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Abstract

The Noisy Non-negative Matrix factorization
(NMF) is: given a data matrix A (d x n), find
non-negative matrices B,C (d x k, k X n re-
spy.) so that A = BC + N, where N is a
noise matrix. Existing polynomial time algo-
rithms with proven error guarantees require each
column N. ; to have I; norm much smaller than
[[(BC). ||, which could be very restrictive. In
important applications of NMF such as Topic
Modeling as well as theoretical noise models (eg.
Gaussian with high o), almost every column of
N.; violates this condition. We introduce the
heavy noise model which only requires the av-
erage noise over large subsets of columns to be
small. We initiate a study of Noisy NMF under
the heavy noise model. We show that our noise
model subsumes noise models of theoretical and
practical interest (for eg. Gaussian noise of max-
imum possible o). We then devise an algorithm
TSVDNMF which under certain assumptions on
B, C, solves the problem under heavy noise. Our
error guarantees match those of previous algo-
rithms. Our running time of O((n + d)2k) is
substantially better than the O(n3d) for the pre-
vious best. Our assumption on B is weaker than
the “Separability” assumption made by all pre-
vious results. We provide empirical justification
for our assumptions on C'. We also provide the
first proof of identifiability (uniqueness of B) for
noisy NMF which is not based on separability
and does not use hard to check geometric con-
ditions. Our algorithm outperforms earlier poly-
nomial time algorithms both in time and error,
particularly in the presence of high noise.
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1. Introduction

Let Abe a d x n matrix (where each column, A. ;, is
a d dimensional data-point) with non-negative real entries.
Exact NMF is the problem of factoring A into the product
BC' of two non-negative matrices, with k£ columns in B.
k is generally small. So, NMF would find the small num-
ber of “basis vectors” (columns of ) with each data point
a non-negative combination of them. This has led to the
applicability of NMF (Gillis, 2014).

There has been recent interest in developing polynomial
time bounded algorithms with proven error bounds under
specialized assumptions on the data (Arora et al., 2012;
Gillis & Luce, 2014; Recht et al., 2012; Rong & Zou,
2015). All such algorithms require separability assump-
tion, first introduced in (Donoho & Stodden, 2003). An
NMF BC is separable if after a permutation of rows of A
and B, the top k£ rows of B form a non-singular diagonal
matrix Dy. Using separability (Donoho & Stodden, 2003)
showed that B is essentially identifiable (i.e., unique) given
A. (Aroraetal., 2012) observed that if A has an exact sep-
arable NMF, and its rows are in general position, the rows
of A corresponding to Dy can be identified by solving d
Linear Programs and then B can be found. (Recht et al.,
2012) gave a clever reduction to a single linear program
in n? variables. (Gillis & Luce, 2014) made important
theoretical and practical improvements to the Linear Pro-
gram. (Rong & Zou, 2015) introduces subset separability,
a milder assumption than separability, but requires solv-
ing many convex programs. Algorithms based on Linear
and Convex programs are hard to scale (Gillis, 2014) be-
cause of their high complexity. Besides separability, all al-
gorithms make the stronger assumption of reasonably large
diagonal entries in Dy.

In practice, A is not exactly factorable into BC, but A =
BC + N, where, N is the noise matrix. (As before, B, C
have non-negative entries, but N, A can have negative en-
tries.) An algorithm for the Noisy NMF problem seeks to
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compute a d x k matrix B ! for which
1B - Bl <e, (M

where B is the true matrix. [Once B is found, all al-
gorithms find a C' by minimizing ||A — BC||;.] Exist-
ing separability-based algorithms rapidly deteriorate in the
presence of noise. They first identify a set K of k spe-
cial rows and columns of the data matrix A (which cor-
respond to Dy) and use only K to find B. Noise in any
one of the n data columns can change the choice of K
and thus the answer. So, they all have to require that the
{1 norm of each column N be much smaller than the 3
norm of the column of BC'. Substantial noise in a SINGLE
data-point can destroy the model hypothesis. But, in im-
portant applications like Topic Modeling, for almost all j,
N1l ~ [1(BO). ]| !

In this paper we introduce the following noise model,
which we will refer to as Heavy noise model in the sequel.

1
VT C [n], with|T|>en, Tl jez;zv_,j <e (2

We assume without loss of generality that each column of
B sums to 1 and each column of C' sums to at most 1. (See
Remark 1). We require that the noise be small only when
averaged over {)(en) columns of N (instead of for each
column).

We study Noisy NMF under the Heavy noise condition.
More formally we pose the following problem.

Problem Definition: If A satisfies A = BC + N find B
which can satisfy (1), under Heavy noise (2).

Contributions: As mentioned earlier existing separability
based algorithms will not be able to solve the problem of
interest. We devise algorithm TSVDNMF which solves the
Noisy NMF problem under heavy noise.

e Heavy Noise Model: Since the noise condition (2)
only bounds noise in an average of many columns,
it can hold even when the condition ||[N. ||y < €
(imposed by earlier papers) is violated for almost all
j. Indeed, we prove that our noise model (2) sub-
sumes several models of theoretical and practical in-
terest, including spherical Gaussian noise (with the
amplitude of the noise much greater than the data),
general Gaussian noise and multinomial noise (aris-
ing in Topic Modeling) among others. The proof of

"For a matrix M, ||M||1 denotes the maximum /; norm of a
column of M. In the introduction, we use ¢ to denote a generic
small quantity and each instance of it may have different values.

these is based on recent results bounding the eigen-
values of random matrices (with independent vector-
valued random variables as columns) and some stan-
dard tools from Probability - concentration inequali-
ties (Hoffding-Azuma). The word “heavy” refers to
the fact that noise can be as large as or even larger
than data in individual columns.

Dominant NMF and TSVDNMF Like previous pa-
pers, we make assumptions on B as well as C. On B,
our assumptions weaken separability in two ways. In-
stead of a diagonal matrix Dy, we require only a diag-
onally dominant matrix - the off-diagonal entries are
to be smaller, not necessarily 0. Also instead of a sin-
gle row i([) for each column [ of B with B;y; # 0,
we allow a set S; of rows. In the context of Topic
Modeling, this would be multiple “anchor words”, an
issue which has been an open question in earlier pa-
pers. This is the Dominant Feature Assumption (D1)
spelt out later.

We make two assumptions on C. Each column must
have a dominant entry. We call this the Dominant Ba-
sis Vector Assumption (D2). Furthermore, there must
be a (small) fraction of “nearly pure records”, namely,
foreach ! = 1,2, ...k, there are at least gn columns
of C'with Cj; > 1 — ¢, see Assumption D3 later. If a
matrix pair B, C satisfies assumptions D1-3 then it is
said to be Dominant NMF family.

Dominant NMFs can be recovered in presence of
heavy noise by TSVDNMF devised in this paper.
TSVDNMF is based on three crucial steps: (i)
Thresholding, (ii) Clustering based on SVD, and (iii)
identifying dominant basis vectors and then Dominant
Features and then nearly pure records. Our main con-
tribution is to show that TSVDNMEF recovers the cor-
rect NMF if data satisfies the Dominant NMF assump-
tion. The overall complexity is O((n + d)?k) (com-
pared to the O(n®d + n?°d"?) of best previous al-
gorithm). Note that the SPA algorithm of Gillis and
Vavasis (Gillis & Vavasis, 2014) has a better complex-
ity than O(n3d), however they do not solve our prob-
lem; they only guarantee that the 2-norm of B’ 1— B
is small, not the 1-norm. Both Dominant NMF and
TSVDNMF are inspired from (Bansal et al., 2014) but
have crucial differences.

Identifiability One subtle but important remark about
our algorithmic contribution above is that it seems to
suggest the uniqueness of the factorization B because
of (1). This, however, is only implied for B, C' satis-
fying the Dominant NMF model, and does not follow
for unrestricted NMFs. We prove that in fact such a
uniqueness result holds even for the unrestricted NMF.
This is clearly an important and desirable characteris-
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tic of the problem making it well-posed.

(Donoho & Stodden, 2003) first argued the impor-
tance of Identifiability (uniqueness of B), introduced
the notion of separability and showed that it implies
identifiability. Indeed, under separability, since, every
row of C' has a scaled copy of it in A (and if the rows
of A are in general position), then, these rows are the
extreme rays of the cone spanned by all the rows. So,
by Linear Programming, we can identify them. With
our noise model, since single columns/rows can be ex-
tremely corrupted, this argument does not work any-
more. We supply the first proof of (approximate) iden-
tifiability (Theorem 2) under a set of assumptions on
B, C similar to the ones we use for computation.

2. Heavy Noise subsumes several noise models

As opposed to previous noise models, ours subsumes sev-
eral noise models.

Independent Gaussian Noise: Suppose the entries of [V
are i.i.d. A'(0, o?) random variables. We prove the follow-
ing:
Lemma 1. Informal Statement
e Ifo € O(1/V/d), then, (2) holds whp.
e Ifo > Q(1/+/d), the MLE of B violates (1) (even with
k=1)

o [fo > Q(l/d),

N.jlli > es.

Since MLE is the “best possible” the second part is an im-
possibility result - noise greater than (1/+/d) cannot be
tolerated. Lemma 1 and Lemma 2 in Supplement specify
precisely what is inside O, ) . The proof of the first part
draws on Random Matrix Theory, in particular, bounds on
the largest eigenvalue. The other parts are simple.

General Correlated Noise: While noise in different data
points may be independent, noise in different coordinates
of the same data point need not be. We can model this more
general case by having N. ; be independent, not neccessar-
ily identical, vector-valued random variables. Suppose X;
is the covarience matrix of N. ; for j = 1,2,...,n. We
prove (see Supplement) :>

Lemma 2. If||;]|, < O(1/V/d) then (2) holds whp.

This is tight by the impossibility result earlier.

Heavy Noise In the above two cases, noise was bounded
by O(1/4/d) in each direction. Here, we will only assume
[|N. ;|| € O(1) (comparable to data). But I5 length won’t
do (as is seen from part 2 of Lemma 1).

*For a matrix M, ||M]||2 is the spectral norm.

Lemma 3. Suppose ||C. ||+ = ||A.;||1 = 1 and suppose
each column N.; of N is the average of m > 8c3 /et
independent zero-mean vector-valued random variables

N NS NI with |IND| < e, eo any con-

stant. Then, (2) is sansﬁed whp for large enough n.

The proof (Supplement) is based on the bounded difference
inequality for Martingales. (See for example (McDiarmid,
1989)). This still allows ||V ;|1 to be ©(1). See example
under Multinomial.

Multinomial Noise (A special case of Heavy noise): As-
sume ||C. ;||1 = ||A. ;||1 = 1 (inadditionto || B. ;|| = 1).
Also assume there is d x n matrix P with non-negative en-
tries and column sums 1. P could be just BC. NV. ; is the
average of m i.i.d. Multinomial trials, each of which picks
a unit vector e; with probabilities proportional to P; ;. Sub-
tract the mean to make E(N;;) = 0. So,
P;;
E(N”) =0 ) Var(NZ]) = J .

In Topic Modeling, the process above has picked m words
in each document. Usually, m << n,d. Consider the fol-
lowing example, for any ﬁxed 7, if d/ 2 of the P;;’s are
each, N.; is likely to have 2 - 41d
nates and so || N.;||; > 0.5.

1
id
in m/2 of these coordi-

Adversarial Noise: All the above noise models are
stochastic. A non-stochastic noise model which is also a
special case of our noise model:

Lemma 4. Suppose we have adversarial (not random) cor-
ruption (up to I, norm 1 each) of at most an €2 fraction of
all data points. Then, (2) is satisfied.

For example in Image Processing, this allows for an &2 frac-
tion of images to have large corruption which can be used
to model occlusion (Oh et al., 2008).

3. Dominant NMF model

We say that A, B, C, N with A = BC + N and B, C non-
negative, satisfy the dominant NMF model if they satisfy
the following four conditions.

We call the rows of A (indexed by 7) “features” and the
columns (indexed by 7) “records.” The columns (indexed
by ¢) of B are called “basis vectors.”

Remark 1. We may assume without loss of generality that
each column of B sums to 1 and each column of C sums to
at most 1. We can divide each column of B by its |1 length
(ensuring ||B. ;|1 = 1) and multiply the corresponding
row of C' by the same amount and preserve BC. Then,
we can scale each column of C' (and correspondingly each
column of A, N) so as to ensure ||C||1 < 1. Note that this
only scales the entire error.



NMF under Heavy noise

In the following, 0 < €, pg,y,wo,p,a, B < 1 etc. are
constants; €’s should be thought of as being small.

D1. Dominant Features: There are k disjoint sets of fea-
tures, S1,S2,..., Sk C [d], such that (a) Vi € S}, VI’ #
l, Bir < pBit, (0) 3 i, Bit > po,and (¢) Vi € Sy, By >
~. This assumption can be seen as an aggregate version of
the separability condition: instead of asking for an anchor
word in each topic we ask for catchwords (this assumption
is essentially the catchwords assumption in (Bansal et al.,
2014)). This is also a relaxation of the assumption in (Lee
& Seung, 1999) who require the basis vectors to have dis-
joint support.

D2. Dominant Basis Vectors There is a partition of [n]
into 71, T, ..., Ty satisfying (a) Vj € T;,0I" # 1,Cp; >
aand Cp ; < f, and (b) VI, |T;| > woen. This is similar
to the dominant topic assumption in (Bansal et al., 2014)
which says that each document has a dominant topic.

D3. Nearly Pure Records Assumption. For each [, there
is a set P, of at least egn records in each of which the I’th
basis vector has coefficient at least 1 — 4. le., VI,3 >
Eon j with Clj Z 1-— 4.

This is similar to the previous assumption. It is true in the
context of LDA (with low hyperparamter). The previous
two conditions allow for the robustness of our results. In
Section 5.1 we provide empirical evidence that real life cor-
pora often have reasonable fraction, more than 2%, of pure
documents. Also in the presence of heavy noise the condi-
tion is neccessary, please see Discussion at end of Section
1 in Supplementary.

D4. Noise We assume N satisfies the following quantita-
tive version of (2):

1
VT C[n], |T|>esn , Tl YN <4 B
jerT 1

A matrix pair B, C' is defined to be part of the Dominant
NMF family if they satisfy Assumptions D1-3.

4. TSVDNMF : A SVD based algorithm for
NMF

In this section we describe an algorithm which yields an
NMF from the SVD decomposition of matrix obtained by
carefully thresholding the data-matrix A. We will also
show that it provably recovers B under heavy noise if B, C'
comes from a Dominant NMF family.

The algorithm depends on following parameters
a,B,p,e,€0,€4,7 in (0,1) and v > 1. The constant
v is defined in the algorithm. The algorithm effectively
requires only o, « and v. We will discuss the choice of

parameter values after presenting the algorithm.

We assume the constants satisfy:

2
1 £
€<¢ep/20; 8+ p < (1—5e)a;eq < %76017(1;2:;)07 0

TSVDNMF Input: Ak, a,¢e,e4, 8+ p, g9 Output: Ba-
sis matrix B.

1. Thresholding: Apply the Thresholding procedure
(see below) to get D.

2. SVD: Find the best rank k& approximation D™ to D.

3. Identify Dominant Basis Vectors for each record:

(a) Project and Cluster Find (approximately) opti-
mal k-means clustering of the columns of D",

(b) Lloyd’s Algorithm Using the clustering found in
Step 3(a) as the starting clustering, apply Lloyd’s
k-means algorithm to the columns of D (D, not
D(k)).

(c) Let Ry, Ry, ..., Ry, be the k—partition of [n] cor-
responding to the clustering after Lloyd’s.

4. Identify Dominant Features for each basis vector:

(a) For each 4,1, compute ¢(i,l) = the (|gon/2])th
highest element of {A4;; : j € R;}.

o g = {i g(i,1) >  Max(y —
2547 Maxl’;ﬁlyg(L l/))}’ Where’ v= ﬁJ:p—fgas'

5. Find Basis Vectors Find the |eon/4] highest
> icy, Aij among all j € [n] and return the average

of these A. ; as our approximation Be.yl to B. ;.

4.1. Thresholding Procedure

1. Initialize R := [d].
words.*/

/* R is the set of unpruned

2. For each 1,

(a) compute v; the (1 — 5 )—fractile of row 7 of A.
Let (; := av; — 2e4. ((; is the threshold for row
i0f A)

(b) If CZ Z 0, set Wz = {] : Aij 2 Cl} Set -Dij =
V¢ for j € W; and D;; := 0 for j ¢ W;.

() If ¢; < 0, then, set W; := 0; D;; :=
0Vj; R:= R\ {i}.

3. Sort the |W;]| in ascending order. For convenience,
renumber the ¢ so that now |WW;| are in the ascending
order.

4. Fori=1,2,...,in R: (If W;CWj, we “prune” i’ by
zeroing out all entries not in W;.)
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e For i’ > i with i € R, and [W;| < [Wy]| -
gon/8, if W;CWyr, 3 set D ;== 0forall j €
W, \ W;; delete ¢’ from R.

D is the d x n matrix after thresholding.

Remark The pruning step as stated above takes O(nd?)
time. This can be reduced to O*(d?) (assuming £o/k €
(1)) by the following: Instead of comparing W, to W;/,
we just pick a uniform random sample T of O(klogd/zo)
7 ’s at the outset and only compare the sets W; N1 and
W, NT'. The proof that this succeeds with high probability
is simple and we postpone that to the final paper.

Constants The value of ¢4 in the thresholding step is not
sensitive to the recovery of the factorization if it is small
enough. In our experiments we have chosen values so that
~v = 2e4. We fixed the other constants as g = 0.04, a =
0.9, v = 1.15 in all the experiments. Note that a proper
tuning to find the constants may improve the result further.

Theorem 1. Given a dx n data-matrix A and under the as-
sumptions D1-4, the algorithm TSVDNMEF finds for each
l, an approximation B. satisfying

‘B',l — é.J‘ S £€0-
1

The proof of the above theorem appears in the supplement.

Intuition for the algorithm. Thresholding is a crucial part of
the algorithm. It would ideally ensure that the thresholded
matrix D is a block matrix with non-zero entries precisely
in S; x T;. But with errors, this is only approximately true.
Also, since there are many features which are not dominant
for any basis vector, the effect of thresholding on them is
more difficult to control. Our careful choice of thresholds
and the pruning help in ensuring block diagonality for these
features too. Then we apply SVD + k-means which clusters
records according to dominant basis vector. Now taking the
average of each cluster (which is what one does normally
in hard clustering) does not work here, because here, basis
vectors are essentially the extreme points of each cluster.
We tackle this by identifying dominant features first, then
identifying records which have the largest component in
these features. We show that these records are near the
extreme points and show that their average does the job.

Discussion: The Dominant NMF model closely parallels
the work of (Bansal et al., 2014) on Topic Modeling, in
particular Dominant Features are inspired by Catchwords
while Dominant Basis Vectors are inspired by Dominant
topics. TSVDNMF is also similar to TSVD proposed in
(Bansal et al., 2014). However there are significant differ-
ences with (Bansal et al., 2014). There are at least three

If W, W’ C [n], we write WCW’ to denote: |W \ W’| <
8071/4

important new aspects in this paper. Firstly, the main pur-
pose of this paper is to handle NMF under heavy noise. We
introduce a heavy noise model which subsumes large vari-
ety of noise models. The second is the thresholding step:
in (Bansal et al., 2014) an assumption called ‘no-local-min”
was crucially used in this step. For NMF, that assumption
does not hold and thresholding instead uses a new step Step
4 in TSVDNMF ; its properties are proved in Lemmas 6
and 7 of the Supplementary and this forms a crucial part
now of the proof of the Main Theorem. The third impor-
tant new aspect is the proof of Identifiability which is not
considered at all in (Bansal et al., 2014). Further, the ran-
domness of C' was crucial throughout the proofs in (Bansal
et al., 2014), but in the NMF setting, there is no stochastic
model of C. So, the proofs of correctness of Steps 4 and 5
of TSVDNMEF are now completely different

4.2. Identifiability of Dominant NMF

In their influential paper (Donoho & Stodden, 2003),
Donoho and Stodden consider the question of uniqueness
of nonnegative matrix factorization for exact NMF. There
has been considerable work on understanding uniqueness
conditions since then; we refer to Huang et al. (Huang et al.,
2014) and Gillis (Gillis, 2014) and references therein for
an up-to-date review of the literature. Some of these condi-
tions are necessary and sufficient; unfortunately they do not
seem to be easy to check or use. These conditions are often
geometric in nature and not directly related to the applica-
tion at hand. Donoho et al. gave a set of necessary con-
ditions called Separable Factorial Articulation Family in-
cluding separability. Laurberg et al. (Laurberg et al., 2008)
gave further such conditions and also studied the approxi-
mate NMF case.

By identifiability of approximate NMF, we mean the fol-
lowing: Given k and a d x n matrix A, a d X k matrix B is
(approximately) identifiable from A if there exists a C' with
||[A—BC||; < eandforany B’,C’ (dx k and k xn respec-
tively) with ||A — B'C’||y < e, we have ||B — B'||; < ¢/,
where, ¢/ — 0 as ¢ — 0 and we may need to permute the
columns of B’ appropriately.

Under the above conditions, we have the following theo-
rem.

Theorem 2. Suppose that B, C are d X k and k x n matri-
ces with non-negative entries where each column of B sums
to 1 and they satisfy Assumptions D1 and D3. Suppose that
B € RYF and C' € R¥*™ sarisfy

I (BC).; = Y (B'C) il <6 Y _|ICjllLVe.

JER, JER, JEP,
“4)

Let &' := 2¢4 + 60. Also assume that the following con-
ditions are satisfied: (a) (po — &')? > 4k(p1 + '), and
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(b) 26’ < pg — p1. Then B is close to B’ up to permu-
tations and scalings of the columns. More precisely, there
exist a permutation 7 : [k] — [k| and constants a; € R for
Jj € [K] such that

4k(p1 +6")
IB.j — ;B il < 26"+ T

Proof. See Theorem 3 in Supplement. O

We remark that the conditions used for the identifiability
result are not exactly the same as those for our algorithmic
results. This is essential and is explained in Supplement
after the proof of Theorem 3.

5. Experiments

In this section we do a comprehensive empirical evaluation
of TSVDNMF on synthetic and real datasets. We follow
(Gillis & Luce, 2014) for experiments on synthetic datasets
and (Mizutani, 2014) on real-world datasets. Our main ob-
jectives are three fold. More specifically

e Checking of Dominant NMF assumptions: In sec-
tion 5.1 we show that Dominant Basis assumption and
Pure record assumption (as described in section 3) are
satisfied by the existing state of the art NMF algo-
rithms on often used real world datasets in literature
(Kumar et al., 2013; Mizutani, 2014).

e Quality of Factorization recovered by TSVD-
NMF under heavy noise: Following (Gillis & Luce,
2014) we generate matrices B, C' and add noise N to
generate the observed matrix A. We compare the fac-
torizations of state of the art provable algorithms with
TSVDNMF . We experiment with various noise mod-
els and report results in Section 5.2.

e Performance of TSVDNMF on real world datasets:
In section 5.3, we compare TSVDNMEF on the task of
clustering on various datasets used in (Kumar et al.,
2013; Mizutani, 2014).

Experimental setup: To find B in separable algorithms
and C' in TSVDNMF , we used non-negative least squares
method as proposed in (Kumar et al., 2013). All exper-
iments are performed using Matlab on a system with 3.5
GHz processor and 8GB RAM.

5.1. Checking Dominant NMF assumptions on real
data

To check the validity of the dominant basis vector assump-
tion and the pure records assumption (as defined in D2 and
D3 of section 3), we run the existing state-of-the-art NMF

Table 1. Checking validity of Dominant Basis Assumption and
Pure Records Assumption: % records satisfying dominant basis
vector assumption with « = 0.4 and 8 = 0.3 and % records
satisfying pure record assumption with e4 = 0.05

Datasets Zb l.lecordS: Dominant % Pure records
asis vectors

Reuters10 | 60.97 10.11

Reuters48 | 35.08 2.28

20NG 55.73 7.02

TDT2 64.56 7.70

Yale 78.78 14.54

algorithm PW-SPA (Gillis & Ma, 2014) on the following
text and face datasets, and analyze the coefficient matrix

C.

Dataset: Reuters 4, 20 Newsgroups >, TDT-2 6, Yale face
dataset’.

In the literature (Kumar et al., 2013; Mizutani, 2014),
Reuters has been truncated to have only largest 10 or largest
48 classes. We consider both the versions and refer them
as Reuters10 and Reuters48 respectively. The Yale dataset
contains 15 subjects with 11 images per subject (total 165
faces), one per different facial expression or configuration.
We chose the vocabulary size as 4096 while creating a bag
of words representation of the dataset from the SIFT fea-
tures. We further preprocessed the data by removing stan-
dard stop-words and words with less than 5 occurrences in
the corpus. A brief statistics of the datasets after prepro-
cessing is (1) Reuters10 (n = 7285,d = 12418,k = 10),
(2) Reuters48 (n = 8258,d = 13647,k = 48), (3) 20
Newsgroups (n = 18846,d = 24287, k = 20), (4) TDT-2
(n = 9394,d = 20687,k = 30). (5) Yale (n = 165,d =
4096,k = 15). We used the tf-idf representation (Man-
ning et al., 2008) to construct the data matrix A. We do not
normalize the data in any form.

Observation: The percentage of records satisfying the
dominant basis assumption with « = 0.4 and 8 = 0.3, and
the pure record assumption with ¢4 = 0.05 are reported in
Table 1 for different datasets. We see significant amount
of records satisfy the two assumptions and conclude that
the existing NMF method PW-SPA recovers the coefficient
matrix satisfying the proposed assumptions whence the as-
sumptions are empirically realistic.

‘archive.ics.uci.edu/ml/datasets/
reuters—-21578+text+categorization+
collection

Shttps://archive.ics.uci.edu/ml/datasets/
Twenty+Newsgroups

*http://www.itl.nist.gov/iad/mig/tests/
tdt/1998

"http://vision.ucsd.edu/content/
vale-face-database
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archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
http://www.itl.nist.gov/iad/mig/tests/tdt/1998
http://www.itl.nist.gov/iad/mig/tests/tdt/1998
http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/yale-face-database
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Table 2. Synthetic experiment under heavy noise: Data is generated using either separability or dominant assumption. Noise added is

either Gaussian or Multinomial (a special case of heavy-tailed noise). Higher value signifies better performance.

Separable data + Dominant data + Separable data + Dominant data +

Gaussian Noise Gaussian Noise Multinomial Noise Multinomial Noise
Borm 8=05 |1 2 8=05 |1 2 m =10 | 60 100 m =10 | 60 100
TSVDNMF | 0.759 0.659 | 0.402 | 0.757 0.478 | 0.114 | 0.094 0.587 | 0.654 | 0.017 0.51 0.605
Gillis-LP 0.725 0.577 | 0.27 0.554 0.334 | 0.006 | 0.056 0.488 | 0.603 | -0.017 0.364 | 0.443
PW-SPA 0.761 0.568 | 0.249 | 0.619 0.424 | 0.054 | 0.054 0.529 | 0.619 | -0.014 0.423 | 0.497
SPA 0.764 0.566 | 0.246 | 0.618 0.437 | 0.074 | 0.056 0.527 | 0.616 | -0.012 0.416 | 0.493
ER-SPA 0.765 0.57 0.252 | 0.619 0.433 | 0.065 | 0.056 0.528 | 0.618 | -0.009 0.419 | 0.493

5.2. Quality of Factorization recovered by
TSVDNMF under heavy noise

We perform synthetic experiments to compare the perfor-
mance of TSVDNMF with NMF algorithms which have
provable error guarantees.

Baselines After comprehensive experimentation (Gillis &
Luce, 2014) recommends Gillis-LP for their robustness.
We also consider SPA which has been recently shown to
be provably robust, and recently proposed variants of SPA,
namely ER-SPA and PW-SPA. In summary we compare
TSVDNMF with the following algorithms. (1) SPA: the
successive projection algorithm of (Aradjo & et al., 2001).
(2) ER-SPA: ellipsoid rounding of (Mizutani, 2014) ap-
plied to SPA. (3) PW-SPA: SPA preconditioned with the
SVD based approach proposed in (Gillis & Ma, 2014). (4)
Gillis-LP: Solves equation (8) of (Gillis & Luce, 2014).% °

Datasets: Noisy data matrix A, is set to be II(BC' + N)
where matrices Byxy and Cjx.,, are generated to satisfy
either Separability or Dominant assumption and the noise
matrix Ngx,, is generated under two different noise mod-
els, Gaussian noise or Multinomial noise. Il is a per-
mutation matrix generated uniformly at random. We chose
d = 100,n = 100, k = 10.

Separable data: Following (Gillis & Luce, 2014), each en-
try of C'is generated uniformly at random from the interval
[0,1]. The matrix B is taken as [] B]T where columns of
B are generated from Dirichlet distribution with parame-
ters drawn from a uniform distribution over interval [0,1].

Dominant data: Each column of C' is generated from a
symmetric Dirichlet distribution with hyper-parameter i
Columns of B are also generated from Dirichlet by ran-
domly selecting c features and putting weight o 19 on
these features. Concretely, let ¢ be the number of domi-
nant features for each basis vector and 7 be the sum of the
weights of the dominant features in each basis vector. As-

sume 7 = (7o) - (dzc). For the jth basis vector, we set

8For ER-methods and Gillis-LP, as suggested by their au-
thors, we set n = 0.99,6 = 5 and p = 1 respectively.

Codes for SPA, PW-SPA, Gillis-LP are obtained from their
first author’s website

a; = 1451 and multiply the elements of &; indexed from
(c(j — 1)+ 1) to ¢j by . jth column of B, is then gener-
ated from a Dirichlet with hyper-parameter &;;. We chose
c=3,m =0.1.

Gaussian Noise: Noise matrix N is generated with each
entry from A(0, 1) and jth column N ; is multiplied by

\% x ||(BC). j|l2 (to make the noise comparable to the

true matrix BC') where B € {0.5,1, 2} is the noise level.

Multinomial Noise: The matrices B and C are normal-
ized such that each of their column sums to one. N ;, jth
column of noise matrix [V, is generated by picking m sam-
ples (a sample is a 1-of-d coding) from [1 - - - d] with prob(z)
= (BC),; and taking an average of the samples to find NV ;.
Then N ; is set as Z\~f,j — (BC).j. Lower m implies high
noise and vice versa, m € {10, 60, 100}.

Performance measures: Let A = BC + N_be the
noisy data matrix with factorization BC' and BC be the
output of an NMF algorithm. We compare the per-
formance of various algorithms by the ¢1-residual, 1 —
|IBC — BC||s/||BC||s where || - ||s is the sum of abso-
lute values of the entries of the input, suggested in (Gillis
& Luce, 2014). Higher value of the measure signifies better
performance.

Observation: For each setting the performance is averaged
over 10 independent datasets and reported in Table 2. In
the experiment on separable data with high Gaussian noise,
Gills-LP and ER-SPA outperform SPA which is consistent
with (Gillis & Luce, 2014) and (Mizutani, 2014). TSVD-
NMF outperforms the baselines by 27.4% (on an average)
in all the settings except in separable data with gaussian
noise (B = 0.5) where ER-SPA performs better, but with
a very small (0.8%) improvement over TSVDNMF . An-
other interesting observation is in the multinomial noise
setting with m = 10 (high noise) where all the separa-
ble based algorithms gives negative result which is worse
than making the matrix C' = O x,, with zero performance.
However in this setting TSVDNMF performs better with
very small accuracy (0.017). In section 4.1 of supplement
material we report results of Leave one out experiment to
demonstrate the robustness of TSVDNMEF .
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Table 3. Clustering : NMI and Accuracy achieved by different NMF algorithms on five datasets.

Reuters10 Reuters48 20 Newsgroups | TDT-2 Yale face

NMI | AC NMI | AC NMI | AC NMI | AC NMI | AC
TSVDNMF | 0.54 0.618 | 0.456 | 0.482 | 0.436 | 0.414 0.708 | 0.635 | 0.784 | 0.77
SPA 0.211 | 0.314 | 0.297 | 0.195 | 0.271 | 0.258 0.478 | 0.41 0.523 | 0.467
ER-SPA 0.316 | 0.348 | 0.359 | 0.241 | 0.282 | 0.26 0.534 | 0.454 | 0.74 0.667
PW-SPA 0.369 | 0.382 | 0.363 | 0.24 0.191 | 0.186 0.603 | 0.515 | 0.658 | 0.655

5.3. Clustering performance of TSVDNMF on real
world datasets

In this section we compare TSVDNMF with the recent
provable NMF methods on clustering experiment with real
text and face datasets. For clustering, first we find the co-
efficient matrix C' and then for each datapoint, we assign a
cluster label based on the maximum element in the corre-
sponding column of C.

Baselines: We consider the recent provable NMF methods
SPA, ER-SPA and PW-SPA. 10 We also compare with clus-
tering by Kmeans, XRAY (Kumar et al., 2013) due to their
popularity and TSVD as it shares the same framework with
TSVDNMF , however as our focus is on provable NMF
methods, we put these results in section 4.2 of supplement.

Dataset: Following (Mizutani, 2014; Kumar et al., 2013),
we use four text datasets Reuter10, Reuters48, 20 News-
groups and TDT2. Additionally we consider the Yale face
dataset to compare TSVDNMF on facial images. All these
datasets are described in section 5.1.

Performance measures: Following (Mizutani, 2014), we
used two metrics, accuracy (AC) and the normalized mu-
tual information (NMI) to evaluate the clustering perfor-
mance. Let T = {71, ---T;} be a partition of the dataset
(of n data points) according to the true class labels and
S = {81, - Sk} be a partition of the dataset according
to the cluster labels returned by an algorithm. To find AC,
we align § and 7 to maximize the total number of com-

k
mon data points and compute AC = 1 3™ |S; N T;|. NMI
j=1

is defined as NMI(S,7) = 2-I(S,T)/[H(S) + H(T)]
where [ and H denote the mutual information and entropy
respectively. See (Manning et al., 2008) for details.

Observation: Table 3 shows the Accuracy and NMI of
the clustering by TSVDNMF and the baselines. For all
the datasets, TSVDNMF outperforms the Baselines com-
prehensively. On average, over the provable algorithms,
TSVDNMF gives atleast 33% improvement in NMI on 4
Text datasets and 6.6% improvement in NMI on the Yale
face recognition dataset. This real data experiment em-
pirically justifies robustness of TSVDNMF over the other

"We don’t consider Gillis-LP (Gillis & Luce, 2014) due to its
high run time (as stated by their authors).

NMF algorithms. From runtime perspective, we observed
in Reuters10, TSVDNMF took 8 secs as opposed to ER-
SPA’s 3.2 secs and PW-SPA’s 1.2 secs, which is reasonable
given the improvement in performance.

5.4. A Summary of the Empirical results

First we empirically justified the dominant basis vector and
the pure record assumptions. Then we extensively com-
pared our proposed approach with the state-of-the-art prov-
ably robust NMF algorithms on synthetic datasets under
different noise models and on real text and face datasets for
the task of clustering. We observed that when the data sat-
isfies the separability assumption (with high noise) or the
dominant assumption, TSVDNMF is more robust than the
baselines on both the Gaussian and multinomial noise mod-
els. In the clustering experiment TSVDNMF outperforms
all the other methods by a significant margin.

We also conducted leave-one-out experiments on synthetic
data under separability and dominant assumptions with
both Gaussian and multinomial noise models. We see
TSVDNMF to be more robust and an improvement of
12.7%(on average) over the baselines. For details see sec-
tion 4.1 of supplement. We also include clustering results
with more baselines in section 4.2 of supplement where
TSVDNMF outperforms over the extended baselines on all
the datasets except Reuters48 where it is comparable to the
best performing TSVD.

6. Conclusion

Existing NMF models are based on separability assumption
and are extremely sensitive to noise. This paper proposes
an alternate model which does not require separability, is
realistic, is resilient to noise in the data, and gives robustly
unique NMF. Inferring the correct factorization is also
efficiently done by the proposed TSVDNMF algorithm.
This is the first work towards proposing a provable NMF
model for heavy noise setting along with a substantially
improved noise-tolerant and efficient algorithm and a
proof of uniqueness of factorization. Among the possible
directions for future work: Further improve the running
time. SVD is a bottleneck here, but perhaps for suitable
models one can do much better. Also, weaker conditions
for robust uniqueness would be of interest.
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