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Appendix
5. Proofs
Lemma 5.1. If a random variable X is distributed according to p, under conditions on the kernel

0 =

∮
∂X

k(x, x′)p(x)n(x)dS(x′),

0 =

∮
∂X
∇xk(x, x′)>n(x′)p(x′)dS(x′),

then for all f ∈ F , the expected value of T is zero, i.e. E(Tf)(X) = 0.

Proof. This result was proved on bounded domains X ⊂ Rd by Oates et al. (2015, Lemma 1), where n(x) is the unit
vector normal to the boundary at x, and

∮
∂X is the surface integral over the boundary ∂X . The case of unbounded domains

was discussed by Oates et al. (2015, Remark 2). Here we provide an alternative, elementary proof for the latter case. First
we show that the functions gi = p · fi vanish at infinity, by which we mean that for all dimensions j

lim
xj→∞

gi(x1, · · · , xd) = 0.

The density function p vanishes at infinity. The function f is bounded, which is implied by Cauchy-Schwarz inequality –
|f(x)| ≤ ‖f‖

√
k(x, x). This implies that the function g vanishes at infinity. To show the expected value E(Tp)f(X) is

zero, it is sufficient to show that for all dimensions i, the expected value of ∂ log p(X)
∂xi

fi(X) + ∂fi(X)
∂xi

is zero.

E
(
∂ log p(x)

∂xi
fi(x) +

∂fi(x)

∂xi

)
=

∫
Rd

[
∂ log p(x)

∂xi
fi(x) +

∂fi(x)

∂xi

]
q(x)dx

=

∫
Rd

[
1

p(x)

∂q(x)

∂xi
f(x) +

∂f(x)

∂xi

]
q(x)dx

=

∫
Rd

[
∂p(x)

∂xi
fi(x) +

∂fi(x)

∂xi
q(x)

]
dx

(a)
=

∫
Rd−1

(
lim
R→∞

p(x)fi(x)

∣∣∣∣xi=R

xi=−R

)
dx1 · · · dxi−1 · · · dxi+1 · · · dxd

=

∫
Rd−1

0dx1 · · · dxi−1 · · · dxi+1 · · · dxd

= 0.

For the equation (a) we have used integration by parts, fact that gi vanishes at infinity and Fubini-Toneli theorem to show
that we can do iterated integration. The sufficient condition for the Fubini-Toneli theorem is that

∫
|gif(x)|q(x)dx exists.

This is implied by existence of E|∂ log p(X)
∂xi

fi(X)| and E|∂fi(X)
∂xi
|. Since fi is bounded and E|∂ log p(X)

∂xi
| ≤ E‖∇ log p(Z)‖2,

condition ii) guarantees that E|∂ log p(X)
∂xi

fi(X)| is finite. For the second term we have E|∂fi(X)
∂xi
| = E|〈∂k(X,cdot)

∂xi
, fi|〉 ≤

‖fi‖FE
√

∂2k(X,X)
dxidxi+d

, which is guaranteed by the condition iv).

Proof of proposition 3.1. We check assumptions of the Theorem 2.1 (Leucht, 2012). The condition A1,
∑∞
t=1

√
τ(t) ≤

∞, is implied by assumption
∑∞
t=1 t

2
√
τ(t) ≤ ∞ in Section 3. Condition A2 (iv), Lipschitz continuity of h is assumed.

Conditions A2 i), ii) positive definiteness, symmetry and degeneracy of h follow from the proof of Theorem (2.2). Indeed
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h(x, y) = 〈ξ(x), ξ(y)〉Fd

so the statistic is an inner product and hence positive definite. Degeneracy under the null follows from the fact that, by
Theorem 2.1,Eξ(Z) = 0. Finally, condition A2 (iii), Eh(X,X) ≤ ∞ is assumed.

Proof of proposition 3.2. We use Theorem 2.1 (Leucht, 2012) to see that, under the null hypothesis, f(Z1,n, · · · , Zt,n)

converges to zero in probability. The condition A1,
∑∞
t=1

√
τ(t) ≤ ∞, is implied by assumption

∑∞
t=1 t

2
√
τ(t) ≤ ∞

in Section 3. Condition A2 (iv), Lipschitz continuity of h is assumed.. Assumption B1 is identical to our assumption∑∞
t=1 t

2
√
τ(t) ≤ ∞ from Section 3. Finally we check assumption B2 (bootstrap assumption): {Wt,n}1≤t≤n is a row-

wise strictly stationary triangular array independent of all Zt such that EWt,n = 0 and supn E|W 2+σ
t,n | = 1 <∞ for some

σ > 0. The auto-covariance of the process is given by EWs,nWt,n = (1 − 2pn)−|s−t|, so the function ρ(x) = exp(−x),
and ln = log(1−2pn)−1. We verify that limu→0 ρ(u) = 1. If we set pn = w−1

n , such that wn = o(n) and limn→∞ wn =

∞, then ln = O(wn) and
∑n−1
r=1 ρ(|r|/ln) = 1−(1−2pn)n+1

pn
= O(wn) = O(ln). We show that,under the alternative

hypothesis, Bn converges to zero - we use (Chwialkowski et al., 2014, Theorem 3), the only assumption τ(r) = o(r−4) is
satisfied since

∑∞
t=1 t

2
√
τ(t) ≤ ∞. We check the assumption

sup
N

sup
i,j∈N2

Eh(Zi)h(Zj) <∞.

We have Eh(Z,Z ′)2 = E〈ξ(Z, ξ(Z ′)〉2 ≤ E‖ξ(Z)‖2‖ξ(Z ′)‖2 ≤
√

E‖ξ(Z)‖4E‖ξ(Z ′)‖4 ≤ Eh2(Z,Z) < ∞ and so for
i, j ∈ N2

Eh(Zi)h(Zj) ≤ Eh(Zi)
2Eh(Zj)

2 ≤ (Eh2(Z,Z))2 <∞.

We show that, under the alternative hypothesis, Vn converges to a positive constant - we use (Chwialkowski et al.,
2014, Theorem 3). The zero comportment of h is positive sine S(Z)2 > 0. We checked the assumption
supN supi,j∈N2 Eh(Zi)h(Zj) <∞ above.

5.1. Linear time test

We may use similar reasoning for the quadratic time test to define a linear time test, based on the two-sample test of
Chwialkowski et al. (2015). For some fixed location y and a random variable X , define a random variable s(X, y) as

s(X, y) = ∇ log p(X)g(X, y)−∇g(X, y). (3)

For some number of random locations Y1, YJ and a random variable X define a random vector Zi

Zi = (s(Xi, Y1), · · · , s(Xi, YJ)) ∈ RJ . (4)

Let Wn be a mean of Zi’s Wn = 1
n

∑n
i=1 Zi, and Σn its covariance matrix Σn = 1

nZZ
T . The test statistic is

Sn = nWnΣ−1
n Wn. (5)

The computation of Sn requires inversion of a J × J matrix Σn, but this is fast and numerically stable: J will typically be
small, and is less than 10 in our experiments. The next proposition demonstrates the use of Sn as a one-sample test.

Proposition 5.2 (Asymptotic behavior of Sn). If Es(X, y) = 0 for all y, then the statistic Sn is a.s. asymptotically
distributed as a χ2-random variable with Jd degrees of freedom, where d is X dimensionality (as n→∞ with d fixed). If
Es(X, y) 6= 0 for almost all y then a.s. for any fixed r, P(Sn > r)→ 1 as n→∞ .

One sample test Calculate Sn. Choose a threshold rα corresponding to the 1 − α quantile of a χ2 distribution with J
degrees of freedom, and reject the null hypothesis whenever Sn is larger than rα.
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6. MCMC convergence testing
Convergence phase. We only can show consistency during the convergence phase on the empirical data. During conver-
gence phase the null hypothesis is not true, but can be ’almost’ true. For a sequence Zi define the test statistic is ‖Sn‖2,
where Sn = 1√

n

∑n
i=1 ξi

E‖Sn‖2 ≥ ‖ESn‖2 >
1

n

n∑
i,j

〈Eξi,Eξi〉

If it is reasonable to assume that Eξi ' Eξj the sum diverges, which makes the test consistent. One way to achieve
Eξi = Eξj it is to introduce an extra level of randomization i.e. sample the sequence without replacement and used the
re-sampled sequence in the test. This may however change the structure of temporal dependence.

Stationary phase. In the stationary phase there are number of results which might be used to show that the chain is
τ -mixing.

Strong mixing coefficients. Strong mixing is historically the most studied type of temporal dependence – a lot of models,
example being Markov Chains, are proved to be strongly mixing, therefore it’s useful to relate weak mixing to strong
mixing.

A process is called absolutely regular (β-mixing) if β(m)→ 0, where

β(m) =
1

2
sup
n

sup

I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|.

The second supremum in the β(m) definition is taken over all pairs of finite partitions {A1, · · · , AI} and {B1, · · · , BJ}
of the sample space such that Ai ∈ An1 and Bj ∈ A∞n+m, and Acb is a sigma field spanned by a subsequence, Acb =
σ(Xb, Xb+1, ..., Xc).

A process is called strongly mixing (α-mixing) if α(m)→ 0, where

α(m) = sup
n

sup
A∈An

1

sup
B∈A∞n+m

|P (B ∩A)− P (B)P (A)|.

By (Bradley et al., 2005) we have α(m) ≤ β(m).

Using another weak mixing coefficient α̃(m) we can relate strong mixing to weak mixing. The process is called α̃-mixing
if α̃(m)→ 0, where

α̃(m) = sup
l∈N

1

l
sup

m≤i1≤...≤il
α̃(F0, (Xi1 , ..., Xil))

r→∞−→ 0, where

α̃(M, X) = sup
g∈Λ
‖ E(g(X)|M)− Eg(X) ‖1

and Λ is the set of all one-Lipschitz continuous real-valued functions on the domain of X . (Dedecker et al., 2007, Remark
2.4) show that α̃(m) ≤ 2α(m). (Dedecker & Prieur, 2005, Proposition 2) relates τ -mixing and α̃ mixing, as follows: if
Qx is the generalized inverse of the tail function

Qx(u) = inf
t∈R
{P (|X| > t) ≤ u},

then

τ(M, X) ≤ 2

∫ α̃(M,X)

0

Qx(u)du.

While this definition can be hard to interpret, it can be simplified in the case E|X|p = M for some p > 1, since via
Markov’s inequality P (|X| > t) ≤ M

tp , and thus M
tp ≤ u implies P (|X| > t) ≤ u. Therefore Q′(u) = M

p
√
u
≥ Qx(u). As

a result, we have the following inequality
p
√
α̃(M, X)

M
≥ Cτ(M, X).
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(Dedecker & Prieur, 2005) provides examples of systems that are tau-mixing. In particular, given that certain assumptions
are satisfied causal functions of stationary sequences, iterated random functions, Markov chains, expanding maps are all
$\tau$-mixing.

Of particular interest to this work are Markov chains. The assumptions provided by (Dedecker & Prieur, 2005), under
which Markov chains are tau-mixing are somehow difficult to check but we can use classical theorems about the absolute
regularity (beta mixing). In particular (Bradley et al., 2005, Corollary 3.6) states that a Harris recurrent and aperiodic
Markov chain satisfies absolute regularity and (Bradley et al., 2005, Theorem 3.7) states that geometric ergodicity implies
geometric decay of the β coefficient. Interestingly (Bradley et al., 2005, Theorem 3.2) describes situations in which a
non-stationary chain β-mixes exponentially.

Using inequalities between τ -mixing coefficient and strong mixing coefficients one can use those classical theorems show
that e.g Markov chains are τ -mixing sequences.


