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7 Appendix
7.1 Preliminaries
We first revisit some basic properties of defined linear op-
erators and projections. Recall that H

0

= U⌃V T is the
reduced SVD of H

0

, and the space T is defined as:
T := {UAT

+BV T | A,B 2 Rd⇥r},
and PT is the orthogonal projection onto T . It is known
that any subgradient of kH

0

k⇤ has the form UV T
+ W ,

where PTW = 0, kWk  1.

Similarly, we have defined ⌦ to be the set of matrices
whose entries supported as the same as S

0

, and P
⌦

is the
orthogonal projection onto ⌦. It is also known that any
subgradient of kS

0

k
1

takes the form sgn(S
0

) + F , where
P
⌦

F = 0, kFk1  1.

Under the incoherence assumptions, we also introduce a
norm inequality on rank-1 matrices which we will use fre-
quently in the proof. Given any matrix with the form
xiy

T
j 2 Rd⇥d, we have

kPT (xiy
T
j )k2F = hPT (xiy

T
j ),xiy

T
j i

 kUT
xik2

2

kyjk2
2

+ kV T
yjk2

2

kxik2
2

 2µ
0

µ
1

rd

n2

. (10)

In particular, if we let p be any probability that satisfies:

p � 2C✏�2

µ
0

µ
1

rd log d

n2

(11)

with a numerical constant C > 0, then the inequality be-
comes:

kPT (xiy
T
j )k2F  ✏2

p

C log d
. (12)

7.2 Proof of Lemma 1
Here, we provide a proof of dual certification lemma
(Lemma 1).

Proof. Consider any feasible perturbation (H
0

+ �, S
0

�
X�Y T

) from the claimed optimum. We will prove the
lemma by showing that such perturbed pair increases the
objective (3) unless � = 0. Let UV T

+ W
0

be any sub-
gradient of kH

0

k⇤ and sgn(S
0

) + F
0

be any subgradient
of kS

0

k
1

, then by the definition of subgradient, W
0

2
T?, kW

0

k
2

 1, F
0

2 ⌦

?, kF
0

k1  1, and
kH

0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + �kS
0

k
1

+ hUV T
+W

0

,�i
� �hsgn(S

0

) + F
0

, X�Y T i.
Select W

0

and F
0

such that hW
0

,�i = kPT?�k⇤ and

hF
0

, X�Y T i = �kP
⌦

?(X�Y T
)k

1

5, then we have:
kH

0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + kS
0

k
1

+ kPT?�k⇤ + �kP
⌦

?(X�Y T
)k

1

+ hUV T ,�i � �hsgn(S
0

), X�Y T i. (13)

Now, since hUV T ,�i = hTL(UV T
), TL�i, we can bound

the inner product terms by:
|hUV T ,�i � �hsgn(S

0

), X�Y T i|
=|hTL(UV T

)� �sgn(S
0

), X�Y T i|
|hTL(W ), X�Y T i|+ |hM,X�Y T i|
+ |�hF,X�Y T i|+ |�hP

⌦

D,X�Y T i|

1

2

kPT?�k⇤ +
�

2

kP
⌦

?X�Y T k
1

+

�

4

kP
⌦

X�Y T kF ,

where in the third inequality we use the fact that
hM,X�Y T i = hM,PQ(X�Y T

)i = 0. Thus, equation
(13) can be reduced to:
kH

0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + kS
0

k
1

+

1

2

(kPT?�k⇤ + �kP
⌦

?(X�Y T
)k

1

)

� �

4

kP
⌦

X�Y T kF . (14)

We can further bound the term kP
⌦

X�Y T kF by:
kP

⌦

X�Y T kF
kP

⌦

TLPT�kF + kP
⌦

TLPT?�kF

1

2

k�kF + kPT?�kF

1

2

(kP
⌦

TL�kF + kP
⌦

?TL�kF ) + kPT?�kF .

By definition, P
⌦

TL� = P
⌦

= X�Y T , so
kP

⌦

TL�kF  kP
⌦

?TL�kF + 2kPT?�kF
 kP

⌦

?TL�k
1

+ 2kPT?�k⇤.
Therefore, equation (14) becomes:

kH
0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + kS
0

k
1

+

1

2

✓
(1� �)kPT?�k⇤ +

�

2

kP
⌦

?(X�Y T
)k

1

◆
.

(15)

However, by assumption, kP
⌦

TLPT k  1

2

< 1 implies
that TL(T )\⌦ = {0}. Therefore, for any � 6= 0, if � /2 T
then kPT?�k > 0, and if � 2 T then kP

⌦

?TL�k
1

> 0.
Thus the LHS of (15) will be strictly larger than RHS unless
� = 0, which concludes the proof.

7.3 Preliminary Lemmas
We need several lemmas to prove the validity of con-
structed dual certificates introduced in Section 4.3. For fol-

5Such W0 and F0 exist. See Candès et al. (2011) for an exam-
ple of such matrices.
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lowing lemmas, when we say the equation holds with large
probability, we mean that the event will hold with probabil-
ity at least 1�O(d�10

).

Most of the probability bounds in our results are from the
Bernstein inequality stated as below.

Proposition 1 (Noncommutative Matrix Bernstein In-
equality (Recht, 2011)). Let X

1

· · ·Xk be k independent,
zero-mean random matrices where each Xi 2 Rn1⇥n2 .
Suppose for each Xi, kXik  R, and the norm of the sum
of covariance matrices is bounded by:

max

⇢
k

kX

i=1

E
⇥
XiX

T
i

⇤
k, k

kX

i=1

E
⇥
XT

i Xi

⇤
k
�

 �2.

Then for any t > 0:

Pr(k
kX

i=1

Xik > t)  (n
1

+ n
2

) exp

✓
�t2/2

�2

+Rt/3

◆
.

We begin with a core lemma which generalizes the result
of Theorem 4.1 in Candès & Recht (2012).

Lemma 4. Suppose ⌦

0

⇠ Ber(⇢). Then with large prob-
ability,

kPT � ⇢�1PTTSP⌦0TLPT k  ✏

provided that ⇢ � C
0

✏�2

(2µ
0

µ
1

rd log d)/n2 with some
constant C

0

> 0.

Proof. First we decompose the matrix (PT �
⇢�1PTTSP⌦0TLPT )Z as:

(PT � ⇢�1PTTSP⌦0TLPT )Z

=(PTTS(I � ⇢�1P
⌦0)TLPT )Z

=

X

(i,j)

(1� ⇢�1�ij)hZ,PT (xiy
T
j )iPT (xiy

T
j ).

This yields us to define a linear operator Sij as:
Sij(Z) = (1� ⇢�1�ij)hZ,PT (xiy

T
j )iPT (xiy

T
j ),

which maps any Z 2 Rd⇥d to Rd⇥d. The operator is sym-
metric, zero in expectation (i.e., E

⇥
Sij(Z)

⇤
= 0) and its

operator norm, by definition, is bounded by:

sup

Z 6=0

kSij(Z)kF
kZkF

.

Thus, the original operator PT � ⇢�1PTTSP⌦0TLPT can
be viewed as a sum of independent, zero-mean operators
Sij , where each operator has a bounded operator norm as:

kSij(Z)kF  ⇢�1|hZ,PT (xiy
T
j )i|kPT (xiy

T
j )kF

 ⇢�1kPT (xiy
T
j )k2F kZkF

 ✏2

C
0

log d
kZkF ,

where the last line is derived by applying (12). Also, we

can bound the quantity k
P

(i,j) E
⇥
S2

ij

⇤
k similarly. Since

k
X

(i,j)

E
⇥
S2

ij(Z)

⇤
kF

=

����
X

(i,j)

E
⇥
(1� ⇢�1�ij)

2

⇤
hZ,PT (xiy

T
j )i

kPT (xiy
T
j )k2FPT (xiy

T
j )

����
F

,

and E
⇥
(1� ⇢�1�ij)2

⇤
= (1� ⇢)/⇢  1/⇢, therefore,

k
X

(i,j)

E
⇥
S2

ij(Z)

⇤
kF

 ✏2

C
0

log d
kPT

X

(i,j)

hPTZ,xiy
T
j ixiy

T
j kF

=

✏2

C
0

log d
kPTTSTLPT (Z)kF

 ✏2

C
0

log d
kZkF

With above bounds, the claim follows by applying matrix
Bernstein inequality.

An important fact from this lemma is that it implies
kP

⌦

TLPT k will not be too large provided that |⌦| is not
extremely large. More formally, we can prove the follow-
ing Lemma:

Lemma 5. Suppose ⌦ ⇠ Ber(⇢) where 1 � ⇢ �
C

0

✏�2

(2µ
0

µ
1

rd log d)/n2. Then with high probability, we
have kPTTSP⌦

k 
p
⇢+ ✏.

Proof. Suppose 1 � ⇢ � C
0

✏�2

(2µ
0

µ
1

rd log d)/n2, then
from Lemma 4, we know that with high probability,

kPT � (1� ⇢)�1PTTSP
⌦

?TLPT k  ✏.

Now, by the fact that P
⌦

? = I � P
⌦

, we can rewrite the
operator as:

PT � (1� ⇢)�1PTTSP
⌦

?TLPT

=(1� ⇢)�1

(PTTSP⌦

TLPT � ⇢PT ),

from which we can conclude that
kPTTSP⌦

TLPT k  ✏(1� ⇢) + ⇢kPT k = ⇢+ ✏(1� ⇢)

by the triangle inequality. The claim is thus proved by the
fact that kPTTSP⌦

TLPT k  kPTTSP⌦

k2.

Lemma 4 implies that if Z 2 T , then its Frobenius norm
will decrease sufficiently large after applying the operator
I � PTTSP⌦0TL. The next lemma says that, after apply-
ing such operator, its “TL infinity norm” will also decrease
sufficiently large.

Lemma 6. Suppose ⌦

0

⇠ Ber(⇢) and Z 2 T . Then with
large probability,

kTL(Z � ⇢�1PTTSP⌦0TLZ)k1  ✏kTLZk1
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provided that ⇢ � C
0

✏�2

(2µ
0

µ
1

rd log d)/n2 with some
constant C

0

> 0.

Proof. Let K = TL(Z�⇢�1PTTSP⌦0TLZ). Observe that
any element Kab can be represented as a sum of indepen-
dent variables, i.e. Kab =

P
(i,j) sij , where sij is defined

as:
sij = (1� ⇢�1�ij)hZ,xiy

T
j ihPT (xiy

T
j ),xay

T
b i.

Again, each sij has zero mean (E
⇥
sij

⇤
= 0), and each |sij |

can be bounded by:
|sij |  ⇢�1|xT

i Zyj |kPT (xiy
T
j )kF kPT (xay

T
b )kF

 ✏2

C
0

log d
kTLZk1.

Also, |
P

(i,j) E
⇥
s2ij

⇤
| can be bounded by:

|
X

(i,j)

E
⇥
s2ij

⇤
|  |

X

(i,j)

⇢�1

(x

T
i Zyj)

2hxiy
T
j ,PT (xay

T
b )i2|

 ⇢�1kTLZk21|
X

(i,j)

hxiy
T
j ,PT (xay

T
b )i2|

 ⇢�1kTLZk21kTLPT (xay
T
b )k2F

 ✏2

C
0

log d
kTLZk21.

Note that in both bounds we apply the inequality (12) be-
cause ⇢ obeys (11). Therefore, by Bernstein inequality, we
have:

Pr(|Kab| > ✏kTLZk1)  2 exp

✓
� 3

8

C
0

log d

◆
,

and the claim is proved by applying an union bound.

Lemma 7. For any fixed matrix Z 2 Rd⇥d, with large
probability,

k(I � ⇢�1TSP⌦0TL)Zk  C 0
0

s
d log d

⇢
kTLZk1

with some constant C 0
0

> 0, provided that ⇢ �
C

0

µ2

1

d log d/n2 with some constant C
0

> 0.

Proof. Again we can decompose the matrix (I �
⇢�1TSP⌦0TL)Z as

P
(i,j) Sij , where Sij is defined as:

Sij = (1� ⇢�1�ij)hZ,xiy
T
j ixiy

T
j .

Each Sij is independent with zero means (i.e. E
⇥
Sij

⇤
= 0).

Furthermore, we can bound kSijk by:

kSijk  ⇢�1|xT
i Zyj |kxik2kyjk2  ⇢�1

µ
1

d

n
kTLZk1,

and the term k
P

(i,j) E
⇥
ST
ijSij

⇤
k can be bounded by:

k
X

(i,j)

E
⇥
ST
ijSij

⇤
k

=k
X

(i,j)

E
⇥
(1� ⇢�1�ij)

2

⇤
(x

T
i Xyj)

2

yjx
T
i xiy

T
j k

⇢�1kTLZk21k
X

i

kxik2
2

X

j

y

T
j yjk

=⇢�1dkTLZk21kY TY k
=⇢�1dkTLZk21.

Same bound on k
P

(i,j) E
⇥
SijST

ij

⇤
k can be derived simi-

larly. Thus, the lemma follows by applying matrix Bern-
stein inequality.

Equipped with the above lemmas, now we are able to prove
Lemma 2. For convenience, we will take ✏  e�1 in the
proof.
7.4 Proof of Lemma 2
proof of 2a. Recall that by the definition of Yj and Zj ,
Yj0 =

P
j q

�1TSP⌦jTLZj�1

. Thus,

kWLk = kPT?Yj0k


X

j

kq�1PT?TSP⌦jTLZj�1

k

=

X

j

kPT?(q�1TSP⌦jTLZj�1

� Zj�1

)k


X

j

kq�1TSP⌦jTLZj�1

� Zj�1

k,

where the second equality comes from PT?Zj�1

= 0. As
q is chosen to obey (11), we can apply Lemma 7 so that:

kWLk  C 0
0

s
d log d

q

X

j

kTLZj�1

k1

 C 0
0

s
d log d

q

X

j

✏j�1kTL(UV T
)k1

 C 0
0

(1� ✏)�1

s
d log d

q

p
µ
0

r

n
.

From here we can conclude that

kWLk  C 0✏  1

4

for some universal constant C 0, by choosing a small enough
✏.

proof of 2b. We have
P
⌦

TL(UV T
+WL

) + P
⌦

ML

=P
⌦

TL(UV T � PTYj0) + P
⌦

TLYj0 + P
⌦

ML

=P
⌦

TL(Zj0) + P
⌦

(TLYj0 +ML
)

=P
⌦

TL(Zj0),
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where the last equation holds because:
TLYj0 +ML

=

X

j

q�1TLTSP⌦jTLZj�1

+ PQ?

X

j

q�1P
⌦jTLZj�1

=

X

j

q�1P
⌦jTLZj�1

(16)

is a matrix only supported on ⌦

C . Now, by applying
Lemma 4, we have

kP
⌦

TLZj0kF kTL(Zj0)kF = kZj0kF
✏j0kUV T kF = ✏j0

p
r.

Since ✏  e�1 and j
0

� 2 log n, the above quantity is less
than �/4.

proof of 2c. By construction, TL(UV T
+ WL

) + ML
=

TLZj0 + TLYj0 +ML. From part b we have kTLZj0k1 
kTLZj0kF  �/4, and the matrix TLYj0+ML is supported
on ⌦

C . Thus, the claim is proved if we can show:

kTLYj0 +MLk1  �

8

.

Using (16), we have:

kTLYj0 +MLk1  q�1

X

j

kP
⌦jTLZj�1

k1

 q�1

X

j

kTLZj�1

k1

 q�1

X

j

✏j�1kTL(UV T
)k1

 q�1

(1� ✏)�1

p
µ
0

r

n
.

For q obeys (11), we have:

kTLYj0 +MLk1  C✏2

s
n2

µ2

0

µ
1

rd2(log d)2
,

which will be smaller than �/8 if:

✏  C 0
✓
µ2

0

µ
1

rd2(log d)2

n3

◆
1/4

.

In summary, the proof above shows that 2a ⇠2c hold if q
is chosen to obey (11) and ✏ is chosen to be sufficiently
small. As we fix a j

0

� d2 log ne and a small enough
✏, a well-defined q can always be set to obey 1 > q �
2C✏�2

(µ
0

µ
1

rd log d)/n2. This concludes the proof.
7.5 Proof of Lemma 3
For convenience, define E = sgn(S

0

) whose sign is ran-
domly distributed as:

Eij :=

8
><

>:

1, w.p. ⇢/2
0, w.p. 1-⇢
�1, w.p. ⇢/2

In the following two parts of proof, we will focus on the
event kP

⌦

TLPT k < �. Notice that by Lemma 5, for any
� > 0, the event holds with large probability given a small
enough ⇢.

Proof of 3a. By construction, we have:
WS

= �PT?TS(P⌦

� P
⌦

TLPTTSP⌦

)

�1E

= PT?TSK(1)

+ PT?TSK(2), (17)

where K(1), K(2) is defined by
K(1)

= �E,

K(2)

= �
X

k�1

(P
⌦

TLPTTSP⌦

)

kE.

We first bound the first term of (17). Since
kPT?TSK(1)k  kK(1)k  k�Ek, thus, using the argu-
ment in both Vershynin (2010); Candès et al. (2011), with
high probability,

kEk  4

p
n⇢.

As � = 1/
p
n, it implies:
kPT?TSK(1)k  k�Ek  4

p
⇢. (18)

Now consider the second term kPT?TSK(2)k. For
convenience, set the operator R :=

P
k�1

(P
⌦

�
P
⌦

TLPTTSP⌦

)

k. Then, kPT?TSK(2)k  kK(2)k 
k�R(E)k, and a standard covering argument could bound
this operator norm. By Lemma 5.2 in Vershynin (2010),
There exists a 1/2�net N for a hypersphere Sn�1 with its
size  5

n. Then, From Lemma 5.3 in Vershynin (2010),
we have:
kR(E)k = sup

a,b2Sn�1

ha,R(E)bi  4 sup

a,b2N
ha,R(E)bi.

Thus, consider any arbitrary pair (a,b) 2 N ⇥ N with
kak

2

= kbk
2

= 1, we can define a random variable
S(a,b) as:

S(a,b) = ha,R(E)bi = hR(ab

T
), Ei

by the fact that R is self-adjoint. Moreover, observe that
given position of ⌦ is fixed, only random part of E is its
sign and since the distribution is i.i.d. symmetric, we could
apply Hoeffding’s inequality to bound the probability that:

Pr(|S(a,b)| > t)  2 exp

✓
� 2t2

kR(ab

T
)k2F

◆
.

Note that by definition of operator 2-norm, kRk =

sup

ˆa,ˆb kR(

ˆ

a

ˆ

b

T
)kF /kˆaˆbT kF � kR(ab

T
)kF . Therefore,

by an union bound:

Pr( sup

a,b2N
|S(a,b)| > t)  2|N |2 exp

✓
� 2t2

kRk2

◆
,

which leads to:

Pr(kR(E)k > t)  2|N |2 exp
✓
� t2

8kRk2

◆
.

Furthermore, on the event kPTTSP⌦

k  �, we can bound
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the operator norm by:

kRk 
X

k�1

�2k
=

�2

1� �2

.

Putting all together, we can upper bound the second term
of (17) by:

Pr(�kR(E)k > t)  2⇥ 5

2n
exp

✓
�2t2

2�2

◆

+ Pr(kP
⌦

TLPT k > �)

where � = (1��2

)/2�2. Thus, combining this bound with
(18), and set � = 1/

p
n, we can conclude kWSk  1

4

with
high probability if ⇢ (and thus �) is sufficiently small.

Proof of 3b. Let K be the matrix P
⌦

?TLWS
+ P

⌦

?MS ,
and our goal is to bound kKk1. We first note that
K = P

⌦

?TLWS
+ P

⌦

?MS

=�P
⌦

?(PQ � TLPTTS + PQ?)(P
⌦

� P
⌦

TLPTTSP⌦

)

�1E

=� �P
⌦

?TLPTTS(P⌦

� P
⌦

TLPTTSP⌦

)

�1E.

Consider any Kij 6= 0. It must be in support of ⌦C and the
element can be expressed as:

Kij = hK, eie
T
j i = �hS(i, j), Ei,

where S(i, j) is an n⇥ n matrix defined by:

S(i, j) = (P
⌦

� P
⌦

TLPTTSP⌦

)

�1P
⌦

TLPTTS(eieTj ).
Now, conditional on ⌦, the sign of E is i.i.d. symmetric
and again, by Hoeffding’s inequality, each Kij could be
bounded by:

Pr(|Kij | > t�)  2 exp

✓
� 2t2

kS(i, j)k2F

◆
,

and thus, by an union bound, we have:

Pr(max

(i,j)
|Kij | > t�)  2n2

exp

✓
� 2t2

max

(i,j) kS(i, j)k2F

◆
.

Furthermore, since (10) holds, we have:
kS(i, j)kF

k(P
⌦

� P
⌦

TLPTTSP⌦

)

�1kkP
⌦

TLPT k
p
2µ

0

µ
1

rd

n
.

In addition, on the event kP
⌦

TLPT k  �, we can also
bound k(P

⌦

� P
⌦

TLPTTSP⌦

)

�1k  1/(1 � �2

), and
therefore,

Pr(kKk1 > t�)  2n2

exp

✓
� n2�2t2

µ
0

µ
1

rd

◆

+ Pr(kP
⌦

TLPT k > �),

where � = (1��2

)/�. The Lemma is thus proved provided
that r  ⇢r(µ0

µ
1

)

�1n2/(d log n) with some small enough
⇢r.


