Supplementary Material for Slice Sampling on Hamiltonian Trajectories

1. Hamiltonian Dynamics for Non-Gaussian
Distributions

Assume we have some prior 7 for f, where
—log 7(f|ar) = log Z — g(f|a), ()

for some hyperparameters o and where 7 is the normaliz-
ing constant. Then we can again set up a Hamiltonian,

1
H(f,p) = g(flo) + §pTM*1p- 2)

Hamilton’s equations yield the system of differential equa-
tions

Vif = —M'Veg(flo). (3)
This can be solved exactly for some cases of g(f|a); the
Gaussian example above is one such case.

When M = diag(mi,...,mq) and g¢g(fla) =
Zle hi(f:), the system is an uncoupled system and often
has an analytic solution. In particular, f;(¢) is the solution

to
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where ¢, is determined by f;(0) and
1/. 2 1
e =5 (FO) + - hi(£(0), 5)

where f; (t) denotes the time-derivative of f; at time ¢. For
certain distributions, (4) has an analytic solution.

1.1. Exp()\) and Laplace(\)

Working with the general form of the solution can be diffi-
cult, especially when the sample space is constrained. The
exponential distribution is one such example, but it induces
a potential for which solutions are easy to obtain directly.
Let the prior be such that the components of f are mutually
independent and f; ~ Exp();) so that

—log 7(fi|Ai) = —log(N\i) + Xi - fi, fi >0. (6)

Hamilton’s equations are particularly simple in this case,
which describes one-dimensional projectile motion, e.g. a

bouncing ball in a constant gravitational potential. The so-
lution to Hamilton’s equations is

fult) = 22 4 0yt + .0),

0<t<Ty. (7)
Qmi

An example of such a trajectory is shown in Figure la.
Ty > 0 is the time at which the particle has position co-
ordinate equal to 0, at which point its momentum changes
signs, i.e. it “bounces.” For ¢ > T, the particle repeatedly
traces out the same trajectory. We find Tj as

To = 5£:(0) + \/ SLRO+ S0, ®)

This yields the period of the trajectory,

T= 2\/ "2+ 2 1) ©)

Every time at which the particle reaches zero is then z; =
To+ (j—1)T. Hamilton’s equations also yield the momen-
tum,

pi(t) = =it +m; £;(0), (10

which we can use to find the momentum at the reflection
point T}, but before reflection,

pi(Ty) = —\/m2f (0 + 2mAfi(0). (D)

After the first reflection, we have p; (T;") = —pi(T}, ), and
the dynamics proceed according to the equation

filt) = — 2t -

2my; m;

We can use slightly different equations to describe the dy-
namics under a Laplace prior All that is required is some
bookkeeping on the sign of the motion because the parti-
cle is not reflected at f; = 0, but the sign on the potential
switches. An example is shown in Figure 1b.

1.2. Pareto(z,,, @) and GPD(yu, 0, €) via transformation

The Pareto and Generalized Pareto (denoted GPD) distri-
butions are typically used to model processes with heavy
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tails. The density of the Pareto distribution is

a p—(a+1
ﬂ'(fi‘xmva) = axmfi (ot )7

fi > Tm, xm >0, a>0. (13)

We can show that the random variable y; := log f; —log z.,,
is distributed as Exp(«), for y; > 0. Using this fact, we can
generate analytic trajectories as in subsection 1.1 for y; and
slice sample from the resulting curves f;(t) = T ebi®),
An example is shown in Figure Ic.

The GPD has the density

1 fi— —(1+£7Y)

o o ) ’
fizp, £20. (14)

(The GPD is also defined for £ < 0, in which case pu <

fi < p—o/& We focus on the £ > 0 case for now.) The

random variable y; := log (1 + f%) is distributed as

ﬂ’(fi‘:uvg7€) = - (1 +§

Exp(¢£~1) for y; > 0, and we can again use the calculations
from subsection 1.1 to slice sample from the curve f;(t) =
"+ %(eyi(t) —1). An example is shown in Figure 1d.
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(a) Exponential prior trajectory. (b) Laplace prior trajectory.
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(c) Pareto prior from transformed exponential trajec- (d) GPD prior from transformed exponential trajec-
tory. tory.

Figure 1. Example trajectories under different priors.



