
Supplementary Material for Slice Sampling on Hamiltonian Trajectories

1. Hamiltonian Dynamics for Non-Gaussian
Distributions

Assume we have some prior π for f , where

− log π(f |α) = logZ − g(f |α), (1)

for some hyperparameters α and where Z is the normaliz-
ing constant. Then we can again set up a Hamiltonian,

H(f ,p) = g(f |α) +
1

2
pTM−1p. (2)

Hamilton’s equations yield the system of differential equa-
tions

∇2
t f = −M−1∇fg(f |α). (3)

This can be solved exactly for some cases of g(f |α); the
Gaussian example above is one such case.

When M = diag(m1, . . . ,md) and g(f |α) =∑d
i=1 hi(fi), the system is an uncoupled system and often

has an analytic solution. In particular, fi(t) is the solution
to

1

2

(∫ [
c1 −

1

mi
hi(fi)

]−1/2

dfi

)2

= (t+ c2)
2
, (4)

where c2 is determined by fi(0) and

c1 =
1

2

(
ḟi(0)

)2
+

1

mi
hi(fi(0)), (5)

where ḟi(t) denotes the time-derivative of fi at time t. For
certain distributions, (4) has an analytic solution.

1.1. Exp(λ) and Laplace(λ)

Working with the general form of the solution can be diffi-
cult, especially when the sample space is constrained. The
exponential distribution is one such example, but it induces
a potential for which solutions are easy to obtain directly.
Let the prior be such that the components of f are mutually
independent and fi ∼ Exp(λi) so that

− log π(fi|λi) = − log(λi) + λi · fi, fi > 0. (6)

Hamilton’s equations are particularly simple in this case,
which describes one-dimensional projectile motion, e.g. a

bouncing ball in a constant gravitational potential. The so-
lution to Hamilton’s equations is

ft(t) =
λi
2mi

t2 + ḟi(0)t+ fi(0), 0 ≤ t ≤ T0. (7)

An example of such a trajectory is shown in Figure 1a.
T0 > 0 is the time at which the particle has position co-
ordinate equal to 0, at which point its momentum changes
signs, i.e. it “bounces.” For t > T0, the particle repeatedly
traces out the same trajectory. We find T0 as

T0 =
mi

λi
ḟi(0) +

√
m2
i

λ2i
ḟi(0)2 +

2mi

λi
fi(0). (8)

This yields the period of the trajectory,

T = 2

√
m2
i

λ2i
ḟi(0)2 +

2mi

λi
fi(0). (9)

Every time at which the particle reaches zero is then zj =
T0+(j−1)T . Hamilton’s equations also yield the momen-
tum,

pi(t) = −λit+miḟi(0), (10)

which we can use to find the momentum at the reflection
point T0, but before reflection,

pi(T
−
0 ) = −

√
m2
i ḟi(0)

2 + 2miλifi(0). (11)

After the first reflection, we have pi(T+
0 ) = −pi(T−

0 ), and
the dynamics proceed according to the equation

fi(t) = −
λi
2mi

(t− zj)2 +
pi(T

+
0 )

mi
(t− zj), zj ≤ t ≤ zj+1.

(12)

We can use slightly different equations to describe the dy-
namics under a Laplace prior All that is required is some
bookkeeping on the sign of the motion because the parti-
cle is not reflected at fi = 0, but the sign on the potential
switches. An example is shown in Figure 1b.

1.2. Pareto(xm, α) and GPD(µ, σ, ξ) via transformation

The Pareto and Generalized Pareto (denoted GPD) distri-
butions are typically used to model processes with heavy
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tails. The density of the Pareto distribution is

π(fi|xm, α) = αxαmf
−(α+1)
i ,

fi ≥ xm, xm > 0, α > 0. (13)

We can show that the random variable yi := log fi−log xm
is distributed as Exp(α), for yi > 0. Using this fact, we can
generate analytic trajectories as in subsection 1.1 for yi and
slice sample from the resulting curves fi(t) = xme

yi(t).
An example is shown in Figure 1c.

The GPD has the density

π(fi|µ,σ, ξ) =
1

σ

(
1 + ξ · fi − µ

σ

)−(1+ξ−1)

,

fi ≥ µ, ξ ≥ 0. (14)

(The GPD is also defined for ξ < 0, in which case µ ≤
fi ≤ µ − σ/ξ. We focus on the ξ ≥ 0 case for now.) The
random variable yi := log

(
1 + ξ fi−µσ

)
is distributed as

Exp(ξ−1) for yi > 0, and we can again use the calculations
from subsection 1.1 to slice sample from the curve fi(t) =
µ+ σ

ξ (e
yi(t) − 1). An example is shown in Figure 1d.



Supplementary Material for HSS

t (sec)
0 10 20 30

f
i(
t)

0

2

4

6

8

10

12

(a) Exponential prior trajectory.
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(b) Laplace prior trajectory.
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(c) Pareto prior from transformed exponential trajec-
tory.
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(d) GPD prior from transformed exponential trajec-
tory.

Figure 1. Example trajectories under different priors.


