
Partition Functions from
Rao-Blackwellized Tempered Sampling: Supplemental Material

A. Mixed Ẑ Updates
We can generalize our Rao-Blackwellized maximum
likelihood interpretation in Section 2.3 to situations in
which Ẑ is not a fixed set of quantities for all sam-
ples. Under these conditions, we can no longer use the
update in (12). However, we can easily find the Rao-
Blackwellized log-likelihood, assuming independent βk

samples. Approximately independent samples can be ob-
tained by sub-sampling with a rate determined by the au-
tocorrelation of sampled β. We empirically found that
varying Ẑ at late stages did not have a large effect on
estimates.

Assume we have samples {x(i),β(i)}, with β|x(i) sam-
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Note that this expression is concave in logZ and can
be solved efficiently using the generalized gradient de-
scent methods of (Carlson et al., 2015a; 2016). The
total computational time of this approach will scale
O(K), whereas the Newton-Raphson method proposed
in MBAR would scale O(K3) per-iteration. It is not
clear how the number of iterations required in Newton-
Raphson will scale, and could potentially have a worse
dependence on K.

B. Bias and Variance derivations
A Taylor expansion of log ẐRTS

k , using (11)-(12) and
log(1 + x) � x− x2/2, gives
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where qk = q(βk) and Δck = ĉk − qk. Taking expecta-
tions, and replacing qk by its estimate ĉk, gives
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where σ2
1 = Var[ĉ1], σ2

k = Var[ĉk], and σ1k =
Cov[ĉ1, ĉk].

From the CLT, the asymptotic variance of ĉk is
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takes into account the autocorrelation of the Markov
chain. But estimates of this sum from the MCMC sam-
ples are generally too noisy to be useful. Alternatively,
V ar[ĉk] could simply be estimated from ĉk estimates on
many parallel MCMC chains.

C. RTS and TI-RB Continuous β
Equivalence

We want to show the relationship mentioned in (22),
which we repeat here:
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�

�K
k�=0 exp

�
βk�Δxi

+ log rk� − log Ẑk�
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The continuous version of this replaces the index k by β,
and
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The continuous form of the RTS estimator can be written
as an integral:
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We first analyze the derivative of cβ , which is
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0
exp(αΔxi

+log rα−log Ẑα)dα
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The last line follows since
�N
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= 1. The
d
dβ (log rβ − log Ẑβ) term in (29) and (30) simply cancel.

D. Similarity of RTS and MBAR
In this section, we elaborate on the similarity of the like-
lihood of MBAR and RTS. To prove this, we first restate

the likelihood of MBAR given in (18):
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The partial derivative of this likelihood with respect to
logZk is given by:
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Noting that q(βk) ∝ Zk/Ẑkrk, we have
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Setting the partial derivative to 0 and substituting the def-
inition of q(β) into (33) gives a solution of

Zk/Ẑkrk�K
j=1 Zj/Ẑjrj

= ĉk, (34)

which is identical to the RTS update in (12).

While RTS and MBAR give similar estimators, their in-
tended use is a bit different. The MBAR estimator can
be used whenever we have samples generated from a dis-
tribution at different temperatures, including both physi-
cal experiments where the temperature is an input and a
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tempered MCMC scheme. The RTS estimator requires a
tempered MCMC approach, but in exchange has trivial
optimization costs and improved empirical performance.

E. Adaptive HMC for tempering
Here we consider sampling from a continuous distri-
bution using Hamiltonian Monte Carlo (HMC) (Neal,
2011). Briefly, HMC simulates Hamiltonian dynamics
as a proposal distribution for Metropolis-Hastings (MH)
sampling. In general, one cannot simulate exact Hamil-
tonian dynamics, so usually one uses the leapfrog al-
gorithm, a first order discrete integration scheme which
maintains the time-reversibility and volume preservation
properties of Hamiltonian dynamics.

(Li et al., 2004) found using different step sizes improved
sampling various multimodal distributions using random
walk Metropolis proposal distributions. However, un-
der their scheme, besides step sizes being monotoni-
cally decreasing in β, it is unclear how to set these step
sizes. Additionally, in target distributions that are high-
dimensional or have highly correlated variables, random
walk Metropolis will work badly.

For most distributions of interest, as β decreases, p(x|β)
becomes flatter; thus, for HMC, we can expect the MH
acceptance probability to decrease as a function of β,
enabling us to take larger jumps in the target distribu-
tion when the temperature is high. As the stepsize �
of the leapfrog integrator gets smaller, the linear ap-
proximation of the solution to the continuous differen-
tial equations becomes more accurate, and the MH ac-
ceptance probability increases (for an infinitely small
stepsize, the simulation is exact, and under Hamilto-
nian dynamics, the acceptance probability is 1). Thus,
p(accept|�) decreases with �. Putting this idea together,
we model p(accept|β, �) as a logistic function for each
β ∈ {0 = β1, ...,βJ = 1}

logit(p(accept|β, �)) = w
(j)
0 + w

(j)
1 � (35)

Given data {(β(i), y(i))}i=1,...,N with y(i) = 1 if the pro-
posed sample i was accepted, and y(i) = 0 otherwise, we
find

max
{w(j)}

J�

j=1

h(w(j))

s.t. w
(j)
1 ≤ 0

g(βj , �) ≤ g(βj−1, �) ∀ �

(36)

where

h(w(j)) =
�

i:β(i)=βj

y(i) log(g(β(i), �(i)))

+(1− y(i)) log(1− g(β(i), �(i)))

and

g(βj , �) = p(accept|βj , �) =
1

1 + exp(−(w
(j)
0 + w

(j)
1 �))

The last constraint can be satisfied by enforcing
g(βj , �min) ≤ g(βj−1, �min) and g(βj , �max) ≤
g(βj−1, �max), as doing so will ensure g(βj , �) ≤
g(βj−1, �) for all � ∈ [�min, �max]. Before solving (36),
we first run chains at fixed β = 0 and β = 1, running a
basic stochastic optimization method to adapt each step-
size until the acceptance rate is close to the target accep-
tance rate, which we take to be 0.651, which is suggested
by (Beskos et al., 2013). We take these stepsizes to be
�max and �min, respectively. Once we have approximated
p(accept|β, �), choosing the appropriate proposal distri-
bution given β is simple:

�̂opt(βj) =
logit(p(acc))− w

(j)
0

w
(j)
1

If �̂opt is outside [�min, �max], we project it into the interval.

E.1. Example

Here we consider a target distribution of a mixture of
two 10-dimensional Gaussians, each having a covariance
of 0.5I separated in the first dimension by 5. Our prior
distribution for the interpolating scheme is a zero mean
Gaussian with covariance 30I . The prior was chosen by
looking at a one-dimensional projection of the target dis-
tribution and picking a zero-mean prior whose variance,
σ2, adequately covered both of the modes. The variance
of the multidimensional prior was taken to be σ2I , and
the mean to be 0. Our prior on temperatures was taken
to be uniform. We compare the adaptive method above
to simulation with a fixed step size, which is determined
by averaging all of the step sizes, in an effort to pick the
optimal fixed step size. The below figures show an im-
provement over the fixed step size in mixing and partition
function estimation using our adaptive scheme.

We obtained similar improvements using random walk
Metropolis by varying the covariance of an isotropic
Gaussian proposal distribution. We note another scheme
for discrete binary data may be used, where the number
of variables in the target distribution to “flip”, as a func-
tion of temperature, is a parameter.
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Figure 6. (Left) Mixing in β under the fixed step size. (Middle) Mixing in β under the adaptive scheme. (Right) Partition function
estimates under the fixed step size and adaptive scheme after 10000 samples. Mixing in β using a fixed step size is visibly slower
than mixing using the adaptive step size, which is reflected by the error in the partition function estimate.
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Figure 7. logZ estimates for an RBM with 784 visible units and 500 hidden units trained on the MNIST dataset when p1 is a
uniform distribution. (Left) The mean of the competing estimators. The magenta line gives truth. (Middle) The RMSE of the
competing estimators. (Right) The empirical transition matrix on β clearly demonstrates that there is a “knot” in the temperature
distribution that is prohibiting effective mixing and reducing estimator quality. This gives a simple diagnostic to analyze sampling
results and mixing properties.

F. RBM logZ Estimates from a Uniform p1

The choice of p1 is known to dramatically affect the
quality of log partition function estimates, and this was
noted for RBMs in (Salakhutdinov & Murray, 2008). To
demonstrate the comparative effect of a poor p1 distribu-
tion on our estimator, we choose p1 to have a uniform
distribution over all binary patterns, and follow the same
experimental setup as in Section 4.2. The quantitative re-
sults are shown in Figure 7 (Left) and (Middle). In this
case all estimators behave significantly worse than when
p1 was intelligently chosen. We note that the initializa-
tion stage of RTS (see Section 2.4) takes significantly
longer with this choice of p1. Initially RTS decreases
bias faster than AIS, but asymptotically they have simi-
lar behavior up to 105 Gibbs sweeps.

The poor performance of the estimators is due to a “knot”
in the interpolating distribution caused by the mismatch
between p1 and pK . This can be clearly seen in the em-
pirical transition matrix over the inverse temperature β,
shown in Figure 7 (Right). While we have limited our
experiments to the interpolating distribution, a strength
of our approach is that can naturally incorporate other

possibilities that ameliorate these issues, such as moment
averaging (Grosse et al., 2013) or tempering by subsam-
pling (van de Meent et al., 2014), as mentioned in Section
2.1.

G. Estimating q(βk) from a transition
matrix

Instead of estimating q(βk) by Rao-Blackwellizing via
ck in (9), it is possible to estimate q(βk) from the sta-
tionary distribution of a transition matrix. The key idea
here is that the transition matrix accounts for the sam-
pling structure used in MCMC algorithms, whereas ck
is derived using i.i.d. samples. Suppose that we have a
transition sequence β1 → β2 · · · → βN . If p(x|β) is
an exact Gibbs sampler, then this is a Markov transition,
since

p(βn+1 = βk|βn = βj),

=
�

x

p(βn+1 = βk|x)p(x|βn = βj),

= Pjk.
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Figure 8. An illustration of the effect of estimating the stationary distribution from the transition matrix. Both plots show the RMSE
on RBMs averaged over 20 repeats. Experimental procedure is the same as the main text. (Left) RTS, TM, and RTM compared on a
784-10 RBM. Because the latent dimensionality is small, mixing is very effective and accounting for the transition matrix improves
performance consistently by about 10%. (Right) For an 784-200 RBM, the approximation as a Markov transition is inaccurate, and
we observe no performance improvements.

Note that in general that we do not have an exact Gibbs
sampler on p(x|β). In these cases the approach is ap-
proximate. The top eigenvector of P gives the stationary
distribution over βk, which is q(βk). We briefly mention
two importance sampling strategies to estimate this tran-
sition matrix. First, this matrix can simply be estimated
with empirical samples, with

Pjk ∝
�

1{βn+1=βk,βn=βj},

where 1{·} is the identity function. Then q(βk) is es-
timated from the top eigenvector. We denote this strat-
egy Stationary Distribution (SD). A second approach is
to Rao-Blackwellize over the samples, where

Pjk ∝
�

p(βn + 1 = βk|xn)1{βn=βj}.

We denote this strategy as Rao-Blackwellized Stationary
Distribution (RSD).

The major drawback of this approach is that it is rare to
have exact Gibbs samples over p(x|β), but instead we
have a transition operation T (xn|β, xn−1). In this case,
it is unclear whether this approach is useful. We note that
in simple cases, such as a RBM with 10 hidden nodes,
RSD can sizably reduce the RMSE over RTS, as shown
in Figure 8(Left). However, in more complicated cases
when the assumption that we have a Gibbs sampler over
p(x|β) breaks down, there is essentially no change be-
tween RTS and RSD, as shown in a 200 hidden node
RBM in Figure 8 (Right). Our efforts to correct the tran-
sition matrix for the transition operator instead of a Gibbs
sampler did not yield performance improvements.


