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1. General Remarks on the Results
As mentioned in the main manuscript, existing analyses in
the sparse sensing literature are inadequate for analysing
the aggregated data case, and our guarantees are much
stronger than what could be achieved by a naive analysis.

The most general setup of the problem under study can be
written in the following form:

Estimate: β0

Given: M̂, υ̂

where: M̂ = M + E

υ̂ = y + s

y = Mβ0

(1)

There are four variations of this problem that are of interest
in our setup:

1. error in design matrix M̂ = M + E, without noise in
observation vector y (that is, s = 0)

2. noise in observations υ̂ = y + s, with exact design
matrix M (that is, E = 0)

3. design matrix error E and observation noise s, where
E and s are independent, E ⊥⊥ s

4. the aggregated data case (as we study in this work)
which contains both design matrix error E and obser-
vation noise s, and where E and s are linearly corre-
lated

To our knowledge, all prior work in the literature (eg. [Her-
man & Strohmer 2010; Chi et al. 2011; Rosenbaum et al.
2013; Rudelson & Zhou 2015] among others) only concern
themselves with cases 1, 2 and 3. Moreover, for papers that
do deal with case 2 and 3, unless s = 0 the existing analysis
will be restricted to providing only approximate recovery
guarantees. Thus, these methods do not apply directly to

case 4, a setup that almost always arises in the context of
data aggregation.

We focus our investigation on the aggregated data case, that
is, case 4: where E and s are linearly correlated. First
of all, the existing literature does not make it clear how
linearly correlated noise affects sparse parameter recovery
from standard methods (like the LASSO or basis pursuit),
and if the parameter can be recoverable in such cases. Even
ignoring the linear correlation in the noise model, naive ap-
plication of existing techniques that involve bounding error
magnitudes will only be able to provide approximate re-
covery guarantees (where the degree of `2-approximation
would depend on ‖β0‖).

The key observation that allows us to bypass all these limi-
tations is the fact that while E and s are correlated, we have
one more piece of the puzzle that can be used to augment
the information in equation 1: the fact that not only are E
and s linearly correlated, they are tied together via the true
parameter β0 in the form of the expression s = Eβ0. This
is an artefact of the natural structure that is generated by
data aggregation in linear models.

This observation is key to bypassing the problems in pa-
rameter recovery outlined earlier. Indeed, we show that not
only can we guarantee parameter recovery using standard
compressed sensing algorithms, we can also guarantee ex-
act parameter recovery, as we see in Theorem 3.1, and re-
covery upto arbitrarily accurate degree of estimation as we
see in 3.2 and 3.3. These results, while seemingly intuitive
after the fact, have not been shown in either the compressed
sensing literature, or in the literature on ecological esti-
mation dating back at least 60 years to [Goodman 1953],
and to our knowledge, ours is the first work that examines
and gives guarantees for the structured parameter recovery
problem in the context of aggregated data.

Furthermore, as we mention in the manuscript, our analy-
sis techniques generalise beyond the exact problem setup
and estimation procedure that we present in this paper, and
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can be easily extended to analyse sparse or approximately
sparse parameter recovery from aggregated data in a wide
variety of contexts (non-sparse β0, beyond sub-Gaussian
assumptions, etc. see for example [Candes et al. 2006; Cai
et al. 2009]) and using various kinds of estimators beyond
the LASSO or basis pursuit (for example the Dantzig selec-
tor, Matrix Uncertainty-selector, etc., see [Candes & Tao
2007; Rosenbaum et al. 2013]). While the sample com-
plexity required may vary a little from case to case, our
main results, on exact parameter recovery or recovery to
within any arbitrary degree of approximation, would re-
main the same.

2. Proofs of Main Results
Note that the analysis presented below is one out of many
possible approaches. Slightly different bounds can be
achieved using different methods of analysis, for example
using the Bauer-Fike Theorem, Weyl’s Inequality, Wielandt
Hoffman theorem, etc. and the bounds derived below can
be made tighter by making further assumptions on the dis-
tributions of covariates or noise terms, etc.

The main property that enables recovery of sparse parame-
ters from an underdetermined linear system is the restricted
isometry condition, also sometimes known as the Uniform
Uncertainty Principle.

For the matrix M ∈ Rk×d and any set T ⊆ {1, 2, · · · , d},
supposeMT is the k×|T |matrix consisting of the columns
of M corresponding to T . Then, the s-restricted isome-
try constant δs of the matrix M is defined as the smallest
quantity such that the matrixMT obeys

(1− δs)‖c‖22 ≤ ‖MT c‖22 ≤ (1 + δs)‖c‖22

for every subset T ⊂ {1, 2, · · · , d} of size |T | < s and all
real c ∈ R|T |

As in the main manuscript, we assume that M satisfies the
restricted isometry hypotheses for both exact recovery and
noisy recovery. That is, there exists an s0 such that the
following conditions are satisfied with respect to the 2s0-
restricted isometry constants δ2s0 for M in the manner as
defined below:

1. For exact recovery from noise-free measurements, we
assume δ2s0 < Θ0 = 3

4+
√

6
≈ 0.465

2. For approximate recovery from noisy measurements,
we assume δ2s0 < Θ1 =

√
2− 1 ≈ 0.414

However, we do not know the true mean matrix M, only
the sample mean matrix M̂n = M + En, where En is
the matrix of aggregation error owing to empirical estima-
tion from a finite number of samples. We now show that

when the true mean matrix M satisfies the restricted isom-
etry conditions, given enough samples n so will the sample
mean matrix M̂n with high probability.

We first show the following result for the isometry con-
stants for M̂n = M+En in terms of the eigenvalues of En.

Lemma 2.1. Let δs be the s-restricted isometry constant
for M. Let

√
λn denote the absolute value of the largest

(in absolute value) singular value of En,T for all subsets
T ⊂ {1, 2, · · · d}. Then, ζs = (δs+λn+2

√
λn(1− δs)) is

such that for every subset T ⊂ {1, 2, · · · , d} of size |T | < s
and all real c ∈ R|T |

(1− ζs)‖c‖22 ≤ ‖(MT + En,T )c‖22 ≤ (1 + ζs)‖c‖22 (2)

Proof. For every subset T ⊂ {1, 2, · · · , d} and all real c ∈
R|T | we have by triangle inequality,

‖(MT+En,T )c‖ ≤ ‖MT c‖+‖En,T c‖ ≤ (
√

1 + δs+
√
λn)‖c‖

Also,√
(1− δs)‖c‖ ≤ ‖MT c‖

= ‖ ((MT + En,T )− En,T ) c‖
≤ ‖(MT + En,T )c‖+ ‖En,T c‖
≤ ‖(MT + En,T )c‖+

√
λn‖c‖

Therefore, we have

(
√

1− δs −
√
λn)‖c‖ ≤ ‖(MT + En,T )c‖

≤ (
√

1 + δs +
√
λn)‖c‖

Assume1 λn < (1 + δs), and ζs = (δs + λn +
2
√
λn(1 + δs)) < 1, then we have√

(1− ζs) ≤
√

1− δs −
√
λn

and √
(1 + ζs) =

√
1 + δs +

√
λn

This completes the proof.

We now bound the singular values of En,T .

Lemma 2.2. Let
√
λn denote the absolute value of the

largest (in absolute value) singular value of En,T for any
T ⊂ {1, 2, 3, · · · d}. Then

λn ≤ ‖En‖2F

where ‖ · ‖F denotes the Frobenius norm.

1We shall prove later that with overwhelmingly high proba-
bility λn <

(
(Θ−δs)2

9(1+δs)

)
where Θ < 1. This subsumes both the

assumptions stated here.
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Proof. Let
√
λ

(n,T )
τ for τ = 1, 2, · · · be absolute values of

the non-zero singular values ofEn,T . Consider the singular
value decomposition of En,T = UΛV >. Then

‖En,T ‖2F = Trace(E>n,TEn,T ) = Trace(Λ>Λ)

=
∑
τ

λτ ≥ max
τ

λ(n,T )
τ

Therefore, for every T we have

max
τ

λ(n,T )
τ ≤ ‖En,T ‖2F ≤ ‖En‖2F

Since λn = maxT maxτ λ
(n,T )
τ , we have the result.

This is just one approach, similar results can also be ob-
tained, for example, by bounding the eigenvalues using the
Gershgorin Circle Theorem.

Finally we show that with high probability λn can be
bounded.
Lemma 2.3. Suppose each covariate has a sub-Gaussian
distribution with parameter σ2, that is, for each covari-
ate xj,i ∈ xj = [xj,1, xj,2 · · ·xj,d] and each group j ∈
{1, 2, · · · k}, we have for every t ∈ R, the logarithm of the
moment generating function is quadratically bounded

lnE[et(xj,i−µj,i)] <
t2σ2

2

Then, for any positive θ > 0, the probability P (λn > θ) <

2kd e−nθ/2kdσ
2

Proof. Note that the (j, i)th element of the matrix En is the

zero random variable En,(j,i) =
∑n

m=1(x
(m)
j,i −µji)

n , where
x

(m)
j,i is the mth observation of the ith covariate in the jth

group, and µji is the mean of the ith covariate in the jth

group.

Since each covariate has a sub-Gaussian distribution with
parameter σ2, we have, by Hoeffding’s inequality for sub-
Gaussian random variables, for any θ > 0

P
(
|En,(ij)| >

√
θ
)

= P

(
|
∑n
m=1(x

(m)
j,i − µji)
n

| >
√
θ

)
< 2e−nθ/2σ

2

Therefore, using Lemma 2.2, we have

P (λn > θ) ≤ P (‖En‖2F > θ)

≤
∑
ij

P (E2
n,(ij) >

θ

kd
)

≤
∑
ij

2e−nθ/2kdσ
2

= 2kd e−nθ/2kdσ
2

where the second inequality is by union bound and the third
is due to Hoeffding’s inequality.

We are now in a position to prove the main results.

2.1. Proof of Theorem 3.1

Proof. We saw in Lemma 2.1 that is the s-restricted isom-
etry constants for M are δs, then the corresponding s-
restricted isometry constants for M̂n are

ζs = δs + λn + 2
√
λn(1 + δs) < δs + 3

√
λn(1 + δs)

for small enough λn

Let Θ0 = 3
4+
√

6
≈ 0.465. Suppose there exists an s0 such

that the isometry constant δ2s0 for the true mean matrix M
satisfy δ2s0 < Θ0. Using Theorem 2.1 [Foucart 2010],
we can see that any κ0 sparse β0 can be recovered from
M̂n if the corresponding isometry constants for M̂n satisfy
ζ2s0 < Θ0, that is

ζ2s0 < Θ0

≡ ζ2s0 − δ2s0 < Θ0 − δ2s0
⇐ 3

√
λn(1 + δ2s0) < Θ0 − δ2s0

≡ λn < ϑs0

(3)

where

ϑs0 =

(
(Θ0 − δ2s0)2

9(1 + δ2s0)

)
All that is left to show is that the condition ζ2s0 < Θ0 is
true with high probability. This is straightforward by using
Lemma 2.3 and the results in equations (2) above. We have,

P (ζ2s0 < Θ0) > P (λn < ϑs0)

= 1− P (λn > ϑs0)

≥ 1− e−C0n by Lemma 2.3

where the constant C0 is such that

C0 = O

(
ϑ0

kdσ2

)
= O

(
(Θ0 − δ2s0)2

kdσ2(1 + δ2s0)

)

2.2. Proof of Theorem 3.2

Proof. Using Theorem 2.2 [Candes 2008], recovery of β0

within an O(ξ) distance is possible if the restricted isom-
etry constants for M̂n satisfy ζ2s0 < Θ1 where Θ1 =√

2 − 1 ≈ 0.414, and the error term εn is bounded as
‖εn‖2 < ξ. For succinctness, we drop the subscript from
the error term and denote εn simply as ε.
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The probability of the restricted isometry condition being
violated for the sample means can be bounded in a manner
similar to the proof of theorem 3.1 as

P (ζ2s0 > Θ1) ≤ e−C1n

where C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
. The probability of the er-

ror being too large can be bounded in a similar fashion by
using Hoeffding’s inequality as

P (‖ε‖2 > ξ) = P (

k∑
j=1

ε2j > ξ2)

≤
k∑
j=1

P (ε2j >
ξ2

k
)

=

k∑
j=1

P (|εj | >
ξ√
k

)

≤
k∑
j=1

2 e−nξ
2/2ρ2k

= 2k e−nξ
2/2ρ2k

where the first inequality is by union bound and the second
inequality is due to Hoeffding’s inequality.

Therefore the probability of recovery within O(ξ) is
bounded below by

1− P (ζ2s0 > Θ1)− P (‖ε‖2 > ξ) = 1− e−C1n − e−C2n

where C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
and C2 ∼ O

(
ξ2

ρ2k

)
As mentioned earlier, there are multiple other approaches
for special cases and using alternative conditions for suc-
cessful recovery of sparse or nearly sparse vectors from
under-determined linear systems, see for instance [Candes
& Tao 2007], [Candes & Plan 2011], [Cai et al. 2010b],
[Cai et al. 2010a], [Cai et al. 2009], etc. The analysis with
alternative assumptions follows along the same lines as that
presented in this paper.

2.3. Proof of Theorem 3.3

Proof. Note that the observations where the target mean is
estimated from aggregated data as υ̂∆ = υ̂n + h∆ can
be considered noisy observations of the type M̂nβ0 =
υ∆ − h∆. Therefore, using Theorem 2.2, recovery of β0

within an O(ξ∆) distance is possible if the restricted isom-
etry constants for M̂n satisfy ζ2s0 < Θ1 and the the error
term h∆ is bounded as ‖h∆‖2 < ξ∆. The probability of
the restricted isometry hypothesis being violated is

P (ζ2s0 > Θ1) ≤ e−C1n

where C1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
. This part is exactly identi-

cal to the proof of Theorem 3.2.

The bound on the error in estimation of target means can
be done in a deterministic manner as follows.

The mean estimation procedure from the histogram is ex-
act if the targets in each bin are distributed symmetrically
around the mid point of each bin. Note that since each tar-
get is at a maximum distance of ∆

2 from the mid point of
their corresponding bin, by setting every target to the mid
point of the bin we incur at most an error of ∆

2 for each tar-
get. Therefore, the maximum possible error in estimating
the sample mean in each group is

|ν̂n − ν̂∆| <
∆

2

And hence, the error term h∆ is bounded in `2 as

‖h∆‖2 <
√
k

∆

2

This is of course a loose bound which assumed a worst-
case pathological condition. Better bounds on the recovery
error can be obtained by appropriate regularity assumptions
on the distribution of the targets.

3. Higher Order Moments
Consider the τ th order moments under a linear function

ρτ = E[yτ ] = E[(x>β)τ ], τ = 1, 2, 3, · · · (4)

If all moments of the covariates are known, that is,
{E[Πjx

aj
j ] : aj ∈ Z+,

∑
j aj = τ} is known, then the

right hand side of (4) is a scalar valued (shifted) homoge-
neous polynomial function in β of degree τ . Therefore, (4)
is essentially a set of multivariate polynomial equations in
β = [β1, β2, · · · , βd]. First consider whether the problem
is well-defined, that is, whether the system of equations (4)
has a unique solution. There is a considerable amount of lit-
erature in computational algebraic geometry that deals with
the determination of whether a system of multivariate poly-
nomial equations has at least one solution or is inconsistent
(using, for instance, techniques and results in [Adams &
Loustaunau 1994; Ruiz 1985]). In our case, this question is
moot since we assume that the data is generated according
to a linear model and therefore, there exists at least one so-
lution. Unfortunately, testing for uniqueness of solution is
a much harder problem.

As a base case, consider only using the first two moments.
This is a widely applicable case since for many commonly
used distribution choices forPx like Multivariate Gaussian,
Poisson, etc. the first two moments completely characterise
the entire distribution.
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The equations (4) can now be written comprising of a set
of linear and a set of quadratic equations. The linear sys-
tem of equations involving first order moments from each
population sub-group j ∈ {1, 2, · · · k} is as follows:

E[x>(j)β] = E[y(j)]⇔ µ>j β = νj j = 1, 2, 3, · · · k (5)

Similarly, the set of quadratic equations involving sec-
ond order moments from each population-subgroup j ∈
{1, 2, · · · k} can be written as follows:

E[β>(xx>(j))β] = E[y2
(j)]⇔ β>Σjβ = σ2

j j = 1, · · · , k
(6)

where Σj and σ2
j are the covariance of x and variance of y

corresponding to the jth population subgroup.

Geometrically, (5) and (6) represent in terms of β a set of
k hyperplanes and a set of k ellipsoids centred at the origin
in Rd space. The problem has a unique solution if the set
of hyperplanes and the set of ellipsoids have a single point
of intersection.

Counting the number of points of intersection of polynomi-
als in real space is a difficult problem in the general case. It
is usually studied for the complex space Cd under the um-
brella of enumerative geometry [Katz 2006]. As earlier, if
k ≥ d and under the assumption that at least one solution
exists (the system is consistent), the set of hyperplanes is
sufficient to recover the true β0. We would ideally like to
see if knowledge of second order moments can reduce the
number of population subgroups k required for a unique
solution, or aids the estimation process in any other way.

Let Σ be some covariance matrix and U∆SU
> be its sin-

gular value decomposition, where U is an orthonormal ma-
trix and ∆S = diag(S) is a diagonal matrix of loadings
S = [s1, s2, · · · sd] � 0. Let σ2 ∈ R+ be any positive
real value. Then for a given β to satisfy the second order
moment constraint

β>Σβ = σ2 (7)

means that the ellipsoid Σ in Rd centred at the origin with
axes defined by U and of size (S, σ2) passes through β.

We now show that in the general case, knowledge about
second order moments do not help.

Proposition 3.1. Suppose β1 and β2 are two points in Rd
such that the origin, β1 and β2 are not collinear. For any
arbitrary σ2 > 0 and any arbitrary choice of axes U , the
set of loadings S for which both β1 and β2 satisfy equation
(7) with Σ = U∆SU

> and ∆S = diag(S) is given by the
intersection of a (d− 2)-dimensional vector space with the
positive orthant.

Before we prove this, let us unpack this result. The essen-
tial idea is that, barring non-degenerate cases like S = 0,

and for d > 2, a (d−2) dimensional vector space intersects
the positive orthant in an infinite number of points, assum-
ing they do intersect. Therefore, for any two points in Rd,
there exist an infinite number of ellipsoids for every given
size σ2 and axes U which passes through both the points.

The implications of the above result are the following. Sup-
pose we place constraints on β to constrain it to some set
C. Then if β1 and β2 are any two points in C, we can
easily find any number of arbitrary second order moment
conditions that are satisfied by both β1 and β2. Therefore,
estimation with information about second order moments
from k groups for any k < ∞ cannot be guaranteed to be
any better than estimation without second order moments
in the general case.

Furthermore, since the result holds for arbitrary values of
σ2 and U , it also implies that many types of common as-
sumptions like sparsity or norm constraints on β, rank con-
straints on the covariances Σk, etc. are insufficient in gen-
eral to make the parameter recovery problem well defined
with second order moments alone. Similar results can po-
tentially be obtained for higher order moments by noting
that a set of higher order polynomial equations can be con-
verted into polynomial equations of degree τ ≤ 2 by intro-
ducing auxiliary variables.

Proof. Let Σ = U∆SU
> where U is a unitary matrix

and ∆S = diag(S) = diag(s1, s2, · · · , sd) is a diago-
nal matrix. Let β1,β2 ∈ Rd be any two arbitrary points.
Take the projections of each βi on the axes defined by the
jth column uj of U for each j. Let λj,2 = (β>1 uj)

2

and λj,2 = (β>2 uj)
2 be the corresponding squared pro-

jections of the two points β1 and β2 on each axis uj for
j = 1, 2, 3, · · · d.

Concatenate the projections into the matrix Λ =
[Λ1; Λ2]> ∈ R2×d where Λ1 = [λ1,1, λ2,1, · · ·λd,1]> and
Λ2 = [λ1,2, λ2,2, · · ·λd,2]>.

It is easy to verify that

β>1 Σβ1 = Λ>1 S

β>2 Σβ2 = Λ>2 S

Therefore, β1 and β2 will both satisfy the second mo-
ment equation (7) for any ellipsoid defined by (Σ =
U∆SU

>, σ2) if

Λ>S = [σ2;σ2] (8)
S � 0 (9)

In terms of S, this represents an intersection of a d − 2
dimensional vector space Λ>S = [σ2;σ2] with the positive
orthant S � 0 which is satisfied by an infinite number of
solutions in terms of S.
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Note that Λ>S = [σ2;σ2] is inconsistent if β1 and β2 are
collinear with the origin, that is, β1 = ηβ2 for some η with
|η| 6= 1. If β1 = ±β2, then if one satisfies the ellipsoid
constraint, the other trivially satisfies it as well.
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duction to Gröbner bases, volume 3. American Mathe-
matical Society Providence, 1994.

Cai, T Tony, Xu, Guangwu, and Zhang, Jun. On recovery of
sparse signals via `1 minimization. Information Theory,
IEEE Transactions on, 55(7):3388–3397, 2009.

Cai, T Tony, Wang, Lie, and Xu, Guangwu. Shifting in-
equality and recovery of sparse signals. Signal Process-
ing, IEEE Transactions on, 58(3):1300–1308, 2010a.

Cai, Tony Tony, Wang, Lie, and Xu, Guangwu. Stable re-
covery of sparse signals and an oracle inequality. 2010b.

Candes, Emmanuel and Tao, Terence. The dantzig selector:
statistical estimation when p is much larger than n. The
Annals of Statistics, pp. 2313–2351, 2007.

Candes, Emmanuel J. The restricted isometry property and
its implications for compressed sensing. Comptes Ren-
dus Mathematique, 346(9):589–592, 2008.

Candes, Emmanuel J and Plan, Yaniv. A probabilistic and
ripless theory of compressed sensing. Information The-
ory, IEEE Transactions on, 57(11):7235–7254, 2011.

Candes, Emmanuel J, Romberg, Justin K, and Tao, Ter-
ence. Stable signal recovery from incomplete and in-
accurate measurements. Communications on pure and
applied mathematics, 59(8):1207–1223, 2006.

Chi, Yuejie, Scharf, Louis L, Pezeshki, Ali, and Calder-
bank, A Robert. Sensitivity to basis mismatch in com-
pressed sensing. Signal Processing, IEEE Transactions
on, 59(5):2182–2195, 2011.

Foucart, Simon. A note on guaranteed sparse recovery via
`1-minimization. Applied and Computational Harmonic
Analysis, 29(1):97–103, 2010.

Goodman, Leo A. Ecological regressions and behavior of
individuals. American Sociological Review, 1953.

Herman, Matthew A and Strohmer, Thomas. General de-
viants: An analysis of perturbations in compressed sens-
ing. Selected Topics in Signal Processing, IEEE Journal
of, 4(2):342–349, 2010.

Katz, Sheldon. Enumerative geometry and string theory.
American Mathematical Soc., 2006.

Rosenbaum, Mathieu, Tsybakov, Alexandre B, et al. Im-
proved matrix uncertainty selector. In From Probability
to Statistics and Back: High-Dimensional Models and
Processes–A Festschrift in Honor of Jon A. Wellner, pp.
276–290. Institute of Mathematical Statistics, 2013.

Rudelson, Mark and Zhou, Shuheng. High dimen-
sional errors-in-variables models with dependent mea-
surements. arXiv preprint arXiv:1502.02355, 2015.
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