
Deep Gaussian Processes for Regression using Approximate Expectation
Propagation

Thang D. Bui1 TDB40@CAM.AC.UK
José Miguel Hernández-Lobato2 JMH@SEAS.HARVARD.EDU
Daniel Hernández-Lobato3 DANIEL.HERNANDEZ@UAM.ES
Yingzhen Li1 YL494@CAM.AC.UK
Richard E. Turner1 RET26@CAM.AC.UK
1University of Cambridge, 2Harvard University, 3Universidad Autónoma de Madrid

Abstract
Deep Gaussian processes (DGPs) are multi-
layer hierarchical generalisations of Gaussian
processes (GPs) and are formally equivalent to
neural networks with multiple, infinitely wide
hidden layers. DGPs are nonparametric proba-
bilistic models and as such are arguably more
flexible, have a greater capacity to generalise,
and provide better calibrated uncertainty esti-
mates than alternative deep models. This pa-
per develops a new approximate Bayesian learn-
ing scheme that enables DGPs to be applied to a
range of medium to large scale regression prob-
lems for the first time. The new method uses an
approximate Expectation Propagation procedure
and a novel and efficient extension of the prob-
abilistic backpropagation algorithm for learning.
We evaluate the new method for non-linear re-
gression on eleven real-world datasets, showing
that it always outperforms GP regression and is
almost always better than state-of-the-art deter-
ministic and sampling-based approximate infer-
ence methods for Bayesian neural networks. As
a by-product, this work provides a comprehen-
sive analysis of six approximate Bayesian meth-
ods for training neural networks.

1 Introduction

Gaussian Processes (GPs) are powerful nonparametric dis-
tributions over continuous functions that can be used
for both supervised and unsupervised learning problems
(Rasmussen & Williams, 2005). In this article, we

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

study a multi-layer hierarchical generalisation of GPs or
deep Gaussian Processes (DGPs) (Damianou & Lawrence,
2013) for supervised learning tasks. A GP is equivalent to
an infinitely wide neural network with single hidden layer
and similarly a DGP is a multi-layer neural network with
multiple infinitely wide hidden layers (Neal, 1995). The
mapping between layers in this type of network is parame-
terised by a GP, and, as a result, DGPs retain useful prop-
erties of GPs such as nonparametric modelling power and
well-calibrated predictive uncertainty estimates. In addi-
tion, DGPs employ a hierarchical structure of GP mappings
and therefore are arguably more flexible, have a greater ca-
pacity to generalise, and are able to provide better predic-
tive performance (Damianou, 2015). This family of models
is attractive as it can also potentially discover layers of in-
creasingly abstract data representations, in much the same
way as their deep parametric counterparts, but it can also
handle and propagate uncertainty in the hierarchy.

The addition of non-linear hidden layers can also poten-
tially overcome practical limitations of shallow GPs. First,
modelling real-world complex datasets often requires rich,
hand-designed covariance functions. DGPs can perform in-
put warping or dimensionality compression or expansion,
and automatically learn to construct a kernel that works
well for the data at hand. As a result, learning in this model
provides a flexible form of Bayesian kernel design. Second,
the functional mapping from inputs to outputs specified by
a DGP is non-Gaussian which is a more general and flexi-
ble modelling choice. Third, DGPs can repair damage done
by sparse approximations to the representational power of
each GP layer. For example, pseudo datapoint based ap-
proximation methods for DGPs trade model complexity for
a lower computational complexity of O(NLM2) where N
is the number of datapoints, L is the number of layers, and
M is the number of pseudo datapoints. This complexity
scales quadratically in M whereas the dependence on the
number of layers L is only linear. Therefore, it can be

Approximate EP for Deep Gaussian Processes

cheaper to increase the representation power of the model
by adding extra layers rather than by adding more pseudo
datapoints.

The focus of this paper is Bayesian learning of DGPs,
which involves inferring the posterior over the layer map-
pings and hyperparameter optimisation via the marginal
likelihood. Unfortunately, exact Bayesian learning in this
model is analytically intractable and as such approximate
inference is needed. Current proposals in the literature do
not scale well and have not been compared to alternative
deep Bayesian models. We will first review the model and
past work in Section 2, and then make the following con-
tributions: (i) we propose a new approximate inference
scheme for DGPs for regression, using a sparse GP ap-
proximation, a novel approximate Expectation Propagation
scheme and the probabilistic backpropagation algorithm,
resulting in a computationally efficient, scalable and easy to
implement algorithm (Sections 3, 4 and 5), (ii) we evaluate
the performance of the new method in supervised learning
tasks on various medium to large scale datasets and show
that the proposed method is always better than GP regres-
sion and is almost always better than state-of-the-art ap-
proximate inference techniques for multi-layer neural net-
works (Section 7).

2 Deep Gaussian processes

We first review DGPs and existing literature on approxi-
mate inference and learning for DGPs. Suppose we have a
training set comprising of N D-dimensional input and ob-
servation pairs (xn, yn). For ease of presentation, the out-
puts are assumed to be real-valued scalars, but other types
of data can be easily accommodated1. The probabilistic
representation of a DGP comprising L layers can be writ-
ten as follows,

p(fl|Θl) = GP(fl;0,Kl), l = 1, · · · , L

p(hl|fl,hl−1, σ
2
l) =

∏
n

N (hl,n; fl(hl−1,n), σ2
l), h1,n = xn

p(y|fL,hL−1, σ
2
L) =

∏
n

N (yn; fL(hL−1,n), σ2
L)

where hidden layers2 are denoted hl,n and the functions in
each layer, fl. More formally, we place a zero mean GP
prior over the mapping fl, that is, given the inputs to fl any
finite set of function values are distributed under the prior
according to a multivariate Gaussian p(fl) = N (f ;0,Kff).
Note that these function values and consequently the hid-
den variables are not marginally normally distributed, as

1We also discuss how to handle non-Gaussian likelihoods in
the supplementary material.

2Hidden variables in the intermediate layers can and will gen-
erally have multiple dimensions but we have omitted this here to
lighten the notation.

the inputs are random variables. When L = 1, the model
described above collapses back to GP regression. When the
inputs {xn} are unknown and random, the model becomes
a DGP latent variable model, which has been studied in
(Damianou & Lawrence, 2013).

An example of DGPs when L = 2 and dim(h1) = 2 is
shown in Figure 1. We use this network with the proposed
approximation and training algorithm to fit a value func-
tion of the mountain car problem (Sutton & Barto, 1998)
from a small number of noisy evaluations. This function is
particularly difficult for models such as GP regression with
a standard exponentiated quadratic kernel due to a steep
value function cliff, but is well handled by a DGP with only
two GP layers. Interestingly the functions in the first layer
are fairly simple and learn to cover or explain different parts
of the input space.

Figure 1. A deep GP example that has two GP layers and one 2-D
hidden layer. The training output is the state values of the moun-
tain car problem. The left graphs show latent functions in each
layer, two functions in the first layer and one in the second layer,
learnt by using the proposed approach. The right graph shows
the training data [top] and the predictions of the overall function
mapping from inputs to outputs made by a GP [middle] and the
DGP on the left [bottom].

We are interested in inferring the posterior distribution over
the latent function mappings and the intermediate hidden
variables, as well as obtaining a marginal likelihood es-
timate for hyperparameter tuning and model comparison.
Due to the nonlinearity in the hierarchy, these quantities
are analytically intractable. As such, approximate infer-
ence is required. The simplest approach is to obtain the
maximum a posteriori estimate of the hidden variables
(Lawrence & Moore, 2007). However, this procedure is
prone to over-fitting and does not provide uncertainty es-
timates. An alternative existing approach is based on a
variational-free-energy method proposed by Damianou and
Lawrence (2013), extending the seminal work on varia-
tional sparse GPs by Titsias (2009). In this scheme, a
variational approximation over both latent functions and
hidden variables is chosen such that a free energy is both
computationally and analytically tractable. Critically, as

Approximate EP for Deep Gaussian Processes

a variational distribution over the hidden variables is used
in this approach, in addition to one over the inducing out-
puts, the number of variational parameters increases lin-
early with the number of training datapoints which hinders
the use of this method for large scale datasets. Furthermore,
initialisation for this scheme is a known issue, even for a
modest number of datapoints (Turner & Sahani, 2011). An
extension of (Damianou & Lawrence, 2013) that has skip
links from the inputs to every hidden layer in the network
was proposed by Dai, Damianou, González, and Lawrence
(2016), based on suggestions provided in (Duvenaud et al.,
2014). Recent work by Hensman and Lawrence (2014) in-
troduces a nested variational scheme that only requires a
variational distribution over the inducing outputs, removing
the parameter scaling problem of (Damianou & Lawrence,
2013). However, both approaches of (Dai et al., 2016) and
(Hensman & Lawrence, 2014) have not been fully evalu-
ated on benchmark supervised learning tasks or on medium
to large scale datasets, nor compared to alternative deep
models.

A special case of DGPs when L = 2 and the sole hidden
layer h1 is only one dimensional is warped GPs (Snelson
et al., 2004; Lázaro-Gredilla, 2012). In (Lázaro-Gredilla,
2012) a variational approach, in a similar spirit to (Tit-
sias, 2009) and (Damianou & Lawrence, 2013), was used
to jointly learn the latent functions. In contrast, the latent
function in the second layer is assumed to be deterministic
and parameterised by a small set of parameters by Snelson,
Rasmussen, and Ghahramani (2004), which can be learnt
by maximising the analytically tractable marginal likeli-
hood. However, the performance of warped GPs is often
similar to a standard GP, most likely due to the narrow bot-
tleneck in the hidden layer.

This paper differs substantially from previous work devel-
oping three seemingly aggressive approximations that sig-
nificantly enhance scalability of DGPs, and which perhaps
surprisingly lead to excellent practical performance. First,
in order to sidestep the cubic computational cost of GPs
we leverage a well-known pseudo point sparse approxima-
tion (Snelson & Ghahramani, 2006; Quiñonero-Candela &
Rasmussen, 2005). Second, an approximation to the Ex-
pectation Propagation (EP) energy function (Seeger, 2007),
a marginal likelihood estimate, is optimised directly to find
an approximate posterior over the inducing outputs. Third,
the optimisation demands analytically intractable moments
that are approximated by nesting Assumed Density Filter-
ing (Hernández-Lobato & Adams, 2015). The proposed
algorithm is not restricted to the warped GP case and is ap-
plicable to non-Gaussian observation models.

The complexity of our method is similar to that of the
variational approach proposed by Damianou and Lawrence
(2013), O(NLM2), but is much less memory intensive,

O(LM2) vs. O(NL+LM2). These costs are competitive
to those of the nested variational approach in (Hensman &
Lawrence, 2014).

3 The Fully Independent Training
Conditional approximation

The computational complexity of full GP models scales cu-
bically with the number of training instances, making it in-
tractable in practice. Sparse approximation techniques are
therefore often necessary. They can be coarsely put into
two classes: ones that explicitly sparsify and create a para-
metric representation that approximates the original model,
and ones that retain the original nonparametric properties
and perform sparse approximation to the exact posterior.
The method used here, Fully Independent Training Con-
ditional (FITC), can be interpreted as a member of the
first category (Bui et al., 2016). The FITC approximation
is formed by considering a small set of M function val-
ues u in the infinite dimensional vector f and assuming
conditional independence between the remaining values
given the set u (Snelson & Ghahramani, 2006; Quiñonero-
Candela & Rasmussen, 2005). This set is often called in-
ducing outputs or pseudo targets and their input locations
z can be chosen by optimising the approximate marginal
likelihood. The resulting model can be written as follows,

p(ul|Θl) = N (ul;0,Kul−1,ul−1), l = 1, · · · , L

p(hl|ul,hl−1, σ
2
l) =

∏
n

N (hl,n;Cn,lul,Rn,l),

p(y|uL,HL−1, σ
2
L) =

∏
n

N (yn;Cn,LuL,Rn,L).

where Cn,l = Khl,n,ul
K−1ul,ul

and Rn,l = Khl,n,hl,n
−

Khl,n,ul
K−1ul,ul

Kul,hl,n
+ σ2

l I. Note that the function out-
puts index the covariance matrices, for example Khl,n,ul

denotes the covariance between hl,n and ul, and takes
hl−1,n and zl as inputs respectively. This is important
when calculating how to propagate uncertainty through the
network. The FITC approximation creates a parametric
model, but one which is cleverly structured so that the
induced non-stationary noise captures the uncertainty in-
troduced from the sparsification. The computational com-
plexity of inference and hyperparameter tuning in this ap-
proximate model isO(NM2) which means M needs to be
smaller than N to provide any computational gain (i.e. the
approximation should be sparse). The quality of the ap-
proximation largely depends on the number of inducing
outputs M and the complexity of the underlying function,
i.e. if the function’s characteristic lengthscale is small, M
needs to be large and vice versa. As M tends to N and
z = X, i.e. the inducing inputs and training inputs are
shared, the approximate model reverts back to the origi-
nal GP model. The graphical model is shown in Figure 2
[left].

Approximate EP for Deep Gaussian Processes

Figure 2. Left: The graphical model of our DGP-FITC model
where the inducing outputs {ul} play a role of global parame-
ters. Right: A Gaussian moment-matching procedure to compute
logZ . The bottom arrows denote the value of the observation and
the left and right graphs [before and after an update respectively]
show how the algorithm makes the final propagated Gaussian fit
to the data, i.e. the model is trained so that training points are more
probable after each update. The red curves show the distribution
over hidden variables before being approximated by a Gaussian
in blue. Best viewed in colour.

4 Approximate Bayesian inference via EP

Having specified a probabilistic model for data using a
deep sparse Gaussian processes we now consider infer-
ence for the inducing outputs u = {ul}Ll=1 and learn-
ing of the model parameters α = {zl,Θl}Ll=1. The pos-
terior distribution over the inducing outputs can be writ-
ten as p(u|X,y) ∝ p(u)

∏
n p(yn|u,Xn). This quantity

can then be used for output prediction given a test input,
p(y∗|x∗,X,y) =

∫
du p(u|X,y) p(y∗|u,x∗). The model

hyperparameters can be tuned by maximising the marginal
likelihood p(y|α) =

∫
dudh p(u,h) p(y|u,h, α). How-

ever, both the posterior of u and the marginal likelihood
are not analytically tractable when there is more than one
GP layer in the model. As such, approximate inference
is needed; here we make use of the EP energy function
with a tied factor constraint similar to that proposed in the
Stochastic Expectation Propagation (SEP) algorithm (Li
et al., 2015) to produce a scalable, convergent approximate
inference method.

4.1 EP, Stochastic EP and the EP approximate energy

In EP (Minka, 2001), the approximate posterior is assumed
to be q(u) ∝ p(u)

∏
n t̃n(u) where {t̃n(u)}Nn=1 are the ap-

proximate data factors. Each factor approximately captures
the contribution of datapoint n makes to the posterior and,
in this work, they take an unnormalised Gaussian form.
The factors can be found by running an iterative procedure
which often requires several passes through the training set
for convergence3. The EP algorithm also provides an ap-

3We summarise the EP steps in the supplementary material.

proximation to the marginal likelihood,

log p(y|α) ≈ F(α) = φ(θ)− φ(θprior) +

N∑
n=1

log Z̃n

where log Z̃n = logZn + φ(θ\n)− φ(θ),

where θ, θ\n and θprior are the natural parameters of
q(u), the cavity q\n(u) [q\n(u) ∝ q(u)/t̃n(u)] and
p(u) respectively, φ(θ) is the log normaliser of a Gaus-
sian distribution with natural parameters θ, and logZn =
log
∫

du q\n(u) p(yn|u,Xn) (Seeger, 2007). Unfortu-
nately, EP is not guaranteed to converge, but if it does, the
fixed points lie at the stationary points of the EP energy,
which is given by −F(α). Furthermore, EP requires the
approximate factors to be stored in memory, which has a
cost of O(NLM2) in this application as we need to store
the mean and the covariance matrix for each factor.

4.2 Direct EP energy minimisation with a tied factor
constraint

In order to reduce the expensive memory footprint of EP,
the data-factors are tied. That is the posterior p(u|X,y)
is approximated by q(u) ∝ p(u)g(u)N , where the factor
g(u) could be thought of as an average data factor that cap-
tures the average effect of a likelihood term on the poste-
rior. Approximations of this form were recently used in
the SEP algorithm (Li et al., 2015) and although seemingly
limited, in practice were found to perform almost as well as
full EP while significantly reducing EP’s memory require-
ment, from O(NLM2) to O(LM2) in our case.

The original SEP work devised modified versions of the
EP updates appropriate for the new form of the approxi-
mate posterior. Originally we applied this method to DGPs
(details of this approach including hyperparameter optimi-
sation are included in the supplementary material). How-
ever, an alternative approach was found to have superior
performance, which is to optimise the EP energy function
directly to refine the approximating factors. The benefit is
that the approximate EP energy can be (jointly) optimised
for the hyperparameters (including the inducing inputs) at
the same time. Normally, optimisation of the EP energy re-
quires a double-loop algorithm, which is computationally
inefficient, however the use of tied factors simplifies the
approximate marginal likelihood and allows direct optimi-
sation. The energy becomes,

F(α) = φ(θ)− φ(θprior) +

N∑
n=1

[
logZn + φ(θ\1)− φ(θ)

]
= (1−N)φ(θ) +Nφ(θ\1)− φ(θprior) +

N∑
n=1

logZn

since the cavity distribution q\n(u) ∝ q(u)/t̃n(u) =
q(u)/g(u) = q\1(u) is the same for all training points.

Approximate EP for Deep Gaussian Processes

This elegantly removes the need for a double-loop algo-
rithm, since we can posit a form for the approximate pos-
terior and optimise the above approximate marginal like-
lihood directly. However, it is important to note that, in
general, optimising this objective will not give the same
solution as optimising the full EP energy. The new energy
produces an approximation formed by averaging the mo-
ments of q\1(u) p(yn|u,xn) over datapoints, whereas EP
averages natural parameters, which is arguably more sensi-
ble but less tractable.

In detail, we assume the tied factor takes a Gaussian form
with natural parameters θ1. As a result, the approximate
posterior and the cavity are also Gaussian with natural pa-
rameters θ = θprior + Nθ1 and θ\1 = θprior + (N − 1)θ1
respectively. This means that we can compute the first three
terms in the energy function exactly. However, it remains
to compute logZn = log

∫
du q\1(u) p(yn|u,xn) which

we will discuss next.

5 Probabilistic backpropagation for deep
Gaussian processes

Computing logZn in the objective function above is ana-
lytically intractable for L ≥ 1 since the likelihood given
the inducing outputs u is nonlinear and the propagation of
the Gaussian cavity through each layer results in a com-
plex distribution. However, for certain choices of covari-
ance functions {Kl}Ll=1, it is possible to use an efficient
and accurate approximation which propagates a Gaussian
through the first layer of the network and projects this non-
Gaussian distribution back to a moment matched Gaussian
before propagating through the next layer and repeating the
same steps. This scheme is algorithmically identical to
Assumed Density Filtering (Kushner & Budhiraja, 2000)
and a central part of the probabilistic backpropagation al-
gorithm that has been applied to standard neural networks
(Hernández-Lobato & Adams, 2015).

The aim is to compute logZ and its gradients with respect
to the parameters such as θ1 or the hyperparameters of the
model4. By reintroducing the hidden variables in the mid-
dle layers, we perform a Gaussian approximation to Z in
a sequential fashion, as illustrated in Figure 2 [right]. We
take a two layer case as a running example:

Z =

∫
du p(y|x,u) q\1(u)

=

∫
dh1 du2 p(y|h1,u2) q\1(u2)

∫
du1 p(h1|x,u1) q\1(u1)

One key difference between our approach and the vari-
ational free energy method in (Damianou & Lawrence,
2013) is that our algorithm does not retain an explicit

4We ignore the data index here to lighten the notation

approximate distribution over the hidden variables. In-
stead, we approximately integrate them out when comput-
ing logZ as follows.

First, we can exactly marginalise out the in-
ducing outputs for each GP layer, leading to
Z =

∫
dh1 q(y|h1) q(h1) where q(h1) =

N (h1;m1, v1), q(y|h1) = N (y|h1;m2|h1
, v2|h1

) and
m1 = Kh1,u1

K−1u1,u1
m
\1
1 , v1 = σ2

1 + Kh1,h1
−

Kh1,u1K
−1
u1,u1

Ku1,h1+Kh1,u1K
−1
u1,u1

V
\1
1 K−1u1,u1

Ku1,h1 ,

m2|h1
= Kh2,u2

K−1u2,u2
m
\1
2 , v2|h1

= σ2
2 + Kh2,h2

−
Kh2,u2

K−1u2,u2
Ku2,h2

+Kh2,u2
K−1u2,u2

V
\1
1 K−1u2,u2

Ku2,h2
.

Following (Girard et al., 2003; Barber & Schottky, 1998;
Deisenroth & Mohamed, 2012), we can use the law of it-
erated conditionals to approximate the difficult integral in
the equation above by a GaussianZ ≈ N (y|m2, v2) where
the mean and variance take the following form,

m2 = Eq(h1)[m2|h1
]

v2 = Eq(h1)[v2|h1
] + varq(h1)[m2|h1

]

which results in m2 = Eq(h1)[Kh2,u2
]A and v2 =

σ2
2 + Eq(h1)[Kh2,h2

] + tr
(
BEq(h1)[Ku2,h2

Kh2,u2
]
)
−m2

2

where A = K−1u2,u2
m
\1
2 and B = K−1u2,u2

(V
\1
2 +

m
\1
2 m

\1,T
2)K−1u2,u2

−K−1u2,u2
. The equations above require

the expectations of the kernel matrix under a Gaussian dis-
tribution over the inputs, which are analytically tractable
for widely used kernels such as exponentiated quadratic,
linear or a more general class of spectral mixture kernels
(Titsias & Lawrence, 2010; Wilson & Adams, 2013). In
addition, the approximation above can be improved for net-
works that have multidimensional intermediate variables,
by using a Gaussian with a non-diagonal covariance ma-
trix. We discuss this in the supplementary material.

As the mean and variance of the Gaussian approximation
in each intermediate layer can be computed analytically,
their gradients with respect to the mean and variance of the
input distribution, as well as the parameters of the current
layers are also available. Since we require the gradients
of the approximation to logZ , we need to store these re-
sults in the forward propagation step, compute the approx-
imate logZ and its gradients at the output layer and use
the chain rule in the backward step to differentiate through
the ADF procedure. This procedure is reminiscent of the
backpropagation algorithm in standard parametric neural
networks, hence the name probabilistic backpropagation
(Hernández-Lobato & Adams, 2015).

6 Stochastic optimisation for scalable
training

The propagation and moment-matching as described above
costs O(LM2) and needs to be repeated for all datapoints

Approximate EP for Deep Gaussian Processes

in the training set in batch mode, resulting in an overall
complexity ofO(NLM2). Fortunately, the last term of the
objective in Section 4.2 is a sum of independent terms, i.e.
its computation can be distributed, resulting in a substantial
decrease in computational cost. Furthermore, the objective
is suitable for stochastic optimisation. In particular, an un-
biased noisy estimate of the objective and its gradients can
be obtained using a minibatch of training datapoints,

F ≈ −(N − 1)φ(θ) +Nφ(θ\1)− φ(θprior) +
N

|B|

|B|∑
b=1

logZb,

where |B| denotes the minibatch size.

7 Experiments

We implement and compare the proposed approximation
scheme to state-of-the-art methods for Bayesian neural net-
works. We first detail our implementation in Section 7.1
and then discuss the experimental results in Sections 7.2
and 7.3. We released our Theano and Python implementa-
tions on https://github.com/thangbui/deepGP approxEP.

7.1 Experimental details

In all the experiments reported here, we use Adam with the
default learning rate (Kingma & Ba, 2015) for optimising
our objective function. We use an exponentiated quadratic
kernel with ARD lengthscales for each layer. The hyperpa-
rameters and pseudo point locations are different between
functions in each layer. The lengthscales and inducing in-
puts of the first GP layer are sensibly initialised based on
the median distance between datapoints in the input space
and the k-means cluster centers respectively. We use long
lengthscales and initial inducing inputs between [−1, 1] for
the higher layers to force them to start with an identity map-
ping. We parameterise the natural parameters of the aver-
age factor and initialise them with small random values.
We evaluate the predictive performance on the test set us-
ing two popular metrics: root mean squared error (RMSE)
and mean log likelihood (MLL).

7.2 Regression on UCI datasets

We validate the proposed approach for training DGPs in
regression experiments using several datasets from the
UCI repository. In particular, we use the ten datasets
and train/test splits used by Hernández-Lobato and Adams
(2015) and Gal and Ghahramani (2016): 1 split for the year
dataset [N ≈ 500000, D = 90], 5 splits for the protein
dataset [N ≈ 46000, D = 9], and 20 for the others.

We compare our method (FITC-DGP) against sparse GP
regression using FITC (FITC-GP) and Bayesian neural net-
work (BNN) regression using several state-of-the-art deter-
ministic and sampling-based approximate inference tech-

niques. As baselines, we include the results for BNNs
reported in (Hernández-Lobato & Adams, 2015), BNN-
VI(G)-1 and BNN-PBP-1, and in (Gal & Ghahramani,
2016), BNN-Dropout-1. The results reported for these
methods are for networks with one hidden layer of 50
units (100 units for protein and year). Specifically, BNN-
VI(G) uses a mean-field Gaussian approximation for the
weights in the network, and obtains the stochastic esti-
mates of the bound and its gradient using a Monte Carlo ap-
proach (Graves, 2011). BNN-PBP employs Assumed Den-
sity Filtering and the probabilistic backpropagation algo-
rithm to obtain a Gaussian approximation for the weights
(Hernández-Lobato & Adams, 2015). BNN-Dropout is a
recently proposed technique that employs dropout during
training as well as at prediction time, that is to average
over several predictions, each made by the entire network
with a random proportion of the weights set to zero (Gal &
Ghahramani, 2016). We implement other methods as fol-
lows,

• DGP: we evaluate three different architectures of DGPs,
each with two GP layers and one hidden layer of one,
two and three dimensions respectively (DGP-1, DGP-2
and DGP-3). We include the results for two settings of
the number of inducing outputs, M = 50 and M = 100
respectively. Note that for the bigger datasets protein and
year, we useM = 100 andM = 200 but do not annotate
this in Figure 3. We choose these settings to ensure the
run time for our method is smaller or comparable to that
of other methods for BNNs.

• GP: we use the same number of pseudo datapoints as in
DGP (GP 50 and GP 100).

• BNN-VI(KW): this method, similar to Graves (2011),
employs a mean-field Gaussian variational approxima-
tion but evaluates the variational free energy using
the reparameterisation trick proposed by Kingma and
Welling (2014). We use a diagonal Gaussian prior for
the weights and fix the prior variance to 1. The noise
variance of the Gaussian noise model is optimised to-
gether with the means and variances of the variational
approximation using the variational free energy. We test
two different network architectures with the rectified lin-
ear activation function, and one and two hidden layers,
each of 50 units (100 for the two big datasets), denoted
by VI(KW)-1 and VI(KW)-2 respectively.

• BNN-SGLD: we reuse the same networks with one
and two hidden layers as with VI(KW) and approxi-
mately sample from the posterior over the weights us-
ing Stochastic Gradient Langevin Dynamics (SGLD)
(Welling & Teh, 2011). We place a diagonal Gaussian
prior over the weights, and parameterise the observation
noise variance as σ2 = log(1 + exp(κ)), a broad Gaus-
sian prior over κ and sample κ using the same SGLD

https://github.com/thangbui/deepGP_approxEP

Approximate EP for Deep Gaussian Processes

boston
 N = 506
 D = 13

� 2.7

� 2.6

� 2.5

� 2.4

� 2.3

� 2.2

� 2.1

� 2.0

a
v

e
ra

g
e

 t
e

s
t

lo
g

-l
ik

e
li
h

o
o

d
/n

a
ts

concrete
 N = 1030

 D = 8

� 3.2

� 3.1

� 3.0

� 2.9

� 2.8

� 2.7

� 2.6

� 2.5

� 2.4

energy
 N = 768

 D = 8

� 2.4

� 2.2

� 2.0

� 1.8

� 1.6

� 1.4

� 1.2

� 1.0

� 0.8

kin8nm
 N = 8192

 D = 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

naval
 N = 11934

 D = 16

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

power
 N = 9568

 D = 4

� 2.9

� 2.8

� 2.7

� 2.6

� 2.5

� 2.4

� 2.3

� 2.2

protein
 N = 45730

 D = 9

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

0.0

wine_red
 N = 1588

 D = 11

� 1.0

� 0.8

� 0.6

� 0.4

� 0.2

0.0

0.2

0.4

yacht
 N = 308

 D = 6

� 3.5

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

year
 N = 515345

 D = 90

� 3.0

� 2.5

� 2.0

� 1.5

� 1.0

� 0.5

0.0

0.5

VI(KW)-2

SGLD-2

HMC-1

GP 50

GP 100

DGP-1 50

DGP-1 100

DGP-2 50

DGP-3 50

DGP-2 100

DGP-3 100

Figure 3. Average predictive log likelihood of existing approaches for BNNs and GPs, and the proposed method for DGPs, across 10
datasets. The higher the better, and best viewed in colour. Full results are included in the supplementary material.

procedure. Two step sizes, one for the weights and one
for κ, were manually tuned for each dataset. We use Au-
tograd for the implementation of BNN-SGLD and BNN-
VI(KW) (github.com/HIPS/autograd).

• BNN-HMC: We run Hybrid Monte Carlo (HMC) (Neal,
1993) using the MCMCstuff toolbox (Vanhatalo & Ve-
htari, 2006) for networks with one hidden layer. We
place a Gaussian prior over the network weights and a
broad inverse Gamma hyper-prior for the prior variance.
We also assume an inverse Gamma prior over the ob-
servation noise variance. The number of leapfrog steps
and step size are first tuned using Bayesian optimisation
using the pybo package (github.com/mwhoffman/pybo).
Note that this procedure takes a long time (e.g. 3 days for
protein) and the year dataset is too large to be handled in
this way.

Figure 3 shows the average test log likelihood (MLL) for a
subset of methods with their standard errors. We exclude
methods that perform consistently poorly to improve read-
ability. Full results and many more comparisons are in-
cluded in the supplementary material. We also evaluate
the average rank of the MLL performance of all methods
across the datasets and their train/test splits and include the
results in Figure 4. This figure is generated using the com-
parison scheme provided by Demšar (2006), and shows
statistical differences in the performance of the methods.
More precisely, if the gap between the average ranks of
any two methods is above the critical distance (shown on
the top right), the two methods’ performances are statisti-
cally significantly different. Methods that are not signifi-
cantly different from each other are linked by a solid line.

The rank result shows that DGPs with our inference scheme
are the best performing methods overall. Specifically, the
DGP-3-100 architecture obtains the best performance on 6
out of 10 datasets and are competitive on the remaining four
datasets. The performance of other DGP variants follow
closely with the exception for DGP-1 which is a standard
warped GP, the network with one dimensional hidden layer.
DGP-1 performs poorly compared to GP regression, but is
still competitive with several methods for BNNs. The re-
sults also strongly indicate that the predictive performance
is almost always improved by adding extra hidden layers or
extra hidden dimensions or extra inducing outputs.

The best non-GP method is BNN-VI(KW)-2 which ob-
tains the best performance on three datasets. However, this
method performs poorly on 6 out of 7 remaining datasets,
pushing down the corresponding average rank. Despite
this, VI(KW) is the best method of all deterministic approx-
imations for BNNs with one or two hidden layers. Over-
all, the VI approach without the reparameterisation trick
of Graves, Dropout and PBP perform poorly in comparison
and give inaccurate predictive uncertainty.

Sampling based methods such as SGLD and HMC ob-
tain good predictive performance overall, but often require
more tuning compared to other methods. In particular,
HMC appears superior on one dataset, and competitive
with DGPs on three other datasets; however, this method
does not scale to large datasets.

The results for the RMSE metric follow the same trends
with DGP-2 and DGP-3 performing as well or better com-
pared to other methods. Interestingly, BNN-SGLD, despite

Approximate EP for Deep Gaussian Processes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLL Average Rank

PBP−1
Dropout−1
SGLD−1
DGP−1 50
SGLD−2
VI(KW)−1
GP 50

DGP−3 100
DGP−2 100
DGP−3 50
DGP−2 50

GP 100
HMC−1

VI(KW)−2
DGP−1 100

CD

Figure 4. The average rank of all methods across the datasets and their train/test splits,
generated based on Demšar (2006). See the text for more details.

MLL
1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

0.95

RMSE
1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45 BNN-VI

GP 200

GP 400

DGP-2 200

DGP-5 200

Figure 5. MLL and RMSE results for the
photovoltaic molecule regression experi-
ment.

being ranked relatively low according to the MLL metric,
often provides good RMSE results perhaps unsurprisingly
given the algorithm’s similarity to stochastic gradient as-
cent. In addition, we compare the proposed method against
the nested variational approach (Nested VI) by Hensman
& Lawrence (2014), demonstrating that Nested VI consis-
tently performs poorly compared to our method. Full re-
sults are included in the supplementary material.

7.3 Predicting the efficiency of organic photovoltaic
molecules

Having demonstrated the performance of our inference
scheme for DGPs, we carry out an additional regression
experiment on a challenging dataset. We obtain a subset of
60,000 organic molecules and their power conversion ef-
ficiency from the Harvard Clean Energy Project (HCEP)
(available at http://www.molecularspace.org) (Hachmann
et al., 2011). We use 50,000 molecules for training and
10,000 for testing. The molecules are represented using
512-dimensional binary feature vectors, which were gen-
erated using the RDKit package, based on the molecular
structures in the canonical SMILES format and a bond
radius of 2. The power conversion efficiency of these
molecules was estimated using density functional theory,
determining whether a molecule could be potentially used
as solar cell. The overall aim of the HCEP is to find organic
molecules that are as efficient as their silicon counterparts.
Our aim here is to show DGPs are effective predictive mod-
els that provide good uncertainty estimates, which can be
used for tasks such as Bayesian Optimisation.

We test the method on two DGPs with one hidden layer of
2 and 5 dimensions, denoted by DGP-2 and DGP-5 respec-
tively and each GP is sparsified using 200 inducing outputs.
We compare these against two FITC-GP architectures with
200 and 400 pseudo datapoints respectively. We also re-
peat the experiment using a Bayesian neural network with
two hidden layers, each of 400 hidden units. We use the
variational approach with the reparameterisation trick by
Kingma and Welling (2014) to perform inference in this
model. The noise variance was fixed to 0.16 based on a

suggestion in (Pyzer-Knapp et al., 2015). Figure 5 shows
the predictive performance by five architectures. The DGP
with a five dimensional hidden layer significantly outper-
forms others in terms of test MLL, including the shallow
structure with considerably more pseudo datapoints. This
result demonstrates the efficacy of DGPs in providing good
predictive uncertainty estimates, even when the kernel used
is a simple exponentiated quadratic kernel and the input
features are binary. Surprisingly, VI(KW), although per-
forming poorly as measured by the MLL, makes good pre-
dictions for the mean.

8 Summary

This paper has introduced a new and powerful deterministic
approximation scheme for DGPs based upon an approxi-
mate EP algorithm and the FITC approximation to sidestep
the computational and analytical intractability. A novel ex-
tension of the probabilistic backpropagation algorithm was
developed to address a difficult marginalisation problem in
the approximate EP algorithm used. The new method was
evaluated on eleven datasets and compared against a num-
ber of state-of-the-art algorithms for Bayesian neural net-
works. The results show that the new method for training
DGPs is superior on 7 out of 11 datasets considered, and
performs comparably on the remainder, demonstrating that
DGPs are a competitive alternative to multi-layer Bayesian
neural networks for supervised learning tasks.

The proposed method, in principle, can be applied to clas-
sification and unsupervised learning. However, initial work
on classification using DGPs, as included in the supple-
mentary, does not show a substantial gain over a GP. This
issue is potentially related to the diagonal Gaussian approx-
imation currently used for the hidden layers from the sec-
ond layer onwards. A non-diagonal approximation is fea-
sible but more expensive. This can be easily addressed be-
cause the computation of our training method can be dis-
tributed on GPUs for example, making it even more scal-
able. We will investigate both problems in future work.

http://www.molecularspace.org

Approximate EP for Deep Gaussian Processes

Acknowledgements

The authors would like to thank Nilesh Tripuraneni, Alex
Matthews, Jes Frellsen and Carl Rasmussen for insightful
comments and discussion. TDB thanks Google for funding
his European Doctoral Fellowship. JMHL acknowledges
support from the Rafael del Pino Foundation. DHL and
JMHL acknowledge support from Plan Nacional I+D+i,
Grant TIN2013-42351-P, and from Comunidad de Madrid,
Grant S2013/ICE-2845 CASI-CAM-CM. YL thanks the
Schlumberger Foundation for her Faculty for the Future
PhD fellowship. RET thanks EPSRC grants EP/G050821/1
and EP/L000776/1.

References

Barber, D. and Schottky, B. Radial basis functions: a
Bayesian treatment. In Advances in Neural Information
Processing Systems 10, 1998.

Bui, Thang D., Yan, Josiah, and Turner, Richard E. A
unifying framework for sparse Gaussian process approx-
imation using Power Expectation Propagation. arXiv
preprint arXiv:1605.07066, 2016.

Dai, Zhenwen, Damianou, Andreas, González, Javier, and
Lawrence, Neil. Variational auto-encoded deep Gaussian
processes. In 4th International Conference on Learning
Representations, 2016.

Damianou, Andreas. Deep Gaussian processes and varia-
tional propagation of uncertainty. PhD thesis, University
of Sheffield, 2015.

Damianou, Andreas C and Lawrence, Neil D. Deep Gaus-
sian processes. In 16th International Conference on Ar-
tificial Intelligence and Statistics, pp. 207–215, 2013.

Deisenroth, Marc and Mohamed, Shakir. Expectation prop-
agation in Gaussian process dynamical systems. In Ad-
vances in Neural Information Processing Systems 25, pp.
2609–2617, 2012.

Demšar, Janez. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine Learning
Research, 7:1–30, 2006.

Duvenaud, David, Rippel, Oren, Adams, Ryan P., and
Ghahramani, Zoubin. Avoiding pathologies in very deep
networks. In 17th International Conference on Artificial
Intelligence and Statistics, 2014.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. In 33rd International Conference
on Machine Learning, 2016.

Girard, Agathe, Rasmussen, Carl Edward, Quiñonero-
Candela, Joaquin, and Murray-Smith, Roderick. Gaus-
sian process priors with uncertain inputs — application
to multiple-step ahead time series forecasting. In Ad-
vances in Neural Information Processing Systems 15, pp.
529–536, 2003.

Graves, Alex. Practical variational inference for neural net-
works. In Advances in Neural Information Processing
Systems 25, pp. 2348–2356, 2011.

Hachmann, Johannes, Olivares-Amaya, Roberto, Atahan-
Evrenk, Sule, Amador-Bedolla, Carlos, Sánchez-
Carrera, Roel S, Gold-Parker, Aryeh, Vogt, Leslie,
Brockway, Anna M, and Aspuru-Guzik, Alán. The
Harvard clean energy project: large-scale computational
screening and design of organic photovoltaics on the
world community grid. The Journal of Physical Chem-
istry Letters, 2(17):2241–2251, 2011.

Hensman, James and Lawrence, Neil D. Nested variational
compression in deep Gaussian processes. arXiv preprint
arXiv:1412.1370, visited on 25/05/2016, 2014.

Hernández-Lobato, José Miguel and Adams, Ryan P.
Probabilistic backpropagation for scalable learning of
Bayesian neural networks. In 32nd International Con-
ference on Machine Learning, 2015.

Kingma, D. P. and Ba, J. Adam: a method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, 2015.

Kingma, Diederik P. and Welling, Max. Stochastic gradi-
ent VB and the variational auto-encoder. In The Interna-
tional Conference on Learning Representations, 2014.

Kushner, H. J. and Budhiraja, A. S. A nonlinear filtering
algorithm based on an approximation of the conditional
distribution. IEEE Transactions on Automatic Control,
45(3):580–585, Mar 2000.

Lawrence, Neil D. and Moore, Andrew J. Hierarchical
Gaussian process latent variable models. In 24th Inter-
national Conference on Machine Learning, pp. 481–488,
2007.

Lázaro-Gredilla, Miguel. Bayesian warped Gaussian pro-
cesses. In Advances in Neural Information Processing
Systems 25, pp. 1619–1627, 2012.

Li, Yingzhen, Hernández-Lobato, José Miguel, and Turner,
Richard E. Stochastic expectation propagation. In Ad-
vances in Neural Information Processing Systems 29,
2015.

Minka, Thomas P. A family of algorithms for approximate
Bayesian inference. PhD thesis, Massachusetts Institute
of Technology, 2001.

Approximate EP for Deep Gaussian Processes

Neal, Radford M. Bayesian learning via stochastic dynam-
ics. In Advances in Neural Information Processing Sys-
tems 6, pp. 475–482, 1993.

Neal, Radford M. Bayesian learning for neural networks.
PhD thesis, University of Toronto, 1995.

Pyzer-Knapp, Edward O, Li, Kewei, and Aspuru-Guzik,
Alan. Learning from the Harvard clean energy project:
The use of neural networks to accelerate materials dis-
covery. Advanced Functional Materials, 25(41):6495–
6502, 2015.

Quiñonero-Candela, Joaquin and Rasmussen, Carl Ed-
ward. A unifying view of sparse approximate Gaussian
process regression. The Journal of Machine Learning
Research, 6:1939–1959, 2005.

Rasmussen, Carl Edward and Williams, Christopher K. I.
Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press,
2005.

Seeger, Matthias. Expectation propagation for exponential
families. Technical report, Department of EECS, Uni-
versity of California at Berkeley, 2007.

Snelson, Edward and Ghahramani, Zoubin. Sparse Gaus-
sian processes using pseudo-inputs. In Advances in Neu-
ral Information Processing Systems 19, pp. 1257–1264,
2006.

Snelson, Edward, Rasmussen, Carl Edward, and Ghahra-
mani, Zoubin. Warped Gaussian processes. In Advances
in Neural Information Processing Systems 17, pp. 337–
344, Cambridge, MA, USA, 2004.

Sutton, Richard S. and Barto, Andrew G. Introduction to
Reinforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition, 1998. ISBN 0262193981.

Titsias, Michalis K. Variational learning of inducing vari-
ables in sparse Gaussian processes. In 12th International
Conference on Artificial Intelligence and Statistics, pp.
567–574, 2009.

Titsias, Michalis K and Lawrence, Neil D. Bayesian Gaus-
sian process latent variable model. In 13th International
Conference on Artificial Intelligence and Statistics, pp.
844–851, 2010.

Turner, R. E. and Sahani, M. Two problems with vari-
ational expectation maximisation for time-series mod-
els. In Barber, D., Cemgil, T., and Chiappa, S. (eds.),
Bayesian Time series models, chapter 5, pp. 109–130.
Cambridge University Press, 2011.

Vanhatalo, Jarno and Vehtari, Aki. MCMC methods for
MLP-network and Gaussian process and stuff–a docu-
mentation for Matlab toolbox MCMCstuff. 2006. Labo-
ratory of computational engineering, Helsinki University
of Technology.

Welling, Max and Teh, Yee W. Bayesian learning via
stochastic gradient Langevin dynamics. In 28th Interna-
tional Conference on Machine Learning, pp. 681–688,
2011.

Wilson, Andrew and Adams, Ryan. Gaussian process ker-
nels for pattern discovery and extrapolation. In 30th In-
ternational Conference on Machine Learning, pp. 1067–
1075, 2013.

