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Abstract
The robust principal component analysis (robust
PCA) problem has been considered in many ma-
chine learning applications, where the goal is to
decompose the data matrix to a low rank part plus
a sparse residual. While current approaches are
developed by only considering the low rank plus
sparse structure, in many applications, side infor-
mation of row and/or column entities may also be
given, and it is still unclear to what extent could
such information help robust PCA. Thus, in this
paper, we study the problem of robust PCA with
side information, where both prior structure and
features of entities are exploited for recovery. We
propose a convex problem to incorporate side in-
formation in robust PCA and show that the low
rank matrix can be exactly recovered via the pro-
posed method under certain conditions. In par-
ticular, our guarantee suggests that a substantial
amount of low rank matrices, which cannot be
recovered by standard robust PCA, become re-
coverable by our proposed method. The result
theoretically justifies the effectiveness of features
in robust PCA. In addition, we conduct synthetic
experiments as well as a real application on noisy
image classification to show that our method also
improves the performance in practice by exploit-
ing side information.

1. Introduction
Robust principal component analysis (robust PCA) re-
ceives much attention in recent studies for its ability to re-
cover the low rank model from sparse noise. Such sparse
structure of noise is common in many real applications
such as image processing and bioinformatics (Wright et al.,
2009). Formally, assuming that the given observation R 2
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Rn⇥n is in the form of:
R = L

0

+ S
0

,

where L
0

is a low rank matrix and S
0

is a sparse noise
matrix with unknown support and magnitude, the goal of
robust PCA is to recover L

0

given R. One state-of-the-art
approach is to decompose R into a low rank and a sparse
component via a simple convex program. This approach
has been shown to be advantageous for several reasons.
First, it overcomes the weakness of standard PCA where
the solution could be extremely skewed even if a single
entry is corrupted, and second, exact recovery of L

0

can
be guaranteed under certain assumptions (Chandrasekaran
et al., 2011; Candès et al., 2011).

Despite these strength, one criticism of robust PCA is that
it disregards side information, or features, in the recov-
ery process even if it is provided. For example, imagine
that data matrix R represents the gene-disease association
where few entries are corrupted due to some contamination
in experiments, and furthermore, some additional features
of each gene (e.g. its gene-expression profile) and each dis-
ease (e.g. co-occurrence of diseases for a patient) are also
given in advance. Then, instead of simply applying robust
PCA to filter out the noise, one would expect to incorpo-
rate these side information in order to better recover the
clean association. To the best of our knowledge, however,
it is still unclear that to what degree side information could
help the recoverability of robust PCA.

With above motivation, in this paper, we consider the prob-
lem of robust PCA with side information, where the goal
is to recover the underlying matrix by utilizing both the
“low rank plus sparse structure” and additional feature in-
formation. Our approach is to link feature information
to the underlying matrix via an implicit bilinear function,
which leads us to solve the problem via a feature-embedded
convex program. Furthermore, to justify the usefulness
of features in theory, we show that under certain assump-
tions, exact recovery could be attained by the proposed
method given that the rank of underlying low rank matrix
is in O(n2/(d log n log d)), with up to O(n2

) corrupted
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entries, where d is the dimensionality of features. Com-
pared to the result of standard robust PCA (Candès et al.,
2011) where the recovery could be guaranteed if rank is in
O(n/(log n)2), our result shows that the boundary of rank
could be significantly improved by the proposed method
if d ⌧ n. In addition, we conduct several synthetic ex-
periments and an application on noisy image classification
to show that the proposed method achieves better perfor-
mance than standard robust PCA as empirical supports.
Our results thus conclude that, side information is indeed
useful in robust PCA in both theoretical and practical as-
pects. Our contribution can be summarized as follows.

• We propose a feature-embedded objective for robust
PCA which learns the underlying low rank matrix us-
ing both prior structure and side information simulta-
neously.

• We provide an exact recovery guarantee of our model
under certain conditions. As a consequence, our result
asymptotically improves the guarantee of standard ro-
bust PCA by taking side information into account.

• Experimental results show that the proposed method
improves the performance on both synthetic datasets
and a real application on noisy image classification.

Connection to prior work. Robust PCA is one of the most
prominent examples to demonstrate the power of convex
program in matrix recovery. Researchers have investigated
several approaches for providing theoretical guarantees of
robust PCA (Wright et al., 2009; Chandrasekaran et al.,
2011; Candès et al., 2011). Perhaps the most remarkable
milestone is the strong guarantee provided by Candès et al.
(2011) (see Corollary 1 for details). Compared to these
work where the recoverability completely relies on the sep-
arability between the low rank and sparse structure, our
problem setting is more general since it aims to exploit the
strength of both structure and side information for recov-
ery, and therefore an improved guarantee could be derived
with the aid of features. We will discuss the improvement
in details in Section 3.

On the other hand, side information has been shown to be
useful in several related problems such as matrix comple-
tion (Xu et al., 2013; Chiang et al., 2015) and compressed
sensing (Mota et al., 2014). In particular, since robust PCA
shares several similarity with matrix completion 1, it may
appear a positive sign for the effect of side information
in robust PCA. However, the robust PCA problem is still
essentially different—in fact harder—from matrix comple-
tion. In matrix completion, it is often assumed that the ob-
served entries are generated from a low rank matrix without
any noise (Candès & Tao, 2010), while in robust PCA the
observations are corrupted with unknown support and mag-

1For example, both robust PCA and matrix completion try to
recover a low rank matrix from imperfect observations.

nitude. This fundamental difference can be illustrated by
comparing this work with inductive matrix completion and
its extension (Xu et al., 2013; Chiang et al., 2015), in which
features are used to improve matrix completion. In Xu et al.
(2013), the observed entries are generated from XHY T

where X,Y are row/column features. This is essentially a
special case of our formulation (3). In Chiang et al. (2015),
the observed entries are assumed to be XHY T

+M , where
M is a low-rank part of the underlying matrix that can-
not be explained by features. In this paper, we assume the
model is XHY T

+S, where the sparse noise S is not a part
of the model. Also, we provide an exact recovery guaran-
tee while Chiang et al. (2015) only show that the expected
error decays as n!1.

Our model also shares certain similarity with Low-Rank
Representation (LRR) (Liu et al., 2010), which assumes
that the clean data could be represented by a linear com-
bination of a given dictionary. Interestingly, LRR could be
thought of as a special case of our model where dictionary
serves as the single side of column features. Our model is
more general as we consider to incorporate both row and
column features to help the recovery.

Organization of the paper. In section 2, we state the setup
and assumptions of our problem. We then present the exact
recovery guarantee and an algorithm in Section 3. In Sec-
tion 4, we provide an overview of the proof and a follow-up
discussion. We then show experimental results in Section 5
and state conclusions in Section 6.

2. Problem Setup
Let L

0

2 Rn1⇥n2 be the underlying model matrix, where
rank(L

0

) = r ⌧ min(n
1

, n
2

) so L
0

is low rank. Let
S
0

2 Rn1⇥n2 be the sparse noise matrix whose support set
⌦ is unknown and values could be arbitrary. R = L

0

+ S
0

will be the noisy data we observe in practice. In addi-
tion, let X 2 Rn1⇥d1 , Y 2 Rn2⇥d2 be the feature matrix
where xi (yi) denotes the feature of i-th row (column) en-
tity. Without loss of generality, we assume both X,Y are
orthogonal. 2 For simplicity, throughout the analysis we
will consider the case n

1

= n
2

= n and d
1

= d
2

= d.

2.1. Robust PCA with Features
We begin with the standard setting of robust PCA which
aims to recover the underlying matrix without using any
feature information. The most popular approach in pre-
vious studies (Chandrasekaran et al., 2011; Candès et al.,
2011) is to consider a matrix separation objective, in which
the matrix R is decomposed to a low rank term L and a
sparse term S, whose structures are forced by minimizing
nuclear norm and `-1 norm respectively. Specifically, they
consider the following Principal Component Pursuit (PCP)

2In practice, one could conduct QR factorization to orthogo-
nize the given feature sets.
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objective (Candès et al., 2011):

min

L,S
kLk⇤ + �kSk

1

s.t. L+ S = R, (1)

where kLk⇤ :=

Prank(L)

i=1

�i is the nuclear norm of L, and
kSk

1

:=

P
i,j |Sij | is the elementwise one norm of S.

Remarkable theoretical foundations have also been estab-
lished on PCP beyond heuristics, which will be discussed
more detailedly in Section 3.

However, as stated in motivation, side information which
reveals information of the underlying low rank model may
also be given in real-world problems. The question is thus
how to incorporate useful feature information in robust
PCA so that one could possibly learn L

0

more effectively.
A natural approach is to assume that features X and Y re-
veal clean information via a bilinear mapping �, i.e.

Lij = �(xi,yj) = x

T
i Hyj (2)

with some unknown � (or equivalently H) that aims to be
learned. Such bilinear form is commonly considered for
incorporating side information in recent matrix recovery
literatures, e.g. Jain & Dhillon (2013); Xu et al. (2013);
Zhong et al. (2015), and it also enjoys several properties
such as low model complexity. Therefore, by linking fea-
ture information using (2), we propose to solve the follow-
ing convex objective PCP with Features (PCPF in brief)
with the presence of X and Y :

min

H,S
kHk⇤ + �kSk

1

s.t. XHY T
+ S = R. (3)

Let (H⇤, S⇤
) be the optimal solution of the problem (3),

and the low rank matrix will be recovered by L⇤
=

XH⇤Y T . Note that the proposed PCPF is more general
beyond standard robust PCA, as X and/or Y could be set
as identity when (one of) features are absent, and the prob-
lem reduces to the standard PCP when both X = Y = I .

2.2. Assumptions
Observant readers may already notice that it is not always
possible to recover the underlying low rank model from
sparse noise even with the aid of side information in (3).
Certain assumptions have to be made in order to make the
problem well-posed.

Feasibility Condition. First of all, since PCPF aims to
recover the low rank matrix L

0

by learning a matrix H
0

such that XH
0

Y T
= L

0

, the modest necessary condition
is that the solution H

0

has to be feasible. In PCPF, the
following condition has to be provided for feasibility:

col(X) ◆ col(L
0

), col(Y ) ◆ col(LT
0

). (4)

Such condition is standard for matrix recovery with bilin-
ear models, see e.g. Xu et al. (2013); Yi et al. (2013). Intu-
itively, the condition suggests that feature matrices X and
Y have to be correlated to the underlying true low rank
space (i.e. they have to be truly informative), so that one

could utilize hidden information in X and Y by seeking a
matrix spanned jointly by col(X) and col(Y ).

Incoherence Condition. Even if the feasibility condition
holds, recovery can still be naturally hard due to an iden-
tifiability issue. For example, consider the case where
XH

0

Y T is also “sparse”, then one cannot identify whether
the solution XH

0

Y T is produced by sparse noise or not.
Typically, an incoherence assumption on underlying low
rank space has to be made in order to avoid those sparse
solutions. In this work, we extend the incoherence condi-
tion to the given feature sets X,Y in the following sense.
Let H

0

= U⌃V T be the reduced SVD of H
0

. We assume
that the feature matrix is incoherent w.r.t. the matrix H

0

:

max

i
kUT

xik2 
r

µ
0

r

n
,max

j
kV T

yjk2 
r

µ
0

r

n
, (5)

max

i,j
|xT

i UV T
yj | 

p
µ
0

r

n
. (6)

Also, the feature matrices X,Y are self-incoherent as:

max

i
kxik2 

r
µ
1

d

n
, max

j
kyjk2 

r
µ
1

d

n
. (7)

Incoherence conditions are quite standard in matrix recov-
ery literatures (e.g. Candès & Tao (2010); Candès & Recht
(2012)). Intuitively, such conditions imply that information
in a matrix cannot be too spiky, eliminating the possibility
of underlying matrix being sparse in our problem.

On the other hand, we shall also avoid the case where the
underlying sparse noise matrix is also low rank. This could
happen says when noise appears only in few columns or
rows of S

0

. To avoid such case, we assume that noise ap-
pears uniformly at random in S

0

in our analysis.

Finally, though both assumptions are presented for the
analysis of exact recovery (stated in Theorem 1), it should
be noted that in real applications, our algorithm may
achieve good performance even when these conditions are
not satisfied. We will see an example in Section 5.

3. Main Results and Algorithm
The core question we focus on is to what extent side infor-
mation is able to help the recovery of robust PCA in theory.
As noted, previous theoretical results have shown that PCP
could surprisingly recover a large class of matrices given
only limited information (Chandrasekaran et al., 2011;
Candès et al., 2011). Roughly speaking, the main reason
of such success is because the low rank and sparse sub-
space are naturally distinguishable under incoherence as-
sumptions, which makes separation become possible even
without any hint on how the subspace looks like. Upon
this realization, one may doubt the effect of features since
such information seems to be redundant. However, we
found that side information is in fact powerful as it makes
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a broader class of low rank matrices become recoverable.
The following main Theorem states the result:
Theorem 1 (Main result: Exact Recovery of PCPF). Let
L
0

2 Rn⇥n be a low rank matrix with rank r. Let S
0

be
an arbitrary sparse matrix with cardinality m whose sup-
port set ⌦ is unknown. Suppose we are given orthogonal
features X,Y 2 Rn⇥d which satisfy the feasibility and in-
coherence conditions (4) ⇠ (7). Then there exists universal
constants ⇢r, ⇢s > 0, such that if:

r  ⇢r(µ0

µ
1

)

�1n2

(d log n log d)�1,

m  ⇢sn
2,

then with probability at least 1 � O(d�10

), the solution
(H⇤, S⇤

) of the convex problem (3) with � = 1/
p
n exactly

recovers the underlying low rank matrix in the sense that
XH⇤Y T

= L
0

and S⇤
= S

0

.

Several interesting results could be further inferred from
Theorem 1. First, the Theorem indicates that the recover-
ability depends not only on the rank of underlying matrix r
and sparsity ⇢s but also on the feature dimension d. In addi-
tion, lower d yields a better rank boundary. The reasoning
behind the Theorem is quite intuitive: when d is small, H
has much lower degree of freedom compared with L and
thus is much easier to recover. Another interesting fact is
that in the special case where X = Y = I , problem (3) re-
duces to the standard PCP and moreover, the guarantee of
Theorem 1 coincides with the guarantee of PCP provided
by Candès et al. (2011):
Corollary 1 (Exact Recovery of PCP). Suppose X = Y =

I and L
0

, S
0

all follow the same assumptions of Theorem 1.
Then with high probability, the solution (H⇤, S⇤

) of PCPF
with � = 1/

p
n is exact in the sense that H⇤

= L
0

and
S⇤

= S
0

, provided that

r  ⇢rµ0

�1n(log n)�2, m  ⇢sn
2.

More generally, Theorem 1 suggests that the rank boundary
is on the same order of PCP when d = O(n) as the worse
case. However, for informative features, it is expected that
d ⌧ n since it should reveal the low rank structure of L

0

,
in which case Theorem 1 suggests that a substantial im-
provement of rank boundary of L

0

could be made. For
example, if d is on the order of r, the rank could be up
to the order of O(n/

p
log n), which significantly increases

the rank constraint of low rank matrices (As an instance,
for modern full-HD images where n ⇡ 2000, n/(log n)2 is
on the order of 30, while n/

p
log n is on the order of 700).

Therefore, Theorem 1 shows that the effect of features in
robust PCA problem can be significant because it asymp-
totically improves the boundary of rank constraint, making
a larger class of matrices to be recoverable.

Finally, as a remark, there is no parameter tuning required
for � in PCPF, since Theorem 1 proves that � = 1/

p
n

Algorithm 1 ALM method for PCPF
Input: Observation R, feature matrices X,Y , maximum
iteration t

max

� 1/
p
n, µ 1/kRk, t 0

while not converged and t < t
max

do
M  D�µ�1

(R� S + µ�1Z)

H  XTMY
S  Sµ�1

(R�XHY T
+ µ�1Z)

Z  Z + µ(R� S �XHY T
)

t t+ 1, µ µ/0.95
end while
return L⇤

= XH⇤Y T

always succeeds. This advantage is inherited from the re-
sult of PCP on top of uniformly random sparse noise, and
detailed discussions can be found in Candès et al. (2011).

3.1. Solving PCPF Objective
Many algorithms have been proposed to solve the PCP ob-
jective (1), which is convex but non-smooth as it includes
both `-1 and nuclear norm regularization, e.g. SDP (Chan-
drasekaran et al., 2011), APG (Lin et al., 2009) and
ALM (Yuan & Yang, 2009; Lin et al., 2010). Among many
of them, ALM method is shown to be competitive for its
stability and fast convergence in empirical studies (Candès
et al., 2011). Thus, we consider to extend the ALM method
to PCPF objective (3). ALM converts the equality con-
straint to a soft penalty term and a Lagrangian term, result-
ing in the following function L(H,S, Z):

L(H,S, Z) = kHk⇤ + �kSk
1

+ hZ,R� S �XHY T i

+

µ

2

kR� S �XMY T k2F .

It then iteratively updates H,S, Z until converged. In
each iteration, ALM first updates variables H,S by al-
ternatively solving single variable minimization problems,
minH L(H,S, Z) and minS L(H,S, Z). It then updates
the Lagrange multiplier Z by Z + µ(R� S �XHY T

).

We now briefly state how to solve each subproblem of up-
dating H and S. Let Sx(M) := sgn(M)�max(|M |�x, 0)
be the soft thresholding operator on elements of M , where
� denotes the elementwise product. Similarly, let Dx(M)

be the thresholding operator on singular values of M , i.e.
Dx(M) := UMSx(⌃M )V T

M where UM⌃MV T
M is the SVD

of M . Then, solving for H given fixed S,Z is equivalent
to solving the following problem:

min

H
kHk⇤ +

µ

2

kM 0 �XHY T k2F

where M 0
= R�S+µ�1Z, and the solution is thus given

by XTDµ�1
(M 0

)Y . On the other hand, the update rule for
S given fixed H,Z can be written as S�µ�1

(R�XHY T
+

µ�1Z). This means that each subproblem can be efficiently
solved by a simple closed form solution.
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Finally, as a heuristic, we also apply the continuation tech-
nique described in Lin et al. (2009) for faster convergence,
where we set µ = 1/kRk at the beginning and increase
µ a bit for each iteration. The convergence criterion is set
to be kR � S � XHY T kF /kRkF < 10

�7 as suggested
in Candès et al. (2011). Our algorithm can be summarized
as Algorithm 1 and will be used in our experiments.

4. The Sketch of Proof
We now give a high-level overview of the proof for The-
orem 1. The roadmap of the proof consists of two main
steps. The first step is to provide a sufficient condition that
guarantees the optimal solution is exact if certain “dual cer-
tificates” exist. The second step is then showing that under
conditions of Theorem 1, a valid set of dual certificates can
be constructed with high probability, which concludes the
proof. Such proof technique is popular in matrix recovery
literatures (Candès & Tao, 2010; Candès et al., 2011; Xu
et al., 2013). While our proof structure is mainly built on
Candès et al. (2011), the proof is fundamentally different
as side information X , Y now plays an important role. We
will revisit the differences in the end of this section.

4.1. Reduction of Sampling Model
First, note that in Theorem 1 S

0

is assumed to be sampled
from the set {⌦ | |⌦| = m} uniformly at random. How-
ever, in the proof we consider the support of S

0

to be sam-
pled via Bernoulli model instead, i.e. (i, j) 2 ⌦ with prob-
ability ⇢, and |⌦| = m in expectation when ⇢ = m/n2.
Standard analysis showed that these two models are equiv-
alent (see Candès & Tao (2010)), and thus guarantees on
Bernoulli model will also hold on the uniform model.

Another useful sampling reduction lemma (first introduced
by Candès et al. (2011)) is to further reduce the signs
of nonzero entries (i, j) from fixed to Bernoulli random.
Specifically, in Theorem 1, the values of S

0

is fixed, and
therefore sgn(S

0

) is also fixed. However, it turns out to be
easier to consider the model where each nonzero of S

0

is
an independent symmetric Bernoulli variable that takes ±1

with equal probability. The following theorem shows that
proving recovery on this “random sign model” is sufficient.

Theorem 2. Let L
0

, X and Y be the model and feature ma-
trices which satisfy conditions in Theorem 1, and S

0

is sup-
ported on ⌦ where ⌦ ⇠ Ber(2⇢s). In addition, suppose
the sign of each nonzero S

0

takes ±1 with equal probabil-
ity (and independent to its location). Then, if PCPF recov-
ers L

0

from such S
0

with high probability, with at least the
same probability PCPF will also recover the model where
signs of S

0

are fixed and location of S
0

⇠ Ber(⇢s).

This theorem facilitates the analysis since we could now
focus on random sign model, without being worried by ar-
bitrary values that may appear in sparse noise.

4.2. Dual Certification
We now introduce our proposed dual certification, which is
a sufficient condition for the solution of (3) to be exact. We
first define some linear operators and projections. Recall
H

0

= U⌃V T is the reduced SVD of H
0

. Let the space T
to be defined as:

T := {UAT
+BV T | A,B 2 Rd⇥r},

and PT is the orthogonal projection onto T . Similarly, we
extend the definition of ⌦ for the set representation, where
⌦ denotes the set of n ⇥ n matrices with the same support
as S

0

, and P
⌦

is the orthogonal projection onto ⌦. We also
define the following linear transformation:

TS(A) := XTAY, A 2 Rn⇥n

TL(B) := XBY T , B 2 Rd⇥d

which maps n ⇥ n matrices to d ⇥ d and vice versa. Note
that since X and Y are orthogonal, TSTL = I. Finally, we
define the space Q as:

Q := {XXTAY Y T | A 2 Rn⇥n}.

The orthogonal projection PQ onto Q is simply TLTS .

With these definitions, now we can present our dual certifi-
cation lemma:
Lemma 1 (Dual Certification). Suppose kP

⌦

TLPT k 
1/2 and � < 1. Then, (H

0

, S
0

) is the unique solution of
problem (3) if there exists W,F,M and D such that:

TL(UV +W ) +M = �(sgn(S
0

) + F + P
⌦

D),

where W 2 T?, kWk  1

2

, M 2 Q?, F 2 ⌦

?, kFk1 
1

2

, and kP
⌦

DkF  1

4

.

Therefore, from Lemma 1, it is sufficient to prove that the
pair (H

0

, S
0

) is the unique solution of (3) by providing dual
certificates (W,M) obeying:
8
>>>>>><

>>>>>>:

W 2 T?

M 2 Q?

kWk  1

2

kP
⌦

(TL(UV T
+W ) +M)� �sgn(S

0

)kF  �
4

kP
⌦

?(TL(UV T
+W ) +M)k1  �

2

4.3. Construction of Dual Certificates
Our proposed dual certificates are independently con-
structed from two parts: One is constructed using golf-
ing scheme to handle low rank part and the other is con-
structed using inverse of operator to handle sparse noise
part. Golfing scheme (Gross, 2011) is a clever technique
to construct dual certificates in many recovery proofs. The
idea is as follows. Consider the noise set ⌦ ⇠ Ber(⇢),
or equivalently ⌦

C ⇠ Ber(1 � ⇢). The complement set
⌦

C can also be viewed as being jointly sampled from j
0
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i.i.d. Bernoulli procedures, each of which follows Ber(q).
Formally, ⌦C

=

Sj0
j=1

⌦j , ⌦j ⇠ Ber(q) if:

(1� q)j0 = ⇢. (8)

Therefore, a certificate can be additively constructed upon
each ⌦j . Via such procedure, the norm of constructed cer-
tificates will exponentially decrease step by step for each
⌦j , and thus, it will be useful for proving that the con-
structed certificate has a small magnitude in certain norm.

Certificates of low rank part. Fix j
0

� d2 log ne. Let
⌦

C
=

Sj0
j=1

⌦j , ⌦j ⇠ Ber(q) i.i.d. for each ⌦j where q

satisfies (8). Let Yj , Zj 2 Rd⇥d, Y
0

= 0, and define Yj , Zj

recursively as:
Yj = Yj�1

+ q�1TSP⌦jTL(Zj),

Zj = UV T � PTYj .

We then set
WL

= PT?Yj0 ,

ML
= PQ?

X

j

q�1P
⌦jTLZj�1

.

Certificates of sparse noise part. Again, assume
kP

⌦

TLPT k  1/2, then kP
⌦

TLPTTSP⌦

k  1/4 and
thus the operator P

⌦

�P
⌦

TLPTTSP⌦

mapping ⌦! ⌦ is
invertible. We then set:

WS
= �PT?TS(P⌦

� P
⌦

TLPTTSP⌦

)

�1sgn(S
0

),

MS
= �PQ?(P

⌦

� P
⌦

TLPTTSP⌦

)

�1sgn(S
0

).

From above construction, we propose to produce dual cer-
tificates W = WL

+WS and M = ML
+MS . Note that

each part consists of two components, which is different
from certificates in PCP provided by Candès et al. (2011).

4.4. Proving Validity of Dual Certificates
Obviously, W 2 T? and M 2 Q? by construction. Fur-
thermore, observe that:

P
⌦

TLWS
+ P

⌦

MS

=�P
⌦

TL(I � PT )TS(P⌦

� P
⌦

TLPTTSP⌦

)

�1sgn(S
0

)

+ �P
⌦

PQ?(P
⌦

� P
⌦

TLPTTSP⌦

)

�1sgn(S
0

)

=�P
⌦

(I � TLPTTS)(P⌦

� P
⌦

TLPTTSP⌦

)

�1sgn(S
0

)

=�sgn(S
0

).

Therefore, it is clear that (W,M) is a pair of dual certifi-
cates if WL,WS ,ML and MS obey:
8
><

>:

kWL
+WSk  1

2

kP
⌦

TL(UV T
+WL

) + P
⌦

MLkF  �
4

kP
⌦

?TL(UV T
+WL

+WS
)+P

⌦

?(MS
+ML

)k1  �
2

under the condition kP
⌦

TLPT k  1/2. However, we can
further prove that such condition will naturally hold with

large probability (see Lemma 5 in Appendix for details).
Therefore, the Theorem can be concluded by proving the
following two lemmas.

Lemma 2 (Validity of Certificates of Low Rank Part). Let
⌦ ⇠ Ber(⇢) where 0 < ⇢  ⇢s, and j

0

= d2 log ne. Then
under the conditions of Theorem 1, WL and ML obey:

a. kWLk  1

4

,
b. kP

⌦

TL(UV T
+WL

) + P
⌦

MLkF  �
4

c. kP
⌦

?TL(UV T
+WL

) + P
⌦

?MLk1  �
4

.

Lemma 3 (Validity of Certificates of Sparse Noise Part).
Suppose ⌦ is sampled via Bernoulli model Ber(⇢). As-
sume the sign of each nonzero in S

0

is i.i.d. symmetric
whose randomness is independent to the location. Then
under conditions of Theorem 1, WS and MS obey:

a. kWSk  1

4

,
b. kP

⌦

?TLWS
+ P

⌦

?MSk1  �
4

.

Detailed proofs of these lemmas are provided in Appendix.

4.5. Discussions
Although our proof structure is based on the proof of
PCP (Candès et al., 2011), the proof is essentially differ-
ent as the side information comes in. We now highlight
some high-level differences between our analysis and pre-
vious analysis on standard robust PCA.

The first major difference comes from the dual certification
Lemma 1, in which we introduce a crucial term M 2 Q?.
Compared to the previous dual certification lemmas (Chan-
drasekaran et al., 2011; Candès et al., 2011), the term M
absorbs the part outside the feature space and enables us to
build a bounded certificate W under a smaller d⇥ d space
in the later proof. However, to deal with the additional
term M , we have to carefully develop a more sophisticated
set of certificates WL,WS ,ML and MS . This is different
from Candès et al. (2011) in which breaking the certificate
into WL and WS is sufficient.

Another major difference comes from the different dimen-
sions of low rank space T and sparse support ⌦. While the
technique of handling this issue varies under different con-
texts, a major approach used in many steps in the proof is to
apply linear transformation TL and TS to resolve the mis-
match of dimensionality. However, such modification is far
from trivial for at least two reasons. First, many arguments
in the previous proof become implausible under that modi-
fication (e.g. key lemmas 4 and 6 for Golfing scheme), and
second, some steps may even become incorrect by directly
converting dimensions using TS and TL, in which case al-
ternative arguments are required. For instance, in Candès
et al. (2011), a key property that makes low rank and sparse
components distinguishable is to show that ⌦ \ T = {0}
where both ⌦ and T are a set of n⇥ n matrices. However,
in our analysis where matrices in T are d ⇥ d, showing
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TS(⌦) \ T = {0} becomes invalid since with large proba-
bility TS(⌦) will be rank d, which must span a non-trivial
subspace of T . Thus, we have to prove a key lemma 5 to
show that the opposite argument (i.e. ⌦ \ TL(T ) = {0})
holds with high probability instead.

Finally, we emphasize that the above complication is a
blessing rather than a curse to the result. In some sense,
by considering more sophisticated dual certificates, The
bounded norm requirement of W becomes easier to sat-
isfy because its dimension is reduced from n to d (see
Lemma 1). As a consequence, valid certificates become
producible for higher rank matrices, and thus the rank
boundary of Theorem 1 is improved.

5. Experimental Results
We now conduct experiments to show that side information
is indeed useful in the robust PCA problem. In synthetic
experiments, we show that PCPF is able to recover a set
of low rank matrices which cannot be recovered by PCP as
stated in Theorem 1. We then consider an application on
noisy image classification. We will see that by incorporat-
ing features, images denoised by PCPF will be classified
more accurately. The parameters � in both PCP and PCPF
are set as 1/

p
n by default as Theorem 1 suggested.

Synthetic experiments. We first examine the effect of fea-
tures in robust PCA on synthetic datasets. We create a
true low rank matrix L

0

= UV T , where U, V 2 Rn⇥r,
Uij , Vij ⇠ N(0, 1/n) with n = 200. We also generate
a sparse error matrix S

0

whose support follows Ber(⇢s),
with its values determined by either random sign model
(i.e. each non-zero value takes ±1 with equal probabil-
ity) or coherent sign model (where S

0

= P
⌦

(sgn(L
0

))).
In addition, we generate feature matrices X,Y 2 Rn⇥d,
d = r+10 and both satisfy (4). We then take R = L

0

+S
0

as the observation, and input R to PCP 3 and R, X and Y to
PCPF. We regard the recovery to be successful if the output
low rank matrix L⇤ obeys:

kL⇤ � L
0

kF
kL

0

kF
< 10

�4. (9)

We first consider the recoverability of PCP and PCPF with
various rank of L

0

(r) and sparsity of S
0

(⇢s) under both
random and coherent sign model. For each pair of (r, ⇢s),
we create three random problems, and deem the recovery
of an algorithm to be attained if it successfully recovers all
problems. We then mark the grid to be white if recovery
is attained by both PCP and PCPF and black if both fail.
We also observe that in several grids recovery cannot be at-
tained by PCP, but can be attained by PCPF, and these grids
are marked as gray. The results are shown in Figure 1a and

3We use ALM solver available at http://perception.
csl.illinois.edu/matrix-rank/sample_code.

html for PCP, which is an implementation of Lin et al. (2010).

1b. First, we see that for both PCP and PCPF, the recov-
ery results under random or coherent sign model are in the
same order. This supports the argument in Theorem 1 that
only the location of support (and not signs) matters for both
algorithms to attain the recovery. More importantly, there
exists a substantial gray region where matrices in such re-
gion could be recovered only by PCPF. The result shows
that PCPF is more effective as it recovers a larger class of
matrices by leveraging feature information.

Furthermore, Theorem 1 suggests that the improvement of
PCPF is also determined by the feature dimension d. To
conduct a supporting experiment, we consider the same
construction of L

0

, and create S
0

under random sign model
with ⇢s = 0.2. For each choice of rank(L

0

), we construct
several sets of features X,Y 2 Rn⇥d satisfying (4) with
different d by varying d from r to n and apply PCP and
PCPF to each pair of (d, r). The results are shown in Fig-
ure 1c. We again observe that there exists a substantial gray
region where matrices are not able to be recovered by PCP
because of higher rank, but become recoverable by PCPF
given feature information. Moreover, recovery of higher
rank matrices could be achieved with a smaller d. The re-
sult matches the discussion in Section 3 that higher rank
matrices would be recovered with a smaller d, and it also
empirically supports Theorem 1.

Application: multiclass classification on noisy images.
One application of robust PCA is (sparse) noise removal for
images. In the problem, we are given a set of noisy yet cor-
related images, and the noise is known to be sparse. Since
the underlying clean images are correlated and thus share
an implicit low rank structure, standard robust PCA could
be used to identify sparse noise. However, in certain cases,
low-dimensional features of images may also be available
from other sources. For example, suppose the set of im-
ages are human faces, then the principal components of
general human faces—known as Eigenface (Hancock et al.,
1996)—could be used as features, and such features could
be helpful in the denoising process.

Motivated by above realization, here we conduct an exper-
iment on multiclass classification on a set of noisy images.
We consider the digit recognition dataset MNIST, which
includes 50, 000 training images and 10, 000 testing im-
ages, and each image is a handwriting digit described as
a 784 dimensional vector. We first take the training image
set to produce “Eigendigit” features X 2 R784⇥d where
d = 300. We then take testing image set to generate noisy
images. Precisely, let L

0

2 R784⇥10000 be the set of (clean)
testing images, and S

0

be the sparse noise matrix in which
⇢s of entries are randomly picked to be corrupted (by set-
ting the value to be 255). Then given a set of noisy images
R = min(L

0

+ S
0

, 255) and Eigendigit features X , the
goal is to denoise the noisy images for classification.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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Figure 1. Synthetic experiments on recovery of PCP and PCPF under different rank(L0), sparsity of noise ⇢s and feature dimension d.
Both algorithms succeed the recovery in white region and fail in black region. However, there exists a substantial region marked as gray
where PCP fails yet PCPF succeeds to recover these low rank matrices, justifying the usefulness of features.

⇢s 0.05 0.1 0.2 0.3
PCP 0.3643 0.3781 0.3913 0.4265

PCPF 0.3424 0.3444 0.3607 0.4036
Table 1. Relative error between clean images L0 and recovered
images L⇤. Images recovered by PCPF achieve smaller relative
error than PCP under various different sparsity of noise ⇢s.

We again compare PCP and PCPF for noise removal in this
experiment. For PCP, we directly input R to derive a de-
noised L⇤

pcp. For PCPF, we take Eigendigit features X as
row features in objective (3) and set Y = I as there is no
column features given in this problem. The denoised im-
age from PCPF is given by L⇤

pcpf = XH⇤. Both L⇤
pcp

and L⇤
pcpf will be low rank approximation of the clean im-

age set. Note that though X will no longer satisfy (4), it
could be used in PCPF in practice since X is still expected
to contain much information on how does the low rank ap-
proximation of clean digits looks like. 4

We compare the quality of denoised solutions from PCP
and PCPF using two metrics. First, we could again directly
evaluate the relative error between ground-truth images L

0

and denoised images L⇤ (equation (9)). The error is re-
ported in Table 1. As shown, PCPF consistently achieves
lower relative error than PCP under different ⇢s from 0.05
to 0.3, showing that numerically the low rank approxima-
tion derived from PCPF is closer to the ground-truth L

0

.

To further justify the quality of denoised images in terms of
practical metrics in real application, we consider the classi-
fication accuracy achieved by denoised images as the sec-
ond metric. We pre-train both multiclass linear and kernel
SVM classifiers on 50000 clean training images to predict
the digit from input vector space. using LIBLINEAR (Fan
et al., 2008) and LIBSVM (Chang & Lin, 2011). We then
use these trained classifiers to classify the denoised images
from PCP and PCPF. The results are reported in Table 2.
The column “Clean” denotes the accuracy on clean test-

4Rigorously speaking, the ground-truth image L0 is not even
low rank, but only approximately low rank.

Classification with trained linear SVM classifiers
⇢s Clean Noisy PCP PCPF

0.05

91.96

77.93 86.94 87.51
0.1 59.63 86.33 87.88
0.2 38.16 85.94 87.48
0.3 25.63 78.52 79.84

Classification with trained kernel SVM classifiers
⇢s Clean Noisy PCP PCPF

0.05

98.33

66.14 95.17 95.74
0.1 18.47 94.85 95.89
0.2 10.32 94.55 95.48
0.3 10.32 87.00 87.78

Table 2. Classification accuracy of denoised images on linear and
kernel SVM under various sparsity of noise ⇢s. The column Clean
shows the accuracy on L0, and the column Noisy shows the ac-
curacy on R. Denoised images from both PCP and PCPF achieve
much higher accuracy than noisy images, and PCPF further out-
performs PCP by utilizing Eigendigit features.

ing images (i.e. L
0

), and the column “Noisy” denotes the
accuracy on noisy images (i.e. R) without any denoising
process. The last two columns are accuracies on denoised
images from PCP and PCPF respectively. Both methods are
somehow effective for denoising sparse noise, since accu-
racy achieved by denoised images are much closer to the
clean images. Furthermore, PCPF consistently achieves
better accuracies than PCP, showing that incorporating side
information as in PCPF is indeed helpful in denoising pro-
cess in real-world applications.

6. Conclusions
We propose a convex problem that incorporates side infor-
mation to robust PCA. An improved exact recovery guar-
antee of the proposed method is provided, and the advan-
tage of side information is discussed. The theoretical im-
provement is further empirically supported by several ex-
periments. These results conclude the usefulness of side
information in robust PCA in both theory and practice.



Robust Principal Component Analysis with Side Information

Acknowledgement
This research was supported by NSF grants CCF-1320746
and IIS-1546459.

References
Candès, Emmanuel and Recht, Benjamin. Exact matrix

completion via convex optimization. Commun. ACM, 55
(6):111–119, 2012.

Candès, Emmanuel J. and Tao, Terence. The power of con-
vex relaxation: Near-optimal matrix completion. IEEE
Trans. Inf. Theor., 56(5):2053–2080, 2010.

Candès, Emmanuel J., Li, Xiaodong, Ma, Yi, and Wright,
John. Robust principal component analysis? Journal of
ACM, pp. 11:1–11:37, 2011.

Chandrasekaran, Venkat, Sanghavi, Sujay, Parrilo,
Pablo A., and Willsky, Alan S. Rank-sparsity inco-
herence for matrix decomposition. SIAM Journal on
Optimization, 21(2), 2011.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: A li-
brary for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.
ntu.edu.tw/

˜

cjlin/libsvm.

Chiang, Kai-Yang, Hsieh, Cho-Jui, and Dhillon, Inder-
jit S. Matrix completion with noisy side information.
In Advances in Neural Information Processing Systems
(NIPS), 2015.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang,
Xiang-Rui, and Lin, Chih-Jen. LIBLINEAR: A library
for large linear classification. Journal of Machine Learn-
ing Research, 9:1871–1874, 2008.

Gross, D. Recovering low-rank matrices from few coeffi-
cients in any basis. IEEE Trans. Inf. Theor., 57(3):1548–
1566, 2011.

Hancock, P., Burton, A., and Bruce, V. Face processing:
Human perception and principal components analysis.
Memory and Cognition, 24:260, 1996.

Jain, Prateek and Dhillon, Inderjit S. Provable inductive
matrix completion. CoRR, abs/1306.0626, 2013.

Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., and Ma,
Y. Fast convex optimization algorithms for exact recov-
ery of a corrupted low-rank matrix. In Computational
Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), 2009.

Lin, Zhouchen, Chen, Minming, and Ma, Yi. The aug-
mented lagrange multiplier method for exact recovery of
a corrupted low-rank matrices. Mathematical Program-
ming, 2010.

Liu, Guangcan, Lin, Zhouchen, and Yu, Yong. Robust
subspace segmentation by low-rank representation. In
ICML, 2010.

Mota, Joao F. C., Deligiannis, Nikos, and Rodrigues,
Miguel R. D. Compressed sensing with side information:
Geometrical interpretation and performance bounds. In
IEEE Global Conf. Sig. and Inf. Proc, pp. 675 – 679,
2014.

Recht, Benjamin. A simpler approach to matrix comple-
tion. Journal of Machine Learning Research, 12, 2011.

Vershynin, Roman. Introduction to the non-asymptotic
analysis of random matrices. CoRR abs/1011.3027,
2010.

Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma, Y.
Robust principal component analysis: Exact recovery
of corrupted low-rank matrices via convex optimization.
In Advances in Neural Information Processing Systems
(NIPS), 2009.

Xu, Miao, Jin, Rong, and Zhou, Zhi-Hua. Speedup matrix
completion with side information: Application to multi-
label learning. In NIPS, 2013.

Yi, J., Zhang, L., Jin, R., Qian, Q., and Jain, A. K. Semi-
supervised clustering by input pattern assisted pairwise
similarity matrix completion. In ICML, 2013.

Yuan, X. and Yang, J. Sparse and low-rank matrix de-
composition via alternating direction methods. preprint,
2009.

Zhong, K., Jain, P., and Dhillon, I. S. Efficient matrix
sensing using rank-1 gaussian measurements. In In-
ternational Conference on Algorithmic Learning The-
ory(ALT), 2015.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

