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7 Appendix
7.1 Preliminaries
We first revisit some basic properties of defined linear op-
erators and projections. Recall that H

0

= U⌃V T is the
reduced SVD of H

0

, and the space T is defined as:
T := {UAT

+BV T | A,B 2 Rd⇥r},
and PT is the orthogonal projection onto T . It is known
that any subgradient of kH

0

k⇤ has the form UV T
+ W ,

where PTW = 0, kWk  1.

Similarly, we have defined ⌦ to be the set of matrices
whose entries supported as the same as S

0

, and P
⌦

is the
orthogonal projection onto ⌦. It is also known that any
subgradient of kS

0

k
1

takes the form sgn(S
0

) + F , where
P
⌦

F = 0, kFk1  1.

Under the incoherence assumptions, we also introduce a
norm inequality on rank-1 matrices which we will use fre-
quently in the proof. Given any matrix with the form
xiy

T
j 2 Rd⇥d, we have

kPT (xiy
T
j )k2F = hPT (xiy

T
j ),xiy

T
j i

 kUT
xik2

2

kyjk2
2

+ kV T
yjk2

2

kxik2
2

 2µ
0

µ
1

rd

n2

. (10)

In particular, if we let p be any probability that satisfies:

p � 2C✏�2

µ
0

µ
1

rd log d

n2

(11)

with a numerical constant C > 0, then the inequality be-
comes:

kPT (xiy
T
j )k2F  ✏2

p

C log d
. (12)

7.2 Proof of Lemma 1
Here, we provide a proof of dual certification lemma
(Lemma 1).

Proof. Consider any feasible perturbation (H
0

+ �, S
0

�
X�Y T

) from the claimed optimum. We will prove the
lemma by showing that such perturbed pair increases the
objective (3) unless � = 0. Let UV T

+ W
0

be any sub-
gradient of kH

0

k⇤ and sgn(S
0

) + F
0

be any subgradient
of kS

0

k
1

, then by the definition of subgradient, W
0

2
T?, kW

0

k
2

 1, F
0

2 ⌦

?, kF
0

k1  1, and
kH

0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + �kS
0

k
1

+ hUV T
+W

0

,�i
� �hsgn(S

0

) + F
0

, X�Y T i.
Select W

0

and F
0

such that hW
0

,�i = kPT?�k⇤ and

hF
0

, X�Y T i = �kP
⌦

?(X�Y T
)k

1

5, then we have:
kH

0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + kS
0

k
1

+ kPT?�k⇤ + �kP
⌦

?(X�Y T
)k

1

+ hUV T ,�i � �hsgn(S
0

), X�Y T i. (13)

Now, since hUV T ,�i = hTL(UV T
), TL�i, we can bound

the inner product terms by:
|hUV T ,�i � �hsgn(S

0

), X�Y T i|
=|hTL(UV T

)� �sgn(S
0

), X�Y T i|
|hTL(W ), X�Y T i|+ |hM,X�Y T i|
+ |�hF,X�Y T i|+ |�hP

⌦

D,X�Y T i|

1

2

kPT?�k⇤ +
�

2

kP
⌦

?X�Y T k
1

+

�

4

kP
⌦

X�Y T kF ,

where in the third inequality we use the fact that
hM,X�Y T i = hM,PQ(X�Y T

)i = 0. Thus, equation
(13) can be reduced to:
kH

0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + kS
0

k
1

+

1

2

(kPT?�k⇤ + �kP
⌦

?(X�Y T
)k

1

)

� �

4

kP
⌦

X�Y T kF . (14)

We can further bound the term kP
⌦

X�Y T kF by:
kP

⌦

X�Y T kF
kP

⌦

TLPT�kF + kP
⌦

TLPT?�kF

1

2

k�kF + kPT?�kF

1

2

(kP
⌦

TL�kF + kP
⌦

?TL�kF ) + kPT?�kF .

By definition, P
⌦

TL� = P
⌦

= X�Y T , so
kP

⌦

TL�kF  kP
⌦

?TL�kF + 2kPT?�kF
 kP

⌦

?TL�k
1

+ 2kPT?�k⇤.
Therefore, equation (14) becomes:

kH
0

+�k⇤ + �kS
0

�X�Y T k
1

�kH
0

k⇤ + kS
0

k
1

+

1

2

✓
(1� �)kPT?�k⇤ +

�

2

kP
⌦

?(X�Y T
)k

1

◆
.

(15)

However, by assumption, kP
⌦

TLPT k  1

2

< 1 implies
that TL(T )\⌦ = {0}. Therefore, for any � 6= 0, if � /2 T
then kPT?�k > 0, and if � 2 T then kP

⌦

?TL�k
1

> 0.
Thus the LHS of (15) will be strictly larger than RHS unless
� = 0, which concludes the proof.

7.3 Preliminary Lemmas
We need several lemmas to prove the validity of con-
structed dual certificates introduced in Section 4.3. For fol-

5Such W0 and F0 exist. See Candès et al. (2011) for an exam-
ple of such matrices.



Robust Principal Component Analysis with Side Information

lowing lemmas, when we say the equation holds with large
probability, we mean that the event will hold with probabil-
ity at least 1�O(d�10

).

Most of the probability bounds in our results are from the
Bernstein inequality stated as below.

Proposition 1 (Noncommutative Matrix Bernstein In-
equality (Recht, 2011)). Let X

1

· · ·Xk be k independent,
zero-mean random matrices where each Xi 2 Rn1⇥n2 .
Suppose for each Xi, kXik  R, and the norm of the sum
of covariance matrices is bounded by:

max

⇢
k

kX

i=1

E
⇥
XiX

T
i

⇤
k, k

kX

i=1

E
⇥
XT

i Xi

⇤
k
�

 �2.

Then for any t > 0:

Pr(k
kX

i=1

Xik > t)  (n
1

+ n
2

) exp

✓
�t2/2

�2

+Rt/3

◆
.

We begin with a core lemma which generalizes the result
of Theorem 4.1 in Candès & Recht (2012).

Lemma 4. Suppose ⌦

0

⇠ Ber(⇢). Then with large prob-
ability,

kPT � ⇢�1PTTSP⌦0TLPT k  ✏

provided that ⇢ � C
0

✏�2

(2µ
0

µ
1

rd log d)/n2 with some
constant C

0

> 0.

Proof. First we decompose the matrix (PT �
⇢�1PTTSP⌦0TLPT )Z as:

(PT � ⇢�1PTTSP⌦0TLPT )Z

=(PTTS(I � ⇢�1P
⌦0)TLPT )Z

=

X

(i,j)

(1� ⇢�1�ij)hZ,PT (xiy
T
j )iPT (xiy

T
j ).

This yields us to define a linear operator Sij as:
Sij(Z) = (1� ⇢�1�ij)hZ,PT (xiy

T
j )iPT (xiy

T
j ),

which maps any Z 2 Rd⇥d to Rd⇥d. The operator is sym-
metric, zero in expectation (i.e., E

⇥
Sij(Z)

⇤
= 0) and its

operator norm, by definition, is bounded by:

sup

Z 6=0

kSij(Z)kF
kZkF

.

Thus, the original operator PT � ⇢�1PTTSP⌦0TLPT can
be viewed as a sum of independent, zero-mean operators
Sij , where each operator has a bounded operator norm as:

kSij(Z)kF  ⇢�1|hZ,PT (xiy
T
j )i|kPT (xiy

T
j )kF

 ⇢�1kPT (xiy
T
j )k2F kZkF

 ✏2

C
0

log d
kZkF ,

where the last line is derived by applying (12). Also, we

can bound the quantity k
P

(i,j) E
⇥
S2

ij

⇤
k similarly. Since

k
X

(i,j)

E
⇥
S2

ij(Z)

⇤
kF

=

����
X

(i,j)

E
⇥
(1� ⇢�1�ij)

2

⇤
hZ,PT (xiy

T
j )i

kPT (xiy
T
j )k2FPT (xiy

T
j )

����
F

,

and E
⇥
(1� ⇢�1�ij)2

⇤
= (1� ⇢)/⇢  1/⇢, therefore,

k
X

(i,j)

E
⇥
S2

ij(Z)

⇤
kF

 ✏2

C
0

log d
kPT

X

(i,j)

hPTZ,xiy
T
j ixiy

T
j kF

=

✏2

C
0

log d
kPTTSTLPT (Z)kF

 ✏2

C
0

log d
kZkF

With above bounds, the claim follows by applying matrix
Bernstein inequality.

An important fact from this lemma is that it implies
kP

⌦

TLPT k will not be too large provided that |⌦| is not
extremely large. More formally, we can prove the follow-
ing Lemma:

Lemma 5. Suppose ⌦ ⇠ Ber(⇢) where 1 � ⇢ �
C

0

✏�2

(2µ
0

µ
1

rd log d)/n2. Then with high probability, we
have kPTTSP⌦

k 
p
⇢+ ✏.

Proof. Suppose 1 � ⇢ � C
0

✏�2

(2µ
0

µ
1

rd log d)/n2, then
from Lemma 4, we know that with high probability,

kPT � (1� ⇢)�1PTTSP
⌦

?TLPT k  ✏.

Now, by the fact that P
⌦

? = I � P
⌦

, we can rewrite the
operator as:

PT � (1� ⇢)�1PTTSP
⌦

?TLPT

=(1� ⇢)�1

(PTTSP⌦

TLPT � ⇢PT ),

from which we can conclude that
kPTTSP⌦

TLPT k  ✏(1� ⇢) + ⇢kPT k = ⇢+ ✏(1� ⇢)

by the triangle inequality. The claim is thus proved by the
fact that kPTTSP⌦

TLPT k  kPTTSP⌦

k2.

Lemma 4 implies that if Z 2 T , then its Frobenius norm
will decrease sufficiently large after applying the operator
I � PTTSP⌦0TL. The next lemma says that, after apply-
ing such operator, its “TL infinity norm” will also decrease
sufficiently large.

Lemma 6. Suppose ⌦

0

⇠ Ber(⇢) and Z 2 T . Then with
large probability,

kTL(Z � ⇢�1PTTSP⌦0TLZ)k1  ✏kTLZk1
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provided that ⇢ � C
0

✏�2

(2µ
0

µ
1

rd log d)/n2 with some
constant C

0

> 0.

Proof. Let K = TL(Z�⇢�1PTTSP⌦0TLZ). Observe that
any element Kab can be represented as a sum of indepen-
dent variables, i.e. Kab =

P
(i,j) sij , where sij is defined

as:
sij = (1� ⇢�1�ij)hZ,xiy

T
j ihPT (xiy

T
j ),xay

T
b i.

Again, each sij has zero mean (E
⇥
sij

⇤
= 0), and each |sij |

can be bounded by:
|sij |  ⇢�1|xT

i Zyj |kPT (xiy
T
j )kF kPT (xay

T
b )kF

 ✏2

C
0

log d
kTLZk1.

Also, |
P

(i,j) E
⇥
s2ij

⇤
| can be bounded by:

|
X

(i,j)

E
⇥
s2ij

⇤
|  |

X

(i,j)

⇢�1

(x

T
i Zyj)

2hxiy
T
j ,PT (xay

T
b )i2|

 ⇢�1kTLZk21|
X

(i,j)

hxiy
T
j ,PT (xay

T
b )i2|

 ⇢�1kTLZk21kTLPT (xay
T
b )k2F

 ✏2

C
0

log d
kTLZk21.

Note that in both bounds we apply the inequality (12) be-
cause ⇢ obeys (11). Therefore, by Bernstein inequality, we
have:

Pr(|Kab| > ✏kTLZk1)  2 exp

✓
� 3

8

C
0

log d

◆
,

and the claim is proved by applying an union bound.

Lemma 7. For any fixed matrix Z 2 Rd⇥d, with large
probability,

k(I � ⇢�1TSP⌦0TL)Zk  C 0
0

s
d log d

⇢
kTLZk1

with some constant C 0
0

> 0, provided that ⇢ �
C

0

µ2

1

d log d/n2 with some constant C
0

> 0.

Proof. Again we can decompose the matrix (I �
⇢�1TSP⌦0TL)Z as

P
(i,j) Sij , where Sij is defined as:

Sij = (1� ⇢�1�ij)hZ,xiy
T
j ixiy

T
j .

Each Sij is independent with zero means (i.e. E
⇥
Sij

⇤
= 0).

Furthermore, we can bound kSijk by:

kSijk  ⇢�1|xT
i Zyj |kxik2kyjk2  ⇢�1

µ
1

d

n
kTLZk1,

and the term k
P

(i,j) E
⇥
ST
ijSij

⇤
k can be bounded by:

k
X

(i,j)

E
⇥
ST
ijSij

⇤
k

=k
X

(i,j)

E
⇥
(1� ⇢�1�ij)

2

⇤
(x

T
i Xyj)

2

yjx
T
i xiy

T
j k

⇢�1kTLZk21k
X

i

kxik2
2

X

j

y

T
j yjk

=⇢�1dkTLZk21kY TY k
=⇢�1dkTLZk21.

Same bound on k
P

(i,j) E
⇥
SijST

ij

⇤
k can be derived simi-

larly. Thus, the lemma follows by applying matrix Bern-
stein inequality.

Equipped with the above lemmas, now we are able to prove
Lemma 2. For convenience, we will take ✏  e�1 in the
proof.
7.4 Proof of Lemma 2
proof of 2a. Recall that by the definition of Yj and Zj ,
Yj0 =

P
j q

�1TSP⌦jTLZj�1

. Thus,

kWLk = kPT?Yj0k


X

j

kq�1PT?TSP⌦jTLZj�1

k

=

X

j

kPT?(q�1TSP⌦jTLZj�1

� Zj�1

)k


X

j

kq�1TSP⌦jTLZj�1

� Zj�1

k,

where the second equality comes from PT?Zj�1

= 0. As
q is chosen to obey (11), we can apply Lemma 7 so that:

kWLk  C 0
0

s
d log d

q

X

j

kTLZj�1

k1

 C 0
0

s
d log d

q

X

j

✏j�1kTL(UV T
)k1

 C 0
0

(1� ✏)�1

s
d log d

q

p
µ
0

r

n
.

From here we can conclude that

kWLk  C 0✏  1

4

for some universal constant C 0, by choosing a small enough
✏.

proof of 2b. We have
P
⌦

TL(UV T
+WL

) + P
⌦

ML

=P
⌦

TL(UV T � PTYj0) + P
⌦

TLYj0 + P
⌦

ML

=P
⌦

TL(Zj0) + P
⌦

(TLYj0 +ML
)

=P
⌦

TL(Zj0),
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where the last equation holds because:
TLYj0 +ML

=

X

j

q�1TLTSP⌦jTLZj�1

+ PQ?

X

j

q�1P
⌦jTLZj�1

=

X

j

q�1P
⌦jTLZj�1

(16)

is a matrix only supported on ⌦

C . Now, by applying
Lemma 4, we have

kP
⌦

TLZj0kF kTL(Zj0)kF = kZj0kF
✏j0kUV T kF = ✏j0

p
r.

Since ✏  e�1 and j
0

� 2 log n, the above quantity is less
than �/4.

proof of 2c. By construction, TL(UV T
+ WL

) + ML
=

TLZj0 + TLYj0 +ML. From part b we have kTLZj0k1 
kTLZj0kF  �/4, and the matrix TLYj0+ML is supported
on ⌦

C . Thus, the claim is proved if we can show:

kTLYj0 +MLk1  �

8

.

Using (16), we have:

kTLYj0 +MLk1  q�1

X

j

kP
⌦jTLZj�1

k1

 q�1

X

j

kTLZj�1

k1

 q�1

X

j

✏j�1kTL(UV T
)k1

 q�1

(1� ✏)�1

p
µ
0

r

n
.

For q obeys (11), we have:

kTLYj0 +MLk1  C✏2

s
n2

µ2

0

µ
1

rd2(log d)2
,

which will be smaller than �/8 if:

✏  C 0
✓
µ2

0

µ
1

rd2(log d)2

n3

◆
1/4

.

In summary, the proof above shows that 2a ⇠2c hold if q
is chosen to obey (11) and ✏ is chosen to be sufficiently
small. As we fix a j

0

� d2 log ne and a small enough
✏, a well-defined q can always be set to obey 1 > q �
2C✏�2

(µ
0

µ
1

rd log d)/n2. This concludes the proof.
7.5 Proof of Lemma 3
For convenience, define E = sgn(S

0

) whose sign is ran-
domly distributed as:

Eij :=

8
><

>:

1, w.p. ⇢/2
0, w.p. 1-⇢
�1, w.p. ⇢/2

In the following two parts of proof, we will focus on the
event kP

⌦

TLPT k < �. Notice that by Lemma 5, for any
� > 0, the event holds with large probability given a small
enough ⇢.

Proof of 3a. By construction, we have:
WS

= �PT?TS(P⌦

� P
⌦

TLPTTSP⌦

)

�1E

= PT?TSK(1)

+ PT?TSK(2), (17)

where K(1), K(2) is defined by
K(1)

= �E,

K(2)

= �
X

k�1

(P
⌦

TLPTTSP⌦

)

kE.

We first bound the first term of (17). Since
kPT?TSK(1)k  kK(1)k  k�Ek, thus, using the argu-
ment in both Vershynin (2010); Candès et al. (2011), with
high probability,

kEk  4

p
n⇢.

As � = 1/
p
n, it implies:
kPT?TSK(1)k  k�Ek  4

p
⇢. (18)

Now consider the second term kPT?TSK(2)k. For
convenience, set the operator R :=

P
k�1

(P
⌦

�
P
⌦

TLPTTSP⌦

)

k. Then, kPT?TSK(2)k  kK(2)k 
k�R(E)k, and a standard covering argument could bound
this operator norm. By Lemma 5.2 in Vershynin (2010),
There exists a 1/2�net N for a hypersphere Sn�1 with its
size  5

n. Then, From Lemma 5.3 in Vershynin (2010),
we have:
kR(E)k = sup

a,b2Sn�1

ha,R(E)bi  4 sup

a,b2N
ha,R(E)bi.

Thus, consider any arbitrary pair (a,b) 2 N ⇥ N with
kak

2

= kbk
2

= 1, we can define a random variable
S(a,b) as:

S(a,b) = ha,R(E)bi = hR(ab

T
), Ei

by the fact that R is self-adjoint. Moreover, observe that
given position of ⌦ is fixed, only random part of E is its
sign and since the distribution is i.i.d. symmetric, we could
apply Hoeffding’s inequality to bound the probability that:

Pr(|S(a,b)| > t)  2 exp

✓
� 2t2

kR(ab

T
)k2F

◆
.

Note that by definition of operator 2-norm, kRk =

sup

ˆa,ˆb kR(

ˆ

a

ˆ

b

T
)kF /kˆaˆbT kF � kR(ab

T
)kF . Therefore,

by an union bound:

Pr( sup

a,b2N
|S(a,b)| > t)  2|N |2 exp

✓
� 2t2

kRk2

◆
,

which leads to:

Pr(kR(E)k > t)  2|N |2 exp
✓
� t2

8kRk2

◆
.

Furthermore, on the event kPTTSP⌦

k  �, we can bound
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the operator norm by:

kRk 
X

k�1

�2k
=

�2

1� �2

.

Putting all together, we can upper bound the second term
of (17) by:

Pr(�kR(E)k > t)  2⇥ 5

2n
exp

✓
�2t2

2�2

◆

+ Pr(kP
⌦

TLPT k > �)

where � = (1��2

)/2�2. Thus, combining this bound with
(18), and set � = 1/

p
n, we can conclude kWSk  1

4

with
high probability if ⇢ (and thus �) is sufficiently small.

Proof of 3b. Let K be the matrix P
⌦

?TLWS
+ P

⌦

?MS ,
and our goal is to bound kKk1. We first note that
K = P

⌦

?TLWS
+ P

⌦

?MS

=�P
⌦

?(PQ � TLPTTS + PQ?)(P
⌦

� P
⌦

TLPTTSP⌦

)

�1E

=� �P
⌦

?TLPTTS(P⌦

� P
⌦

TLPTTSP⌦

)

�1E.

Consider any Kij 6= 0. It must be in support of ⌦C and the
element can be expressed as:

Kij = hK, eie
T
j i = �hS(i, j), Ei,

where S(i, j) is an n⇥ n matrix defined by:

S(i, j) = (P
⌦

� P
⌦

TLPTTSP⌦

)

�1P
⌦

TLPTTS(eieTj ).
Now, conditional on ⌦, the sign of E is i.i.d. symmetric
and again, by Hoeffding’s inequality, each Kij could be
bounded by:

Pr(|Kij | > t�)  2 exp

✓
� 2t2

kS(i, j)k2F

◆
,

and thus, by an union bound, we have:

Pr(max

(i,j)
|Kij | > t�)  2n2

exp

✓
� 2t2

max

(i,j) kS(i, j)k2F

◆
.

Furthermore, since (10) holds, we have:
kS(i, j)kF

k(P
⌦

� P
⌦

TLPTTSP⌦

)

�1kkP
⌦

TLPT k
p
2µ

0

µ
1

rd

n
.

In addition, on the event kP
⌦

TLPT k  �, we can also
bound k(P

⌦

� P
⌦

TLPTTSP⌦

)

�1k  1/(1 � �2

), and
therefore,

Pr(kKk1 > t�)  2n2

exp

✓
� n2�2t2

µ
0

µ
1

rd

◆

+ Pr(kP
⌦

TLPT k > �),

where � = (1��2

)/�. The Lemma is thus proved provided
that r  ⇢r(µ0

µ
1

)

�1n2/(d log n) with some small enough
⇢r.


