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(a) The MSEs of the sample mean, the sample median, and
gα as a function of |α| (the distance of the phantom from the
true mean) for the standard Gaussian and n = 8.
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(b) The difference between the MSEs of the sample median
and gα as a percentage of the difference between the MSEs of
the sample median and the sample mean, when the underlying
distribution is the standard Gaussian. To measure the best-case
improvement, we set α = 0 (i.e., at the true mean).

Figure 3. Adding a single real-valued phantom when the number
of samples n is even.

A. Proof of Lemma 3.3
Fix a symmetric distribution D ∈ Dsym with mean µ, PDF
f , and CDF F . Let gt(x1, . . . , xn) = x(t) denote the tth or-
der statistic. We want to prove MSE(gt, D) ≥ MSE(gt+1, D)
for t ≤ (n − 1)/2. The comparison between gn−t and
gn−t+1 follows from symmetry of D.

We prove this by considering each “negative” example
where the squared error of gt is less than the squared error
of gt+1 by an amount d, and map it to a unique “positive”
example where the squared error of gt+1 is less than the
squared error of gt by d. The result follows by ensuring

that the negative example has at most as much probability
density as its corresponding positive example. There are
two cases of negative examples.

Case 1: x(t) = µ+a and x(t+1) = µ+b, where 0 ≤ a < b.
The squared error of gt is d = b2−a2 less than that of gt+1.
Let us map it to the positive example where x(t) = µ − b
and x(t+1) = µ − a. In this (unique) positive example,
the squared error of gt+1 is exactly b2 − a2 less than that
of gt. Let fN and fP denote the probability densities of
the negative and the positive examples. We need to show
fN ≤ fP . Now, fP /fN is

f(µ− a)f(µ− b) [F (µ− b)]t−1 [1− F (µ− a)]n−t−1

f(µ+ a)f(µ+ b) [F (µ+ a)]
t−1

[1− F (µ+ b)]
n−t−1

=

(
F (µ+ a)

F (µ− b)

)n−2t
≥ 1,

where the first transition holds due to symmetry of D
around µ, and the final transition holds because F (µ−b) ≤
1/2 ≤ F (µ+ a) and n− 2t > 0.

Case 2: x(t) = µ−a and x(t+1) = µ+b, where 0 ≤ a < b.
Here, x(t) and x(t+1) are on different sides of µ. We map
it to the (unique) positive example where x(t) = µ − b
and x(t+1) = µ + a, thus maintaining them on different
sides. Both examples admit an identical difference of b2 −
a2 between the squared errors, and the ratio fP /fN is

f(µ+ a)f(µ− b) [F (µ− b)]t−1 [1− F (µ+ a)]
n−t−1

f(µ− a)f(µ+ b) [F (µ− a)]t−1 [1− F (µ+ b)]
n−t−1

=

(
F (µ− a)
F (µ− b)

)n−2t
≥ 1.

For the final inequality, note that we still have F (µ− b) ≤
F (µ− a) because b > a ≥ 0. �

B. Proof of Proposition 3.4
Fix α ∈ R. First, observe that gα is the generalized median
obtained by placing one phantom on α, and an equal num-
ber of phantoms on −∞ and∞. The following alternative
formulation of gα provides further intuition.

gα(x) =


x(n/2) if α ≤ x(n/2),
α if x(n/2) ≤ α ≤ x(n/2+1),

x(n/2+1) if x(n/2+1) ≤ α.

Thus, gα always chooses among the left median, the right
median, and α. Fix a distribution D ∈ Dsym with mean µ.

Let med`(x) = x(n/2) and medr (x) = x(n/2+1) denote the
left and the right medians. We show that MSE(gα, D) ≤
MSE(med`, D) = MSE(medr , D). Comparison with other
order statistics then follows immediately from Lemma 3.3.
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Note that MSE(med`, D) = MSE(medr , D) holds due to the
symmetry of D.

Suppose µ ≥ α. Observe that gα(x) 6= med`(x) implies
med`(x) ≤ gα(x) < α ≤ µ, and in that case gα(x)
is closer to µ than med`(x). This yields MSE(gα, D) ≤
MSE(med`, D). For µ ≤ α, a similar argument establishes
MSE(gα, D) ≤ MSE(medr , D). The proof now follows from
the fact that MSE(med`, D) = MSE(medr , D) for any sym-
metric distribution D. �


