·,l = C̄ ′1,`V·,1 + C̄ ′2,`V·,2 + . . .+ C̄ ′k,`V·,k. (35)

Our goal would be to show that there is a permutation π :
[k] → [k] such that for each U·,` there is a corresponding
V·,π(`) that is close.

Let τ ∈ (ε, q0) be a parameter whose value will be chosen
later. We say that a V·,` is bad if it has at least two coor-
dinates each with value at least τ . We will show that for
sufficiently large τ , no V·,` is bad. To this end, first note
that if V·,` is bad then C̄ ′`,`′ ≤ q1/τ for all `′. Thus bad

V·,`’s contribute at most kq1/τ to U·,1 via decomposition
(35). We will choose τ to satisfy q0 − kq1/τ > τ . Hence
there must exist an ` ∈ [k] with V1,` ≥ U1,1 − kq1/τ and
V·,` is not bad. We associate this V·,` to U·,1. We swap
columns 1 and ` of B′ (and so of V ) as well as rows 1 and
` of C ′ (and also of C̄ ′). After the swap, we have (using
(34)),

V1,1 ≥ U1,1 −
kq1
τ
≥ q0

2
,

now with the choice τ = 2kq1
q0

(note that this satisfies our
requirement q0−kq1/τ > τ above by our hypothesis (26)).
For all ` ≥ 2, from (35), we get

U1,` ≥ V1,1C̄ ′1,` =⇒ C̄ ′1,` ≤
q1
V11
≤ 2q1

q0
.

Thus,

C̄ ′1,1 ≥ 1− 2kq1
q0

.

After repeating the argument and permuting the columns of
B′ and rows of C̄ ′ suitably, we get

C̄ ′`,` ≥ 1− 2kq1
q0

; C̄ ′`′,` ≤
2q1
q0

for `′ 6= ` ∈ [k].

Hence, we get

‖B·,` −B′·,`‖1 ≤ ‖B·,` −B′C̄ ′·,`‖1 + ‖B′C̄ ′·,` −B′·,`‖1
≤ ‖B·,` −B′C̄ ′·,`‖1 + ‖B′·,`(1− C̄ ′`,`)‖

+
∑
`′:`′ 6=`

‖B′·,`′C̄ ′`′,`‖1

≤ δ′ + 2kq1
q0

+
2kq1
q0

= δ′ +
4kq1
q0

.

Let us remark that Identifiability does not need the Domi-
nant Features Assumption (D2). But we do need a condi-
tion we did not need for the computation. Indeed, take the
simple case when k = 2 = d and

B =

(
p0 p1
p1 p0

)
,

where 1 > p0 > p1 > 01. The two columns:
(p0, p1)T , (p1, p0)T are points on the line {(x1, x2) : x1 +
x2 = p0 + p1}. We could take two other points (1 +
ε)(p0, p1)T −ε(p1, p0)T and (1+ε)(p1, p0)T −ε(p0, p1)T

as the columns of B̃ as long as (1 + ε)p1 ≥ εp0 and the
columns of B are convex combinations, so there is some
C̃ satisfying B̃C̃ = BC, upsetting identifiability. Note
that if we required B̃, C̃ also to be Dominant NMF, then by
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the Pure Records property for B̃, C̃, we cannot have ε too
big and so we would have some approximate identifiability.
But we do not want to assume that B̃, C̃ satisfy Dominant
NMF. So, instead, to ensure ε is not too big in this example,
we need p1 << p0.

4. Additional Empirical Results on Synthetic
and Real data:

In main paper we discuss synthetic experiments and show
the robustness of TSVDNMF over the baselines. In this
section, we extend the experiments by performing leave-
one-out experiment on synthetic data to compare robust-
ness of TSVDNMF with recent provable methods.

We also report the clustering results on some more base-
lines.

4.1. Leave-one-out Experiments under heavy Noise

The goal of this experiment is to compare the behavior of
the NMF algorithms in extreme noise case when one of the
data point is fully corrupted.

Baselines: We compare with Gillis-LP, SPA, ER-SPA and
PW-SPA as described section 5.2 in main paper.

Datasets: The noisy data matrix A is generated under sep-
arability or dominant assumption with Gaussian or Multi-
nomial noise, in the same way as described in section 5.2 in
main paper. Additionally, at each iteration we drop ith data
point (column of A) to form the observed matrix Ai and
compute B̂i and Ĉi to evaluate the performance by differ-
ent algorithms and report the minimum over n iterations.

Performance Measure: We chose the same performance
measure “`1-residual” as defined in section 5.2 of main pa-
per, which is a variant of measure used by (Gillis & Luce,
2014). LetA = BC+N be noisy data matrix with true fac-
torization BC, Ai is the observed data matrix after remov-
ing ith column fromA andCi is the true co-efficient matrix
after removing ith column from C. Let B̂iĈi be the out-
put of an NMF algorithm with input Ai. The measure“`1-
residual” = 1− ‖BCi−B̂iĈi‖s

‖BCi‖s where || · ||s is the sum of ab-
solute values of the entries of the input, suggested in (Gillis
& Luce, 2014). Higher value of the measure signifies better
performance.

Observation: For each setting, we generate a data ma-
trix and report the worst performance over n leave-one-
out iterations in Table 1. We observe TSVDNMF outper-
forms the baselines in all the settings except in separable
data with Gaussian noise with noise level β̃ = 0.5 where
PW-SPA performs better and dominant data with Gaussian
noise (β = 1) where SPA and ER-SPA performs better. On
an average improvement of TSVDNMF is 12.7% over the

baselines. Another interesting observation is in the domi-
nant data with high Gaussian noise (β = 2) or multinomial
noise (m = 10) where all the separable based algorithms
gives negative result which is worse than making the ma-
trix C = 0k×n with zero performance. However in this
setting TSVDNMF performs better with very small accu-
racy (0.011 and 0.003 respectively).

4.2. Comparison of TSVDNMF in task of clustering
documents and faces:

In this section we perform clustering on four real text
datasets and one face dataset to show the applicability of
the proposed method on real-world tasks. For clustering by
an NMF algorithm, we find the factorization BC by run-
ning the algorithm with input data matrix A and for each
datapoint, we assign a cluster label based on the maximum
element in the corresponding column of C.

Baselines: We consider the recent provable NMF methods
SPA, ER-SPA and PW-SPA. 4 We also compare with clus-
tering by Kmeans, XRAY(Kumar et al., 2013) due to their
popularity and TSVD as it shares the same framework with
TSVDNMF (even if TSVD is not a provable NMF algo-
rithm). Additionally we also compare with the heuristic
LR-ER-SPA (A low rank variant of ER-SPA) as the recent
work (Mizutani, 2014) claimed it to be the best for cluster-
ing.

Dataset: Following (Mizutani, 2014; Kumar et al., 2013),
we use four text datasets Reuter10, Reuters48, 20 News-
groups and TDT2. Additionally we consider the Yale face
dataset to compare TSVDNMF on facial images.

All these datasets are described in section 5.1 of main pa-
per. For completeness we reiterate the datasets as follows.

We use Reuters 5, 20 Newsgroups 6, TDT-2 7, Yale face
dataset8. In the literature (Kumar et al., 2013; Mizutani,
2014), Reuters has been truncated to have only largest 10
or largest 48 classes. We consider both the versions and
refer them as Reuters10 and Reuters48 respectively. The
Yale dataset contains 15 subjects with 11 images per sub-
ject (total 165 faces), one per different facial expression
or configuration. We chose the vocabulary size as 4096
while creating a bag of words representation of the dataset

4We don’t consider Gillis-LP (Gillis & Luce, 2014) due to its
high run time (as stated by their authors).

5archive.ics.uci.edu/ml/datasets/
reuters-21578+text+categorization+
collection

6https://archive.ics.uci.edu/ml/datasets/
Twenty+Newsgroups

7http://www.itl.nist.gov/iad/mig/tests/
tdt/1998/

8http://vision.ucsd.edu/content/
yale-face-database

archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
http://www.itl.nist.gov/iad/mig/tests/tdt/1998/
http://www.itl.nist.gov/iad/mig/tests/tdt/1998/
http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/yale-face-database
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Table 1. Synthetic leave-one-out experiment under heavy noise: Data is generated using either separability or dominant assumption.
Noise added is either Gaussian or Multinomial (a special case of heavy-tailed noise). Higher value signifies better performance.

Separable data +
Gaussian Noise

Dominant data +
Gaussian Noise

Separable data +
Multinomial Noise

Dominant data +
Multinomial Noise

β or m β = 0.5 1 2 β = 0.5 1 2 m = 10 60 100 m = 10 60 100
Gillis-LP 0.724 0.603 0.308 0.449 0.198 -0.089 0.03 0.469 0.583 -0.03 0.332 0.39
PW-SPA 0.776 0.618 0.305 0.552 0.36 -0.046 0.044 0.516 0.595 -0.036 0.438 0.49
SPA 0.762 0.603 0.301 0.56 0.374 -0.024 0.045 0.532 0.591 -0.032 0.41 0.463
ER-SPA 0.767 0.62 0.313 0.558 0.378 -0.033 0.037 0.525 0.591 -0.032 0.418 0.474
TSVDNMF 0.756 0.667 0.364 0.684 0.367 0.011 0.053 0.582 0.669 0.003 0.489 0.567

Table 2. Clustering : NMI and accuracy achieved by different NMF algorithms on five datasets.
Reuters10 Reuters48 20 Newsgroups TDT-2 Yale face
NMI AC NMI AC NMI AC NMI AC NMI AC

TSVDNMF 0.54 0.618 0.456 0.482 0.436 0.414 0.708 0.635 0.784 0.77
TSVD 0.501 0.58 0.486 0.542 0.402 0.345 0.685 0.535 0.746 0.763
SPA 0.211 0.314 0.297 0.195 0.271 0.258 0.478 0.41 0.523 0.467
ER-SPA 0.316 0.348 0.359 0.241 0.282 0.26 0.534 0.454 0.74 0.667
LR-ER-SPA 0.496 0.581 0.43 0.313 0.364 0.314 0.633 0.575 0.734 0.745
XRAY 0.26 0.37 0.299 0.238 0.172 0.173 0.611 0.591 0.615 0.606
K-means 0.468 0.434 0.346 0.292 0.361 0.401 0.673 0.58 0.714 0.666
PW-SPA 0.369 0.382 0.363 0.24 0.191 0.186 0.603 0.515 0.658 0.655

from the SIFT features(Lowe, 1999). We further prepro-
cessed the data by removing standard stop-words and by
removing words with less than 5 occurrences in the cor-
pus. A brief statistics of the datasets after preprocessing
is (1) Reuters10 (n = 7285, d = 12418, k = 10), (2)
Reuters48 (n = 8258, d = 13647, k = 48), (3) 20 News-
groups (n = 18846, d = 24287, k = 20), (4) TDT-2
(n = 9394, d = 20687, k = 30). (5) Yale (n = 165, d =
4096, k = 15). We used the tf-idf representation (Man-
ning et al., 2008) to construct the data matrix A. We do not
normalize the data in any form.

Performance measures: (same as in the main paper) Fol-
lowing (Mizutani, 2014), we used two metrics, accuracy
(AC) and the normalized mutual information (NMI) to
evaluate the clustering performance on real datasets. Let
T = {T1, · · · Tk} be a partition of the dataset (of n data
points) according to the class labels provided with the
dataset and S = {S1, · · · Sk} be a partition of the dataset
according to the cluster labels returned by an algorithm. To
find AC, we solve a bipartite matching problem to align
S = {S1, · · · Sk} and T = {T1, · · · Tk} such that total
number of common data points |Si ∩ Tj | is maximized

and compute AC = 1
n

k∑
j=1

|Sj ∩ Tj |. NMI is defined as

NMI(S, T ) = I(S,T )
[H(S)+H(T )]/2 where I and H denote the

mutual information and entropy of T and S respectively.
See (Manning et al., 2008) for details.

Observation: Table 2 shows the Accuracy and NMI of
the clustering by TSVDNMF and the baselines. For all
the datasets, TSVDNMF outperforms the provable base-

lines comprehensively. On average, over the provable al-
gorithms, TSVDNMF gives atleast 33% improvement in
NMI on 4 text datasets and 6.6% improvement in NMI
on the Yale-face recognition dataset. TSVDNMF also out-
performs all the methods on all the datasets except TSVD
on Reuters48 where the performance is comparable. This
may be due to the presence of large number of small sized
classes (containing few data points) in Reuters48. This real
data experiment empirically justifies robustness of TSVD-
NMF over the other NMF algorithms. From runtime per-
spective, we observed in Reuters10, TSVDNMF took 8
secs as opposed to ER-SPA’s 3.2 secs and PW-SPA’s 1.2
secs, which is reasonable given the improvement in perfor-
mance.
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