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hashed projections

(Supplementary Material)

In this section we prove Theorem 4.1 and Theorem 4.2. We
will use notation from Lemma 4.1.

7. Proof of Theorem 4.1
We start with the following technical lemma:
Lemma 7.1. Let {Z1, ..., Zk} be the set of k indepen-
dent random variables defined on Ω such that each Zi has
the same distribution and Zi ∈ {0, 1}. Let {F1, ...,Fk}
be the set of events, where each Fi is in the σ-field de-
fined by Zi (in particular Fi does not depend on the σ-
field σ(Z1, ..., Zi−1, Zi+1, ...Zk)). Assume that there ex-
ists µ < 1

2 such that: P(Fi) ≤ µ for i = 1, ..., k. Let
{U1, ..., Uk} be the set of k random variables such that
Ui ∈ {0, 1} and Ui|Fi = Zi|Fi for i = 1, ..., k, where
X|F stands for the random variable X truncated to the
event F . Assume furthermore that E(Ui) = E(Zi) for
i = 1, ..., k. Denote U = U1+...+Uk

k . Then the following is
true.

P(|U−EU |>ε)≤ 1

π

k∑
r= εk

2

1√
r

(
ke

r
)rµr(1−µ)k−r+2e−

ε2k
2 .

(6)

Proof. Let us consider the event Fbad = F1∪ ...∪Fk. Note
that Fbad may be represented by the union of the so-called
r-blocks, i.e.

Fbad =
⋃

Q⊆{1,...,k}

(
⋂
q∈Q
Fq

⋂
q∈{1,...,k}\Q

Fcq ), (7)

where Fc stands for the complement of event F . Let us fix
now some Q ⊆ {1, ..., k}. Denote

FQ =
⋂
q∈Q
Fq

⋂
q∈{1,...,k}\Q

Fcq . (8)

note that P(FQ) ≤ µr(1− µ)k−r. It follows directly from
the Bernoulli scheme.

Denote Z = Z1+...+Zk
k . From what we have just said and

from the definition of {F1, ...,Fk} we conclude that for
any given c the following holds:

P(|U − Z| > c) ≤
k∑

r=ck

(
k

r

)
µr(1− µ)k−r. (9)

Note also that from the assumptions of the lemma we triv-
ially get: E(U) = E(Z).

Let us consider now the expression P(|U − E(U)|) > ε.

We get: P(|U − E(U)| > ε) = P(|U − E(Z)| > ε) =
P(|U−Z+Z−E(Z)| > ε) ≤ P(|U−Z|+ |Z−E(Z)| >
ε) ≤ P(|U − Z| > ε

2 ) + P(|Z − E(Z)| > ε
2 ).

From 9 we get:

P(|U − Z| > ε

2
) ≤

k∑
r= ε

2

(
k

r

)
µr(1− µ)k−r. (10)

Let us consider now the expression:

ξ =

k∑
r= εk

2

(
k

r

)
µr(1− µ)k−r. (11)

We have:

ξ ≤
k∑

r= εk
2

(k − r + 1)...(k)

r!
µr(1− µ)k−r

≤
k∑

r= εk
2

kr

r!
µr(1− µ)k−r (12)

From the Stirling’s formula we get: r! = 2πrr+
1
2

er (1 +
or(1)). Thus we obtain:

ξ ≤ (1 + or(1))

k∑
r= εk

2

krer

2πrr+
1
2

µr(1− µ)k−r

≤ 1

π

k∑
r= εk

2

1√
r

(
ke

r
)rµr(1− µ)k−r (13)

for r large enough.

Now we will use the following version of standard Azuma’s
inequality:

Lemma 7.2. Let W1, ...,Wk be k independent random
variables such that E(W1) = ...E(Wk) = 0. Assume that
−αi ≤ Wi+1 −Wi ≤ βi for i = 2, ..., k − 1. Then the
following is true:

P(|
k∑
i=1

Wi| > a) ≤ 2e
− 2a2∑k

i=1
(αi+βi)

2

Now, using Lemma 7.2 for Wi = Xi − E(Xi) and αi =
E(Xi), βi = 1− E(Xi) we obtain:

P(|X − EX| > a

2
) ≤ 2e−

a2k
2 . (14)
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Combining 13 and 14, we obtain the statement of the
lemma.

Our next lemma explains the role the Hadamard matrix
plays in the entire extended Ψ-regular hashing mechanism.

Lemma 7.3. Let n denote data dimensionality and let
f(n) be an arbitrary positive function. Let D be the
set of all L2-normalized data points, where no two data
points are identical. Assume that |D| = N . Consider
the

(
N
2

)
hyperplanes Hp,r spanned by pairs of different

vectors {p, r} from D. Then after applying linear trans-
formation HR each hyperplane Hp,r is transformed into
another hyperplane HHRp,r . Furthermore, the probability
PHRthat for every HHRp,r there exist two orthonormal vec-
tors x = (x1, ..., xn), y = (y1, ..., yn) in HHRp,r such that:

|xi|, |yi| ≤ f(n)√
n

satisfies:

PHR ≥ 1− 4

(
N

2

)
e−

f2(n)
2 .

Proof. We have already noted in the proof of Lemma 4.1
that HR is an orthogonal matrix. Thus, as an isometry,
it clearly transforms each 2-dimensional hyperplane into
another 2-dimensional hyperplane. For every pair {p, r},
let us consider an arbitrary fixed orthonormal pair {u, v}
spanning Hp,r. Denote u = (u1, ..., un). Let us denote by
uHR vector obtained from u after applying transformation
HR. Note that the jth coordinate of uHR is of the form:

uHRj = u1T1 + ...+ unTn, (15)

where T1, ..., Tn are independent random variables satisfy-
ing:

Ti =

{
1√
n

w.p 1
2 ,

− 1√
n

otherwise. (16)

The latter comes straightforwardly from the form of the
L2-normalized Hadamard matrix (i.e a Hadamard matrix,
where each row and column is L2-normalized).

But then, from Lemma 7.2, and the fact that ‖u‖2 = 1, we
get for any a > 0:

P(|u1T1 + ...+ unTn| ≥ a) ≤ 2e
− 2a2∑n

i=1
(2ui)

2 ≤ 2e−
a2

2 .
(17)

Similar analysis is correct for vHR. Note that vHR is
orthogonal to uHR since v and u are orthogonal. Fur-
thermore, both vHR and uHR are L2-normalized. Thus
{uHR, vHR} is an orthonormal pair.

To complete the proof, it suffices to take a = f(n) and
apply the union bound over all vectors uHR, vHR for all(
N
2

)
hyperplanes.

From the lemma above we see that applying Hadamard ma-
trix enables us to assume with high probability that for ev-
ery hyperplane Hp,r there exists an orthonormal basis con-
sisting of vectors with elements of absolute values at most
f(n)√
n

. We call this event Ef . Note that whether Ef holds or
not is determined only byH,R and the initial dataset D.

Let us proceed with the proof of Theorem 4.1. Let us
assume that event Ef holds. Without loss of generality
we may assume that we have the short Ψ-regular hashing
mechanism with an extra property that every Hp,r has an
orthonormal basis consisting of vectors with elements of
absolute value at most f(n)√

n
. Fix two vectors p, r from the

dataset D. Denote by {x, y} the orthonormal basis of Hp,r

with the above property. Let us fix the ith row of P and
denote it as (pi,1, ..., pi,n). After being multiplied by the
diagonal matrix D we obtain another vector:

w = (Pi,1d1, ...,Pi,ndn), (18)

where:

Di,j =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 . (19)

We have already noted that in the proof of Lemma 4.1 that
it is the projection of w into Hp,r that determines whether
the value of the associated random variableXi is 0 or 1. To
be more specific, we showed that Xi = 1 iff the projection
is in the region Up,r. Let us write down the coordinates
of the projection of w into Hp,r in the {x, y}-coordinate
system. The coordinates are the dot-products of w with x
and y respectively thus in the {x, y}-coordinate system we
can write w as:

w{x,y} = (Pi,1d1x1, ...,Pi,ndnxn,Pi,1d1y1, ...,Pi,ndnyn).
(20)

Note that both coordinates are Gaussian random variables
and they are independent since they were constructed by
projecting a Gaussian vector into two orthogonal vectors.
Now note that from our assumption about the structure ofP
we can conclude that both coordinates may be represented
as sums of weighted Gaussian random variables gi for i =
1, ..., t, i.e.:

w{x,y} = (g1si,1 + ...+ gtsi,t, g1vi,1 + ...+ gtvi,t), (21)



Binary embeddings with structured hashed projections

where each si,j , vi,j is of the form dzxz or dzyz for some
z that depends only on i, j. Note also that

s2
i,1 + ...+ s2

i,t = v2
i,1 + ...+ v2

i,t. (22)

The latter inequality comes from the fact that, by 20, both
coordinates of w{x,y} have the same distribution.

Let us denote si = (si,1, ..., si,t), vi = (vi,1, ..., vi,t) for
i = 1, ..., k. We need the following lemma stating that
with high probability vectors s1, ..., sk, v1, ..., vk are close
to be pairwise orthogonal.

Lemma 7.4. Let us assume that Ef holds. Let f(n) be
an arbitrary positive function. Then for every a > 0 with

probability at least Psucc ≥ 1− 4
(
k
2

)
e
− 2a2n
f4(n) , taken under

coin tosses used to construct D, the following is true for
every 1 ≤ i1 6= i2 ≤ k:

|
n∑
u=1

si1,uvi1,u| ≤ aχ(P) + Ψ
f2(n)

n
,

|
n∑
u=1

si1,usi2,u| ≤ aχ(P) + Ψ
f2(n)

n
,

|
n∑
u=1

vi1,uvi2,u| ≤ aχ(P) + Ψ
f2(n)

n
,

|
n∑
u=1

si1,uvi2,u| ≤ aχ(P) + Ψ
f2(n)

n
.

Proof. Note that the we get the first inequality for free
from the fact that x is orthogonal to y (in other words,∑n
u=1 si1,uvi1,u can be represented as C

∑n
u=1 xiyi and

the latter expression is clearly 0). Let us consider now one
of the three remaining expressions. Note that they can be
rewritten as:

E =

n∑
i=1

dρ(i)dλ(i)xζ(i)xγ(i) (23)

or

E =

n∑
i=1

dρ(i)dλ(i)yζ(i)yγ(i) (24)

or

E =

n∑
i=1

dρ(i)dλ(i)xζ(i)yγ(i) (25)

for some ρ, λ, ζ, γ. Note also that from the Ψ-regularity
condition we immediately obtain that ρ(i) = λ(i) for at
most Ψ elements of each sum. Get rid of these elements
from each sum and consider the remaining ones. From
the definition of the P-chromatic number, those remaining
ones can be partitioned into at most χ(P) parts, each con-
sisting of elements that are independent random variables

(since in the corresponding graph there are no edges be-
tween them). Thus, for the sum corresponding to each part
one can apply Lemma 7.2. Thus one can conclude that the
sum differs from its expectation (which clearly is 0 since
E(didj) = 0 for i 6= j) by a with probability at most:

Pa ≤ 2e
− 2a2∑n

i=1
xζ(i)xγ(i) , (26)

or

Pa ≤ 2e
− 2a2∑n

i=1
yζ(i)yγ(i) , (27)

or

Pa ≤ 2e
− 2a2∑n

i=1
xζ(i)yγ(i) . (28)

Now it is time to use the fact that event Ef holds. Then we
know that: |xi|, |yi| ≤ f(n)√

n
for i = 1, ..., n. Substituting

this upper bound for |xi|, |yi| in the derived expressions on
the probabilities coming from Lemma 7.2, and then taking
the union bound, we complete the proof.

We can finish the proof of Theorem 4.1. From Lemma 7.4
we see that s1, ..., sk, v1, ..., vk are close to pairwise or-
thogonal with high probability. Let us fix some positive
function f(n) > 0 and some a > 0. Denote

∆ = aχ(P) + Ψ
f2(n)

n
. (29)

Note that, by Lemma 7.4 we see that applying Gram-
Schmidt process we can obtain a system of pairwise or-
thogonal vectors s̃1, ..., s̃k, ṽ1, ..., ṽk such that

‖ṽi − vi‖2 ≤ σ(k)∆. (30)

and
‖s̃i − si‖2 ≤ σ(k)∆, (31)

where σ(k) > 0 is some function of k (it does not de-
pend on n and t). Note that for n, t large enough we have:
σ(k)∆ ≤

√
aχ(P) + Ψ f2(n)√

n
.

Let us consider again wx,y . Replacing si by s̃i and vi by ṽi
in the formula on wx,y , we obtain another Gaussian vector:
w̃x,y for each row i of the matrix P . Note however that
vectors w̃x,y have one crucial advantage over vectors wx,y ,
namely they are independent. That comes from the fact that
s̃1, ..., s̃k,ṽ1, ..., ṽk are pairwise orthogonal. Note also that
from 36 and 37 we obtain that the angular distance between
wx,y and w̃x,y is at most σ(k)∆.

Let Zi for i = 1, ...k be an indicator random variable that
is zero if w̃x,y is inside the region Up,r and zero otherwise.
Let Ui for i = 1, ...k be an indicator random variable that
is zero if wx,y is inside the region Up,r and zero other-
wise. Note that θ̃np,r = U1+...+Uk

k . Furthermore, random
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variables Z1, ..., Zk, U1, ..., Uk satisfy the assumptions of
Lemma 7.1 with µ ≤ 8τ

θp,r
, where τ = σ(k)∆. Indeed, ran-

dom variables Zi are independent since vectors w̃x,y are
independent. From what we have said so far we know that
each of them takes value one with probability exactly θp,r

π .
Furthermore Zi 6= Ui only ifwx,y is inside Up,r and w̃x,y is
outside Up,r or vice versa. The latter event implies (thus it
is included in the event) that wx,y is near the border of the
region Up,r, namely within an angular distance ε

θp,r
from

one of the four semi-lines defining Up,r. Thus in particular,
an event Zi 6= Ui is contained in the event of probability at
most 2 · 4 · ε

θp,r
that depends only on one wx,y .

But then we can apply Lemma 7.1. All we need is to as-
sume that the premises of Lemma 7.4 are satisfied. But this
is the case with probability specified in Lemma 7.3 and this
probability is taken under random coin tosses used to prod-
uct H and R, thus independently from the random coin
tosses used to produce D. Putting it all together we obtain
the statement of Theorem 4.1.

8. Proof of Theorem 4.2
We will borrow some notation from the proof of Theorem
4.1. Note however that in this setting no preprocessing with
the use of matricesH andR is applied.

Lemma 8.1. Define U1, ..., Uk as in the proof of Theorem
4.1. Assume that the following is true:

|
n∑
u=1

si1,uvi1,u| ≤ ∆,

|
n∑
u=1

si1,usi2,u| ≤ ∆,

|
n∑
u=1

vi1,uvi2,u| ≤ ∆,

|
n∑
u=1

si1,uvi2,u| ≤ ∆.

for some 0 < ∆ < 1. The the following is true for every
fixed 1 ≤ i < j ≤ k:

|P(UiUj = 1)− P(Ui = 1)P(Uj = 1)| = O(∆).

The lemma follows from the exactly the same analysis that
was done in the last section of the proof of Theorem 4.1
thus we leave it to the reader as an exercise.

Note that we have:

V ar(θ̃np,r) =V ar(
U1 + ...+ Uk

k
)

=
1

k2
(

k∑
i=1

V ar(Ui) +
∑
i 6=j

Cov(Ui, Uj)). (32)

Since Ui is an indicator random variable that takes value
one with probability θp,r

π , we get:

V ar(Ui) = E(U2
i )− E(Ui)

2 =
θp,r
π

(1− θp,r
π

). (33)

Thus we have:

V ar(θ̃np,r) =
1

k

θp,r(π − θp,r)
π2

+
1

k2

∑
i 6=j

Cov(Ui, Uj).

(34)

Note however that Cov(Ui, Uj) is exactly: P(UiUj = 1)−
P(Ui = 1)P(Uj = 1).

Therefore, using Lemma 8.1, we obtain:

V ar(θ̃np,r) =
1

k

θp,r(π − θp,r)
π2

+O(∆). (35)

It suffices to estimate parameter ∆. We proceed as in the
previous proof. We only need to be a little bit more cautious
since the condition: |xi|, |yi| ≤ f(n)√

n
cannot be assumed

right now. We select two rows: i1, i2 of P . Note that again
we see that applying Gram-Schmidt process, we can ob-
tain a system of pairwise orthogonal vectors s̃i1 , s̃ii , ṽii , ṽi2
such that

‖ṽi1 − vi2‖2 = O(∆), (36)

and
‖s̃i1 − si2‖2 = O(∆). (37)

The fact that right now the above upper bounds are not mul-
tiplied by k, as it was the case in the previous proof, plays
key role in obtaining nontrivial concentration results even
when no Hadamard mechanism is applied.

We consider the related sums:
E1 =

∑n
i=1 dρ(i)dλ(i)xζ(i)xγ(i), E2 =∑n

i=1 dρ(i)dλ(i)yζ(i)yγ(i), E3 =
∑n
i=1 dρ(i)dλ(i)xζ(i)yγ(i)

as before. We can again partition each sum into at most
χ(P) sub-chunks, where this time χ(P) ≤ 3 (since P is
Toeplitz Gaussian). The problem is that applying Lemma
7.2, we get bounds that depend on the expressions of the
form

αx,i =

n∑
j=1

x2
jx

2
j+i, (38)
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Table 2: Mean and std of the test error versus the size of the hash (k) / size of the reduction (n/k) for the network.

k / n
k

Circulant Random BinPerm BinCirc HalfShift Toeplitz VerHorShift
[%] [%] [%] [%] [%] [%] [%]

1024 / 1 3.53± 0.16 2.78± 0.10 3.69± 0.21 6.79± 0.49 3.54± 0.16 3.16± 0.19 3.74± 0.16
512 / 2 5.42± 0.83 3.61± 0.19 4.68± 0.35 8.10± 1.85 5.13± 2.15 4.97± 0.53 5.55± 0.62
256 / 4 11.56± 1.42 4.79± 0.13 7.43± 1.31 6.13± 1.42 5.98± 1.05 9.48± 1.88 10.96± 2.78
128 / 8 22.10± 5.42 10.13± 0.24 10.02± 0.50 11.43± 0.92 12.42± 0.95 18.35± 2.36 15.82± 1.63
64 / 16 29.50± 1.13 16.26± 1.02 26.50± 10.55 22.07± 1.35 20.90± 2.25 32.82± 4.83 21.59± 3.05
32 / 32 42.07± 4.16 28.77± 2.28 29.94± 3.48 35.55± 3.12 29.15± 0.97 42.97± 2.08 45.10± 4.46
16 / 64 64.20± 6.76 46.06± 1.03 50.65± 5.66 58.70± 7.15 55.40± 6.90 57.96± 3.65 61.66± 4.08

Table 3: Mean and std of the train error versus the size of the hash (k) / size of the reduction (n/k) for the network.

k / n
k

Circulant Random BinPerm BinCirc HalfShift Toeplitz VerHorShift
[%] [%] [%] [%] [%] [%] [%]

1024 / 1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.30± 0.44 0.00± 0.00 0.00± 0.00 0.00± 0.00
512 / 2 0.04± 0.06 0.00± 0.00 0.00± 0.00 2.66± 2.98 1.44± 2.89 0.00± 0.00 0.00± 0.01
256 / 4 6.46± 2.27 0.00± 0.00 0.79± 1.57 0.60± 1.19 0.49± 0.93 2.09± 1.69 3.98± 3.96
128 / 8 16.89± 6.57 4.69± 0.43 4.44± 0.50 5.62± 1.03 7.34± 1.27 11.82± 2.17 10.51± 1.27
64 / 16 26.47± 0.98 13.35± 0.61 23.98± 11.54 18.68± 0.78 17.64± 2.01 29.97± 5.29 18.68± 3.26
32 / 32 40.79± 3.82 27.51± 2.04 28.28± 3.23 33.91± 3.23 27.90± 1.05 41.49± 2.14 43.51± 3.78
16 / 64 63.96± 5.62 46.31± 0.73 50.03± 6.18 58.71± 6.96 54.88± 6.47 57.72± 3.42 60.91± 4.53

and

αy,i =

n∑
j=1

y2
j y

2
j+i, (39)

where indices are added modulo n and this time we cannot
assume that all |xi|, |yi| are small. Fortunately we have:

n∑
i=1

αx,i = 1, (40)

and
n∑
i=1

αy,i = 1 (41)

Let us fix some positive function f(k). We can conclude
that the number of variables αx,i such that αx,i ≥ f(k)

(k2)

is at most (k2)
f(k) . Note that each such αx,i and each such

αy,i corresponds to a pair {i1,2 } of rows of the matrix P
and consequently to the unique element Cov(Ui1 , Ui2) of
the entire covariance sum (scaled by 1

k2 ). Since trivially
we have |Cov(Ui1 , Ui2)| = O(1), we conclude that the
contribution of these elements to the entire covariance sum
is of order 1

f(k) . Let us now consider these αx,i and αy,i
that are at most f(k)

(k2)
. These sums are small (if we take

f(k) = o(k2)) and thus it makes sense to apply Lemma
7.2 to them. That gives us upper bound a = Ω(∆) with
probability:

P∗ ≥ 1− e−Ω(a2 k2

f(k)
). (42)

Taking f(k) = ( k2

log(k) )
1
3 and a = O(∆) = 1

f(k) , we get:
P∗ ≥ 1−O( 1

k ) and furthermore:

V ar(θ̃np,r) =
1

k

θp,r(π − θp,r)
π2

+ (
log(k)

k2
)

1
3 . (43)

Thus, from the Chebyshev’s inequality, we get the follow-
ing for every c > 0 and fixed points p, r:

P(|θ̃np,r −
θp,r
π
| ≥ c(

√
log(k)

k
)

1
3 ) = O(

1

c2
). (44)

That completes the proof of Theorem 4.2.

9. Additional figures
Figure 8a and Figure 8b show how the mean train error is
affected by the size of the hash, and Figure 8c shows how
the mean train error changes with the size of the reduction
for the neural network experiment. In Table 3 we report
both the mean and the standard deviation of the train error
across our neural network experiments. Baseline refers to
the network with one hidden layer containing 100 hidden
units, where all parameters are trained.

Figure 9a shows the original version of Figure 6a (before
zoom). Figure 9b shows the original version of Figure 7a
(before zoom). Finally, Table 4 shows the mean and the
standard deviation of the test error versus the size of the
hash (k)/size of the reduction (n/k) for 1-NN.
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Table 4: Mean and std of the test error versus the size of the hash (k) / size of the reduction (n/k) for 1-NN.

k / n
k

Circulant Random BinPerm BinCirc HalfShift Toeplitz VerHorShift
[%] [%] [%] [%] [%] [%] [%]

1024 / 1 6.02± 0.64 4.83± 0.19 6.67± 0.65 12.77± 2.86 6.38± 0.44 6.22± 1.20 6.30± 0.76
512 / 2 12.98± 11.29 5.77± 0.11 8.15± 0.56 12.40± 2.32 7.25± 0.71 9.11± 2.28 10.81± 4.31
256 / 4 17.73± 6.66 8.51± 0.35 11.11± 1.15 12.13± 4.35 12.05± 2.94 15.66± 3.36 18.19± 5.46
128 / 8 34.80± 14.59 14.44± 0.89 17.20± 2.26 22.15± 6.45 24.74± 8.14 33.90± 13.90 30.37± 7.52
64 / 16 45.91± 5.50 27.57± 1.58 29.53± 3.40 35.33± 5.58 36.58± 10.71 51.10± 13.98 41.66± 8.08
32 / 32 65.06± 9.60 40.58± 2.49 43.58± 4.66 53.05± 5.39 47.18± 7.19 58.24± 8.87 56.73± 6.09
16 / 64 68.61± 5.72 58.72± 3.08 60.30± 6.11 66.29± 4.79 60.84± 5.31 72.50± 6.04 72.50± 5.91

a)

b)

c)
Figure 8: Mean train error versus a), b) the size of the hash
(k), c) the size of the reduction (n/k) for the network. b) is
a zoomed a). Baseline corresponds to 0%.

a)

b)
Figure 9: Mean test error versus the size of the hash (k)
(original plot) for a) the network, b) 1-NN.


