
Supplementary Material for Slice Sampling on Hamiltonian Trajectories

1. Hamiltonian Dynamics for Non-Gaussian Distributions

Assume we have some prior π for \mathbf{f} , where

$$-\log \pi(\mathbf{f}|\boldsymbol{\alpha}) = \log Z - g(\mathbf{f}|\boldsymbol{\alpha}), \quad (1)$$

for some hyperparameters $\boldsymbol{\alpha}$ and where Z is the normalizing constant. Then we can again set up a Hamiltonian,

$$H(\mathbf{f}, \mathbf{p}) = g(\mathbf{f}|\boldsymbol{\alpha}) + \frac{1}{2} \mathbf{p}^T M^{-1} \mathbf{p}. \quad (2)$$

Hamilton's equations yield the system of differential equations

$$\nabla_{\mathbf{f}}^2 \mathbf{f} = -M^{-1} \nabla_{\mathbf{f}} g(\mathbf{f}|\boldsymbol{\alpha}). \quad (3)$$

This can be solved exactly for some cases of $g(\mathbf{f}|\boldsymbol{\alpha})$; the Gaussian example above is one such case.

When $M = \text{diag}(m_1, \dots, m_d)$ and $g(\mathbf{f}|\boldsymbol{\alpha}) = \sum_{i=1}^d h_i(f_i)$, the system is an uncoupled system and often has an analytic solution. In particular, $f_i(t)$ is the solution to

$$\frac{1}{2} \left(\int \left[c_1 - \frac{1}{m_i} h_i(f_i) \right]^{-1/2} df_i \right)^2 = (t + c_2)^2, \quad (4)$$

where c_2 is determined by $f_i(0)$ and

$$c_1 = \frac{1}{2} \left(\dot{f}_i(0) \right)^2 + \frac{1}{m_i} h_i(f_i(0)), \quad (5)$$

where $\dot{f}_i(t)$ denotes the time-derivative of f_i at time t . For certain distributions, (4) has an analytic solution.

1.1. $\text{Exp}(\lambda)$ and $\text{Laplace}(\lambda)$

Working with the general form of the solution can be difficult, especially when the sample space is constrained. The exponential distribution is one such example, but it induces a potential for which solutions are easy to obtain directly. Let the prior be such that the components of \mathbf{f} are mutually independent and $f_i \sim \text{Exp}(\lambda_i)$ so that

$$-\log \pi(f_i|\lambda_i) = -\log(\lambda_i) + \lambda_i \cdot f_i, \quad f_i > 0. \quad (6)$$

Hamilton's equations are particularly simple in this case, which describes one-dimensional projectile motion, e.g. a

bouncing ball in a constant gravitational potential. The solution to Hamilton's equations is

$$f_t(t) = \frac{\lambda_i}{2m_i} t^2 + \dot{f}_i(0)t + f_i(0), \quad 0 \leq t \leq T_0. \quad (7)$$

An example of such a trajectory is shown in Figure 1a. $T_0 > 0$ is the time at which the particle has position coordinate equal to 0, at which point its momentum changes signs, i.e. it “bounces.” For $t > T_0$, the particle repeatedly traces out the same trajectory. We find T_0 as

$$T_0 = \frac{m_i}{\lambda_i} \dot{f}_i(0) + \sqrt{\frac{m_i^2}{\lambda_i^2} \dot{f}_i(0)^2 + \frac{2m_i}{\lambda_i} f_i(0)}. \quad (8)$$

This yields the period of the trajectory,

$$T = 2 \sqrt{\frac{m_i^2}{\lambda_i^2} \dot{f}_i(0)^2 + \frac{2m_i}{\lambda_i} f_i(0)}. \quad (9)$$

Every time at which the particle reaches zero is then $z_j = T_0 + (j-1)T$. Hamilton's equations also yield the momentum,

$$p_i(t) = -\lambda_i t + m_i \dot{f}_i(0), \quad (10)$$

which we can use to find the momentum at the reflection point T_0 , but before reflection,

$$p_i(T_0^-) = -\sqrt{m_i^2 \dot{f}_i(0)^2 + 2m_i \lambda_i f_i(0)}. \quad (11)$$

After the first reflection, we have $p_i(T_0^+) = -p_i(T_0^-)$, and the dynamics proceed according to the equation

$$f_i(t) = -\frac{\lambda_i}{2m_i} (t - z_j)^2 + \frac{p_i(T_0^+)}{m_i} (t - z_j), \quad z_j \leq t \leq z_{j+1}. \quad (12)$$

We can use slightly different equations to describe the dynamics under a Laplace prior. All that is required is some bookkeeping on the sign of the motion because the particle is not reflected at $f_i = 0$, but the sign on the potential switches. An example is shown in Figure 1b.

1.2. $\text{Pareto}(x_m, \alpha)$ and $\text{GPD}(\mu, \sigma, \xi)$ via transformation

The Pareto and Generalized Pareto (denoted GPD) distributions are typically used to model processes with heavy

tails. The density of the Pareto distribution is

$$\pi(f_i|x_m, \alpha) = \alpha x_m^\alpha f_i^{-(\alpha+1)},$$

$$f_i \geq x_m, \quad x_m > 0, \quad \alpha > 0. \quad (13)$$

We can show that the random variable $y_i := \log f_i - \log x_m$ is distributed as $\text{Exp}(\alpha)$, for $y_i > 0$. Using this fact, we can generate analytic trajectories as in [subsection 1.1](#) for y_i and slice sample from the resulting curves $f_i(t) = x_m e^{y_i(t)}$. An example is shown in [Figure 1c](#).

The GPD has the density

$$\pi(f_i|\mu, \sigma, \xi) = \frac{1}{\sigma} \left(1 + \xi \cdot \frac{f_i - \mu}{\sigma} \right)^{-(1+\xi^{-1})},$$

$$f_i \geq \mu, \quad \xi \geq 0. \quad (14)$$

(The GPD is also defined for $\xi < 0$, in which case $\mu \leq f_i \leq \mu - \sigma/\xi$. We focus on the $\xi \geq 0$ case for now.) The random variable $y_i := \log \left(1 + \xi \frac{f_i - \mu}{\sigma} \right)$ is distributed as $\text{Exp}(\xi^{-1})$ for $y_i > 0$, and we can again use the calculations from [subsection 1.1](#) to slice sample from the curve $f_i(t) = \mu + \frac{\sigma}{\xi} (e^{y_i(t)} - 1)$. An example is shown in [Figure 1d](#).

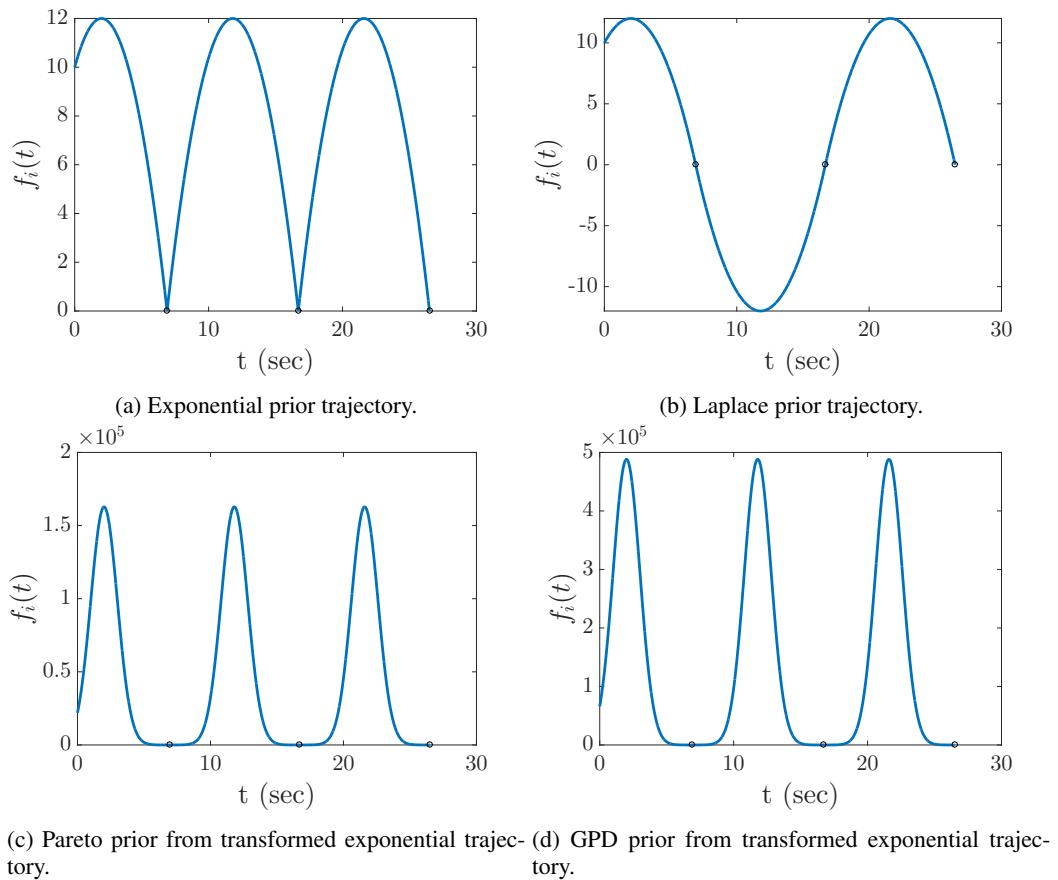


Figure 1. Example trajectories under different priors.