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7 Appendix

7.1 Preliminaries

We first revisit some basic properties of defined linear op-
erators and projections. Recall that Hy = UXV7T is the
reduced SVD of Hy, and the space T is defined as:

T:={UAT + BVT | A,B € R™*"},
and Py is the orthogonal projection onto 7'. It is known

that any subgradient of || Hp||. has the form UVT + W,
where PrW =0, |[W]| < 1.

Similarly, we have defined 2 to be the set of matrices
whose entries supported as the same as Sy, and Pq, is the
orthogonal projection onto 2. Tt is also known that any
subgradient of ||Spl|1 takes the form sgn(Sy) + F', where

Under the incoherence assumptions, we also introduce a
norm inequality on rank-1 matrices which we will use fre-
quently in the proof. Given any matrix with the form
xiy;‘r € R4%4 we have

1Pr(xiyj )7 = (Pr(xiy] ). xiy; )
<NUTxll3llys 15 + 1V w5313

2 d
< Houzﬂ" ) (10)
n
In particular, if we let p be any probability that satisfies:
dlogd
P> QCG_QM (11)

with a numerical constant C' > 0, then the inequality be-
comes:

p

V2 < (2 .
IPreay ] < € s

(12)

7.2 Proof of Lemma 1
Here, we provide a proof of dual certification lemma
(Lemma 1).

Proof. Consider any feasible perturbation (Hy + A, Sy —
XAYT) from the claimed optimum. We will prove the
lemma by showing that such perturbed pair increases the
objective (3) unless A = 0. Let UVT + W be any sub-
gradient of ||Hp||. and sgn(Sp) + Fp be any subgradient
of ||Sol|1, then by the definition of subgradient, W, €
T, [Wollz < 1, Fo € @, [[Folloo < 1, and

1o + All + AllSo = XAY T |l

2| Holl + AllSoll + (UVT + Wo, A)

— Msgn(Sp) + Fo, XAY'T).

Select Wy and Fp such that (Wp, A) = ||Ppri Al and

(Fo, XAYT) = —||Pqi (XAYT)| 1 3, then we have:
| Ho + Al + A So — XAYT,
>|[Hollx + [1Soll + [PreAlls + A Pos (XAY )|y
+(UVT,A) — Asgn(Sp), XAYT). (13)
Now, since (UVT, A) = (T (UVT), TL,A), we can bound
the inner product terms by:
{UVT,A) = Asgn(So), XAYT)|
=T (UVT) = Asgn(Sp), XAYT)|
<|TL (W), XAYT)| + (M, XAYT)|
+ [IMF, XAY D) + |\ (PaD, XAYT)|

1 A A
<SP Al + S1Pos XAYT | + ZIPaX AYT |,

where in the third inequality we use the fact that
(M, XAYT) = (M,Po(XAYT)) = 0. Thus, equation
(13) can be reduced to:

|Ho + All« + \||So — XAY Ty

1
> Holl + S0l + 5 (1P Al + M[Pas (XAYT)1)

A
— Z||7>QXAYT||F. (14)

We can further bound the term ||Po X AY 7| ¢ by:
[PaXAYT||p
<IPTLPrAllr + [[PoTePre Al r

1
<5lIAllF +PreAllp

1
<5 UPeTLAllr + [Par TLA(r) + [[ProAlle-

By definition, PoTL A = Po = XAY 7T, s0
PeTLAlF < [[Por TLAllF + 2[[PreAllr
< |Par TeAll + 2[Pro Al
Therefore, equation (14) becomes:
| Ho + Allx + A|So — XAY T,
>[|Holl+ + [1So]lx

1 A
+ 5 (0= NP Al + §1Pa (xAYTL )

15)
1

However, by assumption, ||Po7.Pr|| < 5 < 1 implies
that 77, (T)NQ = {0}. Therefore, forany A # 0,if A ¢ T
then | P Al > 0, and if A € T then ||Pqr TrAll; > 0.
Thus the LHS of (15) will be strictly larger than RHS unless

A = 0, which concludes the proof. O

7.3 Preliminary Lemmas
We need several lemmas to prove the validity of con-
structed dual certificates introduced in Section 4.3. For fol-

3Such Wy and Fy exist. See Candés et al. (2011) for an exam-
ple of such matrices.
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lowing lemmas, when we say the equation holds with large
probability, we mean that the event will hold with probabil-
ity at least 1 — O(d~19).

Most of the probability bounds in our results are from the
Bernstein inequality stated as below.

Proposition 1 (Noncommutative Matrix Bernstein In-
equality (Recht, 2011)). Let X; --- X}, be k independent,
zero-mean random matrices where each X; € R"t*"z,
Suppose for each X;, || X;|| < R, and the norm of the sum
of covariance matrices is bounded by:

k k

s | BTN BT XN < o2
=1 =1

Then for any t > 0:

b —12/2
i=1

We begin with a core lemma which generalizes the result
of Theorem 4.1 in Candes & Recht (2012).

Lemma 4. Suppose Qo ~ Ber(p). Then with large prob-
ability,

|Pr — p~ ' PrTsPa, T Pr| < €

provided that p > Coe~2(2uop1rdlogd)/n? with some
constant Cy > 0.

Proof. First we decompose the matrix

p_lpT'rgrszO'TLPT)Z as:
(Pr — p " PrTsPa, TLPr)Z

=(PrTs(Z — p~'Pa,)TLPr)Z

=Y (1= p 162, Pr(xiy] ) Pr(xiy})-
(4,4)
This yields us to define a linear operator S;; as:

Sii(Z2) = (1= p "6 {Z, Pr(xiy] ))Pr(xiy] ),
which maps any Z € R%*¢ to R%*?. The operator is sym-
metric, zero in expectation (i.e., E [Sij(Z )] = 0) and its
operator norm, by definition, is bounded by:

1Si5(2)|l P

sup —————.
zz0  |14llr

(Pr -

Thus, the original operator Py — p~ 1 PrTsPq, Tr.Pr can
be viewed as a sum of independent, zero-mean operators
Si;, where each operator has a bounded operator norm as:

1S:5(Z)lr < p~ K2, Pr(xayi NIPr(xiy; )l r
< p HPriy )zl 2] e
€2
< Z
where the last line is derived by applying (12). Also, we

can bound the quantity || 3 ; ;) E[S7 ]| similarly. Since
1> _E[S52)]IF
(4,9)
_‘ Z E [(1 — p_léij)2] (Z, ,PT(X,LyJT))
(1,5)
IPrsyIEProx])|
F
and E[(1 - p~16;;)%] = (1 — p)/p < 1/p, therefore,
1> E[S5(2)]Ilr
(2,5)
2
<<
~Cylogd

1Pr Y (PrZ,xiy] )xiy] |Ir
(4.9)

\PrTsTePr(2)|r

E2

" Cylogd

€
<——|Z
< logdH ¥y
With above bounds, the claim follows by applying matrix
Bernstein inequality. O

An important fact from this lemma is that it implies
P T Pr| will not be too large provided that || is not
extremely large. More formally, we can prove the follow-
ing Lemma:

Lemma 5. Suppose Q@ ~ DBer(p) where 1 — p >
Coe2(2uoprdlog d) /n?. Then with high probability, we
have | PrTsPal| < v/p ¥

Proof. Suppose 1 — p > Coe™2(2uou1rdlogd)/n?, then
from Lemma 4, we know that with high probability,
IPr = (1= p) "' PrTsPar T Pr| < e.
Now, by the fact that Po. = Z — Pq, we can rewrite the
operator as:
Pr— (1= p) "' PrTsPa: TLPr

=1 - p)  (PrTsPaTLPr — pPr),
from which we can conclude that
[PrTsPaTLPrll < €(1 —p) + plPrll = p+ €1 — p)

by the triangle inequality. The claim is thus proved by the
fact that | PrTsPo T Prl| < ||PrTsPal® 0

Lemma 4 implies that if Z € T, then its Frobenius norm
will decrease sufficiently large after applying the operator
Z — PrTsPq,Tr. The next lemma says that, after apply-
ing such operator, its “77, infinity norm” will also decrease
sufficiently large.

Lemma 6. Suppose Qo ~ Ber(p) and Z € T. Then with
large probability,
ITL(Z — p~ PrTsPayTLZ)|loo < €l|TLZ]
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provided that p > Coe~2(2uop1rdlog d)/n? with some

constant Cy > 0.

Proof. Let K = T,(Z—p~YPrTsPa,TrZ). Observe that
any element K,; can be represented as a sum of indepen-
dent variables, i.e. K, = Z(i,j) S5, where s;; is defined
as:

= (1 - p_l(sij)<Z> Xiy?><PT(Xin)7 Xayg>'
Again, each s;; has zero mean (E [sij] = 0), and each |s;;|
can be bounded by:

|sij] < p71|X1TZYJ'|||PT(Xin)HF”PT(Xayg)HF

Also, [ 30 ) E[ 57;]| can be bounded by:
Y B3] <D o7 (x] Zy;)* (xiy) s Pr(Xay;))?|
(%)) (4,4)
<p M ITLZ0%] Y (aiy) s Pr(xay; )|
(4.9)
< p ML 212N Te Pr (xays )1
2

P

~ Cplogd
Note that in both bounds we apply the inequality (12) be-

cause p obeys (11). Therefore, by Bernstein inequality, we
have:

3
Pr(|Kup| > €| TeZ]|00) < 2exp (— gCO logd>,

and the claim is proved by applying an union bound. O

1722113

Lemma 7. For any fixed matrix Z € R*¥*Y, with large
probability,

dlogd

I(1 = p~ " TsPa, TL)Z| < Cy 72200

> 0, provided that p >

with some constant C})
Cop3dlog d/n? with some constant Cy > 0.

Proof. Again we can decompose the matrix (I —
p Y TsPa,T1)Z as Z(i I Sij. where S;; is defined as:

S" = (1 - _16i]‘)<Z le‘?)XZyJT
Each §;; is independent with zero means (i.e. E [
Furthermore, we can bound || S;;]| by:

10,

_ _ /J,ld
195511 < p~Hx] ZyjllIxall2llysllz < o7 =T Z ] o,

and the term [| 3°; ) E[S7Si;] || can be bounded by:
1> _E[SES]
(4,9)
=Y E[(1—p16)?] (x] Xy;) yx! iy |
(4,4)

<pHTLZI% 0D Ixill3 Y5 vl
i i

=p T Z| %Y Y|
=p~ | TL 2|5
Same bound on || 3, ) E [Si;ST][| can be derived simi-

larly. Thus, the lemma follows by applying matrix Bern-
stein inequality. O

Equipped with the above lemmas, now we are able to prove
Lemma 2. For convenience, we will take ¢ < e~ ! in the
proof.

7.4 Proof of Lemma 2
proof of 2a. Recall that by the definition of Y; and Zj,
Y—Jn = Zj q_17TS‘,PQj7-LZj—1~ Thus,

IWE = [ProY,ll
<Y g ProTsPa, TLZ;||
j

= Z |Pr(q

<> g TsPa, Tz
J

71737391-722];1 — Z;—1)||

Zj-ll,

where the second equality comes from Pp.Z;_; = 0. As
q is chosen to obey (11), we can apply Lemma 7 so that:

dlogd
qg S22l
J

W < G

dlogd i
< C} —qg SOVl

J

_1 |dlogd +/
<Ol — et L8 VIOT
q n
From here we can conclude that
1
IWh < C’e<

for some universal constant C’, by choosing a small enough
€. O

proof of 2b. We have
PoTL(UVT + WE) + PoME

—PoTL(UVT = PrY;,) + PaTLY, + PaM"
=PaTL(Z;,) + Pa(TLY;, + M*)
=PaTL(Z,),
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where the last equation holds because:

TLY;, + M*
:Z q ' TLTsPa, TLZj—1 + P Z q "Pa,TLZ;
J J
=Y g P, TLZ; (16)

J
is a matrix only supported on Q€. Now, by applying
Lemma 4, we have
1PaTrZi |l <ITL(Zio)lr = 1 Zjo || F
<P UVT||p = eoy/r.
Since € < e~ ! and j, > 2logn, the above quantity is less
than \/4. O

proof of 2c. By construction, Tz (UVT + W) + ML =
T.Zj, + T1Y;, + M®. From part b we have || 7, Z;, || s
|72.Z;, || 7 < A/4, and the matrix 71,Y;, +M " is supported
on Q€. Thus, the claim is proved if we can show:

IN

A
17250+ MPlloe < 5
Using (16), we have:

I TLYjo + M oo < a7 Y 1P, TeZs-1 ]l
i
<q 'Y T Za e
j

<q 'Y IOV

J

<ql1- 6)*1ﬂ.
n
For g obeys (11), we have:
n2
Vi + Moo <CEy |
1725 + Moo < Ce pgpard? (log d)?

which will be smaller than A/8 if:
e< (u3u1rd2(10g d)2)1/4

n3
O

In summary, the proof above shows that 2a ~2c hold if ¢
is chosen to obey (11) and € is chosen to be sufficiently
small. As we fix a jo > [2logn] and a small enough
€, a well-defined ¢ can always be set to obey 1 > g >
2Ce2(upu1rdlog d) /n?. This concludes the proof.

7.5 Proof of Lemma 3
For convenience, define £ = sgn(Sy) whose sign is ran-
domly distributed as:
1, w.p. pl2
E;; =40, w.p. 1-p
-1, w.p.p/2

In the following two parts of proof, we will focus on the
event | PoTr,Pr| < o. Notice that by Lemma 5, for any
o > 0, the event holds with large probability given a small
enough p.

Proof of 3a. By construction, we have:
WS = AP Ts(Pa — PaT PrTsPa) ' E

=P Ts KW + PruTeK®, (17)
where K1), K2 is defined by
KW = \E,
K® = )\Z(PQ,]—LPT/]TS’PQ)]CE.
k>1
We first bound the first term of (17). Since

|PriTs KW < |[KM|| < [|AE||, thus, using the argu-
ment in both Vershynin (2010); Candes et al. (2011), with
high probability,

B[l < 4v/np.
As A = 1/4/n, it implies:
[ProTs KW < IAE|| < 44/p. (18)
Now consider the second term ||Pr.TsK®)|. For
convenience, set the operator R := 2@1(739 —
PoTLPrTsPa)k. Then, |[ProTsK@| < [[K@)| <

IAR(E)||, and a standard covering argument could bound
this operator norm. By Lemma 5.2 in Vershynin (2010),
There exists a 1/2—net N for a hypersphere S™~! with its
size < 5". Then, From Lemma 5.3 in Vershynin (2010),
we have:

IR(E)|| = sup
a,besSn—1

(a,R(E)b) <4 sup (a, R(E)b).
a,beN
Thus, consider any arbitrary pair (a,b) € N x N with
llall2 = ||bll2 = 1, we can define a random variable
S(a,b) as:
S(a,b) = (a, R(E)b) = (R(ab”), E)

by the fact that R is self-adjoint. Moreover, observe that
given position of € is fixed, only random part of FE is its
sign and since the distribution is i.i.d. symmetric, we could
apply Hoeffding’s inequality to bound the probability that:

2t
Pr(|S(a,b)| > t) < 2exp <—7) .
IR(ab™)]1Z
Note that by definition of operator 2-norm, ||R| =
supé,ﬁ|R(ébT)HF/HébTHF > ||R(ab”)||r. Therefore,
by an union bound:

2t
Pr( sup |S(a,b)| >t) < 2|N|?exp (772> ,
abeN IR

which leads to:
t2
Pr([R(E)|| > £) < 2N | exp (f—) |
8| R

Furthermore, on the event | Pr7sPq|| < o, we can bound
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the operator norm by:
2
o
R| < 2k = .
IRl < 3o = s

Putting all together, we can upper bound the second term
of (17) by:

'72t2
Pr(\|R(E)| > t) <2 x 5*™exp (W)

+ PP(HPQ'TLPTH > 0’)

where v = (1—02)/202. Thus, combining this bound with
(18), and set A = 1/4/n, we can conclude |[W ]| < 1 with
high probability if p (and thus o) is sufficiently small. [

Proof of 3b. Let K be the matrix P T, WS + P M5,
and our goal is to bound || K || . We first note that

K = Por TLW?S + Por M5
=\Pq1(Pq — Tt PrTs + Por)(Pa — PaTiPrTsPa) 'E
= — NPor T PrTs(Pa — PaTLPrisPa) E.
Consider any K;; # 0. It must be in support of Q¢ and the
element can be expressed as:

Kij = <K7 eief> = >\<S(27])7 E>a
where S(i, j) is an n X n matrix defined by:
S(i,§) = (Pa — PaToPrTsPa)”  PaTiPrs(eel ).
Now, conditional on €2, the sign of F is i.i.d. symmetric

and again, by Hoeffding’s inequality, each K;; could be
bounded by:

2t
’ F

and thus, by an union bound, we have:

2t2
Pr(max |K;;| > t\) < 2n?exp (— — >
O 1Kl max,, [5G, )[
Furthermore, since (10) holds, we have:

5@, )lr

- V2 d
<[(Pa — PaTiPrTsPa)” I PaTePr| R,

In addition, on the event ||PoT.Pr|| < o, we can also
bound ||(Po — PaTrPrTsPa) || < 1/(1 — 02), and

therefore,

Hopard

+ Pr(||PaTLPr|| > o),
where v = (1—02) /0. The Lemma is thus proved provided
that 7 < p,(pop1) ' n2/(dlog n) with some small enough
pr.

2 2t2
Pr(|[Klloo > tA) < 2n° exp <, n )

O



