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A. Existence of Covering Templates
In this paper we analyze the expressiveness of networks, i.e.the
functions they can realize, through the notion of grid tensors.
Recall from sec. 4 that given templates x(1) . . .x(M) ∈ Rs,
the grid tensor of a score function hy : (Rs)N → R realized
by some network, is defined to be a tensor of order N and di-
mension M in each mode, denoted A(hy), and given by eq. 3.
In particular, it is a tensor holding the values of hy on all in-
stances X = (x1, . . . ,xN ) ∈ (Rs)N whose patches xi are taken
from the set of templates {x(1) . . .x(M)} (recurrence allowed).
Some of the claims in our analysis (sec. 5) assumed that there
exist templates for which grid tensors fully define score func-
tions. That is to say, there exist templates such that score func-
tion values outside the exponentially large grid {Xd1...dN :=

(x(d1), . . . ,x(dN )) : d1. . .dN ∈ [M ]} are irrelevant for clas-
sification. Templates meeting this property were referred to as
covering (see sec. 5.1). In this appendix we address the existence
of covering templates.

If we allow M to grow arbitrarily large then obviously covering
templates can be found. However, since in our construction M is
tied to the number of channels in the first (representation) layer of
a network (see fig. 1), such a trivial observation does not suffice,
and in fact we would like to show that covering templates exist
for values of M that correspond to practical network architec-
tures, i.e. M ∈ Ω(100). For such an argument to hold, assump-
tions must be made on the distribution of input data. Given that
ConvNets are used primarily for processing natural images, we
assume here that data is governed by their statistics. Specifically,
we assume that an instance X = (x1, . . . ,xN ) ∈ (Rs)N corre-
sponds to a natural image, represented through N image patches
around its pixels: x1. . .xN ∈ Rs.

If the dimension of image patches is small then it seems reason-
able to believe that relatively few templates can indeed cover the
possible appearances of a patch. For example, in the extreme case
where each patch is simply a gray-scale pixel (s = 1), having
M = 256 templates may provide the standard 8-bit resolution,
leading grid tensors to fully define score functions by accounting
for all possible images. However, since in our construction in-
put patches correspond to the receptive field in the first layer of a
ConvNet (see fig. 1), we would like to establish an argument for
image patch sizes that more closely correlate to typical receptive
fields, e.g. 5×5. For this we rely on various studies (e.g. (Zoran
and Weiss, 2012)) characterizing the statistics of natural images,
which have shown that for large ensembles of images, randomly
cropped patches of size up to 16×16 may be relatively well cap-
tured by Gaussian Mixture Models with as few as 64 components.
This complies with the common belief that there is a moderate
number of appearances taken by the vast majority of local im-
age patches (edges, Gabor filters etc.). That is to say, it complies
with our assumption that covering templates exist with a moder-
ate value of M . We refer the reader to (Cohen et al., 2016b) for a
more formal argument on this line.

B. Universality of Fully-Connected Networks
In claim 6 we considered a network obtained by expanding the
conv receptive field in the shallow ConvNet, and have shown that
it is not universal with ReLU activation and average pooling. As
stated thereafter, this result does not contradict the known uni-
versality of shallow (single hidden layer) fully-connected neural
networks. Resolving the tension is the purpose of this appendix.

A shallow fully-connected network corresponds to the shallow
ConvNet (fig. 2) with conv receptive field expanded to cover the
entire spatial extent, thereby effectively removing the pooling op-
erator (assuming the latter realizes the identity on singletons). In
claim 12 below we show that such a network, when equipped with
ReLU activation, is universal. In claim 6 on the other hand we
assumed that the conv receptive field covers less than half the
spatial extent (w·h < N/2 + 1 − logM N ), and have shown
that with ReLU activation and average pooling, this leads to non-
universality. Loosely speaking, our findings imply that for net-
works with ReLU activation, which are known to be universal
when fully-connected, introducing locality disrupts universality
with average pooling (while maintaining it with max pooling –
claim 4).

Claim 12. Assume that there exist covering templates
x(1) . . .x(M), and corresponding representation functions
fθ1 . . .fθM leading to a matrix F (eq. 4) that has non-recurring
rows and a constant non-zero column 6. Consider the fully-
connected network obtained by expanding the conv receptive field
in the shallow ConvNet to cover the entire spatial extent. Such a
network, when equipped with ReLU activation, is universal.

Proof. See app. E.14.

C. Depth Efficiency with Approximation
In sec. 5.3.1 we stated that the results in our analysis establish-
ing depth efficiency (claims 7, 8, 10 and the analogous ones in
app. D), which are currently framed in the context of exact re-
alization, may readily be strengthened to account for arbitrarily-
well approximation as well. An explanation for this follows.

When proving that a grid tensor generated by a shallow ConvNet
beneath a certain size cannot be equal to a grid tensor gener-
ated by a deep ConvNet, we always rely on matricization rank.
Namely, we arrange the grid tensors as matrices, and derive con-
stants R, r ∈ N, R > r, such that the matrix corresponding to
the deep ConvNet has rank at leastR, while that corresponding to
the shallow ConvNet has rank at most r. While used in our proofs
solely to show that the matrices are different, this actually entails
information regarding the distance between them. Namely, if we
denote the singular values of the matrix corresponding to the deep
ConvNet by σ1 ≥ σ2 ≥ . . . ≥ 0, the squared Euclidean (Frobe-
nius) distance between the matrices is at least σ2

r+1 + · · · + σ2
R.

Since the matrices are merely rearrangements of the grid tensors,
we have a lower bound on the distance between the shallow Con-
vNet’s grid tensor and the target grid tensor generated by the deep
ConvNet, so in particular arbitrarily-well approximation is not
possible.

D. Shared Coefficients for Convolution
In this appendix we provide our analysis of the shared setting,
briefly summarized in sec. 5.4. The analysis follows the same
line as that of the unshared setting given in sec. 5.2 and 5.3. For
brevity, we assume the reader is familiar with the latter, and do
not repeat discussions given there.

6 The assumption that such representation functions exist
differs from our usual non-degeneracy assumption. However,
through a slight modification of the proof of claim 1, one can
show that standard neurons meet non only non-degeneracy, but
also the assumption made here.
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As described in sec. 4, the shared setting refers to the case where
the 1 × 1 conv filters in our networks are spatially invariant, giv-
ing rise to standard convolutions (as opposed to the more gen-
eral locally-connected operators). Specifically, the shallow Con-
vNet (fig. 2) would have a single weight vector az for every hid-
den channel z, as opposed to the unshared setting where it has a
weight vector az,i for every location i in every hidden channel z.
Grid tensors produced by the shallow ConvNet in the shared set-
ting are given by what we call the shared generalized CP decom-
position:

A
(
hSy

)
=

Z∑
z=1

ayz · (Faz)⊗g · · · ⊗g (Faz)︸ ︷︷ ︸
N times

(8)

As for the deep ConvNet (fig. 1 with size-2 pooling windows and
L = log2N hidden layers), in the shared setting, instead of hav-
ing a weight vector al,j,γ for every hidden layer l, channel γ and
location j, there is a single weight vector al,γ for all locations of
channel γ in hidden layer l. Produced grid tensors are then given
by the shared generalized HT decomposition:

φ1,γ =

r0∑
α=1

a1,γα (Fa0,α)⊗g (Fa0,α)

· · ·

φl,γ =

rl−1∑
α=1

al,γα φl−1,α︸ ︷︷ ︸
order 2l−1

⊗g φl−1,α︸ ︷︷ ︸
order 2l−1

· · ·

φL−1,γ =

rL−2∑
α=1

aL−1,γ
α φL−2,α︸ ︷︷ ︸

order N
4

⊗g φL−2,α︸ ︷︷ ︸
order N

4

A
(
hDy

)
=

rL−1∑
α=1

aL,yα φL−1,α︸ ︷︷ ︸
order N

2

⊗g φL−1,α︸ ︷︷ ︸
order N

2

(9)

We now turn to analyze universality and depth efficiency in the
shared setting.

D.1. Universality

In the unshared setting we saw (sec. 5.2) that linear activation
with product pooling and ReLU activation with max pooling both
lead to universality, whereas ReLU activation with average pool-
ing does not. We will now see that in the shared setting, no matter
how the activation and pooling operators are chosen, universality
is never met.

A shallow ConvNet with shared weights produces grid tensors
through the shared generalized CP decomposition (eq. 8). A ten-
sor A generated by this decomposition is necessarily symmetric,
i.e.for any permutation δ : [N ] → [N ] and indexes d1. . .dN it
meets: Ad1...dN = Aδ(d1)...δ(dN ). Obviously not all tensors
share this property, so indeed a shallow ConvNet with weight
sharing is not universal. A deep ConvNet with weight shar-
ing produces grid tensors through the shared generalized HT de-
composition (eq. 9). For this decomposition, a generated ten-
sor A is invariant to replacing the first and second halves of
its modes, i.e.for any indexes d1. . .dN it meets: Ad1,...,dN =
AdN/2+1,...,dN ,d1,...,dN/2

. Although this property is much less
stringent than symmetry, it is still not met by most tensors, and so
a deep ConvNet with weight sharing is not universal either.

D.2. Depth Efficiency

Depth efficiency deals with the computational complexity of
replicating a deep network’s function using a shallow network.
In order for this question to be applicable, we require that the
shallow network be a universal machine. If this is not the case,
then it is generally likely that the deep network’s function sim-
ply lies outside the reach of the shallow network, and we do
not obtain a quantitative insight into the true power of depth.
Since our shallow ConvNets are not universal with shared weights
(app. D.1), we evaluate depth efficiency of deep ConvNets with
shared weights against shallow ConvNets with unshared weights.
Specifically, we do this for the activation-pooling choices leading
shallow ConvNets with unshared weights to be universal: linear
activation with product pooling, and ReLU activation with max
pooling (see sec. 5.2).

For linear activation with product pooling, the following claim,
which is essentially a derivative of theorem 1 in (Cohen et al.,
2016b), tells us that in the shared setting, as in the unshared set-
ting, depth efficiency holds completely:

Claim 13 (shared analogy of claim 7). Let fθ1 . . .fθM be any set
of linearly independent representation functions for a deep Con-
vNet with linear activation, product pooling and weight sharing.
Suppose we randomize the weights of the network by some con-
tinuous distribution. Then, with probability 1, we obtain score
functions that cannot be realized by a shallow ConvNet with lin-
ear activation and product pooling (not limited by weight shar-
ing), if the number of hidden channels in the latter (Z) is less
than min{r0,M}N/2.

Proof. See app. E.15.

Heading on to ReLU activation and max pooling, we will show
that here too, the situation in the shared setting is the same as in
the unshared setting. Specifically, depth efficiency holds, but not
completely. We prove this via two claims, analogous to claims 8
and 9 in sec. 5.3:

Claim 14 (shared analogy of claim 8). There exist weight set-
tings for a deep ConvNet with ReLU activation, max pooling and
weight sharing, giving rise to score functions that cannot be real-
ized by a shallow ConvNet with ReLU activation and max pooling
(not limited by weight sharing), if the number of hidden channels
in the latter (Z) is less than min{r0,M}N/2 · 2

M·N .

Proof. See app. E.16.

Claim 15 (shared analogy of claim 9). Suppose we randomize
the weights of a deep ConvNet with ReLU activation, max pool-
ing and weight sharing by some continuous distribution with non-
vanishing continuous probability density function. Then, assum-
ing covering templates exist, with positive probability, we obtain
score functions that can be realized by a shallow ConvNet with
ReLU activation and max pooling having only a single hidden
channel (Z = 1).

Proof. See app. E.17.

To recapitulate this appendix, we have shown that introducing
weight sharing into the 1 × 1 conv operators of our networks,
thereby limiting the general locally-connected linear mappings to
be standard convolutions, disrupts universality, but leaves depth
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efficiency intact – it remains to hold completely under linear acti-
vation with product pooling, and incompletely under ReLU acti-
vation with max pooling.

E. Deferred Proofs
In this appendix we present the proofs omitted from the text. Be-
forehand, as preparatory steps, we briefly lay out preliminary ma-
terial required in order to follow our proofs (app. E.1), and then
turn to discuss the important concept of matricization (app. E.2),
which facilitates the use of matrix theory for analyzing general-
ized tensor decompositions.

E.1. Preliminaries

For evaluating the completeness of depth efficiency, and for other
purposes as well, we are often interested in the “volume” of sets in
a Euclidean space, or more formally, in their Lebesgue measure.
While an introduction to Lebesgue measure theory is beyond the
scope of this paper (the interested reader is referred to (Jones,
2001)), we restate here several concepts and results our proofs
will rely upon. A zero measure set can intuitively be thought of
as having zero volume. A union of countably many zero measure
sets is itself a zero measure set. If we randomize a point in space
by some continuous distribution, the probability of hitting a zero
measure set is always zero. A useful fact (proven in (Caron and
Traynor, 2005) for example) is that the zero set of a polynomial,
i.e.the set of points on which a polynomial vanishes, is either the
entire space (when the polynomial in question is the zero poly-
nomial), or it must have measure zero. An open set always has
positive measure, and when a point in space is drawn by a contin-
uous distribution with non-vanishing continuous probability den-
sity function, the probability of hitting such a set is positive.

Apart from measure theory, we will also be using tools from
the field of tensor analysis. Here too, a full introduction to
the topic is beyond our scope (we refer the interested reader
to (Hackbusch, 2012)), and we only list some concepts and re-
sults that will be used. First, a fact that relates to abstract tensor
products over function spaces is the following. If fθ1 . . .fθM :
Rs → R are linearly independent functions, then the product
functions {(x(1), . . . ,x(M)) 7→

∏M
i=1 fθdi (x

(i))}d1...dM∈[M ]

from (Rs)M to R are linearly independent as well. Back to ten-
sors as we have defined them (multi-dimensional arrays), a very
important concept is that of rank, which for order-2 tensors re-
duces to the standard notion of matrix rank. A tensor is said
to have rank 1 if it may be written as a tensor product between
non-zero vectors (A = v1 ⊗ · · · ⊗ vN ). The rank of a gen-
eral tensor is defined to be the minimal number of rank-1 ten-
sors that may be summed up to produce it. A useful fact is
that the rank of an order-N tensor with dimension Mi in each
mode i ∈ [N ], is no greater than

∏
iMi/maxiMi. On the

other hand, all such tensors, besides a zero measure set, have
rank equal to at least min{

∏
i evenMi,

∏
i oddMi}. As in the

special case of matrices, the rank is sub-additive, i.e. rank(A +
B)≤rank(A) + rank(B) for any tensors A,B of matching di-
mensions. The rank is sub-multiplicative w.r.t. the tensor product,
i.e. rank(A⊗ B)≤rank(A)·rank(B) for any tensors A,B. Fi-
nally, we use the fact that permuting the modes of a tensor does
not alter its rank.

E.2. Matricization

When analyzing grid tensors, we will often consider their ar-
rangement as matrices. The matricization of a tensor A, de-

noted [A], is its arrangement as a matrix with rows corre-
sponding to odd modes and columns corresponding to even
modes. Specifically, if A ∈ RM1×···×MN , and assuming for
simplicity that the order N is even, the matricization [A] ∈
R(M1·M3·...·MN−1)×(M2·M4·...·MN ) holds Ad1,...,dN in row in-
dex 1 +

∑N/2
i=1(d2i−1 − 1)

∏N/2
j=i+1M2j−1 and column index

1 +
∑N/2
i=1(d2i − 1)

∏N/2
j=i+1M2j .

The matrix analogy of the tensor product ⊗ (eq. 1) is called the
Kronecker product, and is denoted by �. For A ∈ RM1×M2

and B ∈ RN1×N2 , A�B is the matrix in RM1N1×M2N2 hold-
ing AijBkl in row index (i − 1)N1 + k and column index
(j − 1)N2 + l. The relation [A⊗ B] = [A]� [B], where A and
B are arbitrary tensors of even order, implies that the tensor and
Kronecker products are indeed analogous, i.e.they represent the
same operation under tensor and matrix viewpoints, respectively.
We generalize the Kronecker product analogously to our gener-
alization of the tensor product (eq. 2). For an associative and
commutative binary operator g(·, ·), the generalized Kronecker
product �g , is an operator that intakes matrices A ∈ RM1×M2

andB ∈ RN1×N2 , and returns a matrixA�gB ∈ RM1N1×M2N2

holding g(Aij , Bkl) in row index (i − 1)N1 + k and column
index (j − 1)N2 + l. The relation between the tensor and
Kronecker products holds for their generalized versions as well,
i.e.[A⊗gB] = [A]�g [B] for arbitrary tensorsA,B of even order.

Equipped with the matricization operator [·] and the generalized
Kronecker product �g , we are now in a position to translate the
generalized HT decomposition (eq. 7) to an expression for the
matricization of a grid tensor generated by the deep ConvNet:

φ1,j,γ =

r0∑
α=1

a1,j,γα (Fa0,2j−1,α)⊗g (Fa0,2j,α) (10)

· · ·[
φl,j,γ

]
=

rl−1∑
α=1

al,j,γα

[
φl−1,2j−1,α

]
︸ ︷︷ ︸
M2l−2

-by-M2l−2

�g
[
φl−1,2j,α

]
︸ ︷︷ ︸

M2l−2
-by-M2l−2

· · ·[
φL−1,j,γ

]
=

rL−2∑
α=1

aL−1,j,γ
α

[
φL−2,2j−1,α

]
︸ ︷︷ ︸
MN/8-by-MN/8

�g
[
φL−2,2j,α

]
︸ ︷︷ ︸
MN/8-by-MN/8[

A
(
hDy

)]
=

rL−1∑
α=1

aL,1,yα

[
φL−1,1,α

]
︸ ︷︷ ︸
MN/4-by-MN/4

�g
[
φL−1,2,α

]
︸ ︷︷ ︸
MN/4-by-MN/4

We refer to this factorization as the matricized generalized HT
decomposition. Notice that the expression above for φ1,j,γ is the
same as in the original generalized HT decomposition, as order-2
tensors need not be matricized.

For the matricization of a grid tensor generated by the shallow
ConvNet, we translate the generalized CP decomposition (eq. 6)
into the matricized generalized CP decomposition:[

A
(
hSy

)]
= (11)

Z∑
z=1

ayz ·
(

(Faz,1)�g (Faz,3)�g · · · �g (Faz,N−1)
)
�g(

(Faz,2)�g (Faz,4)�g · · · �g (Faz,N )
)>
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The matricized generalized CP and HT decompositions (eq. 11
and 10 respectively) will be used throughout our proofs to estab-
lish depth efficiency. This is generally done by providing a lower
bound on rank[A(hDy )] – the rank of the deep ConvNet’s matri-
cized grid tensor, and an upper bound on rank[A(hSy )] – the rank
of the shallow ConvNet’s matricized grid tensor. The upper bound
on rank[A(hSy )] will be linear in Z, and so requiring A(hSy ) =

A(hDy ), and in particular rank[A(hSy )] = rank[A(hDy )], will
give us a lower bound on Z. That is to say, we obtain a lower
bound on the number of hidden channels in the shallow ConvNet,
that must be met in order for this network to replicate a grid tensor
generated by the deep ConvNet.

E.3. Proof of claim 1

We first show that given distinct x(1) . . .x(M) ∈ Rs, there ex-
ists a vector w ∈ Rs such that w>x(i) 6= w>x(j) for all 1≤i <
j≤M . w satisfies this condition if it is not perpendicular to any of
the finitely many non-zero vectors {x(i) − x(j) : 1≤i < j≤M}.
If for every 1≤i < j≤M we denote by P (i,j) ⊂ Rs the set of
points perpendicular to x(i) − x(j), we obtain that w satisfies the
desired condition if it does not lie in the union

⋃
1≤i<j≤M P (i,j).

Each P (i,j) is the zero set of a non-zero polynomial, and in par-
ticular has measure zero. The finite union

⋃
1≤i<j≤M P (i,j) thus

has measure zero as well, and accordingly cannot cover the en-
tire space. This implies that w ∈ Rs \

⋃
1≤i<j≤M P (i,j) indeed

exists.

Assume without loss of generality w>x(1) < . . . < w>x(M).
We may then choose b1. . .bM ∈ R such that−w>x(M) < bM <

. . . < −w>x(1) < b1. For i, j ∈ [M ], w>x(i) + bj is positive
when j≤i and negative when j > i. Therefore, if σ(·) is cho-
sen as the ReLU activation, defining fθj (x) = σ(w>x + bj)
for every j ∈ [M ] gives rise to a matrix F (eq. 4) that is lower
triangular with non-zero values on its diagonal. This proves the
desired result for the case of ReLU activation.

Consider now the case of sigmoidal activation, where σ(·) is
monotonic with limz→−∞ σ(z) = c and limz→+∞ σ(z) = C
for some c 6=C in R. Letting w ∈ Rs and b1. . .bM ∈ R
be as above, we introduce a scaling factor α > 0, and define
fθj (x) = σ(αw>x + αbj) for every j ∈ [M ]. It is not difficult
to see that as α→ +∞, the matrix F tends closer and closer to a
matrix holdingC on and below its diagonal, and c elsewhere. The
latter matrix is non-singular, and in particular has non-zero deter-
minant d 6= 0. The determinant of F converges to d as α→ +∞,
so for large enough α, F is non-singular.

E.4. Proof of claim 2

We may view the determinant of F (eq. 4) as a function of
(x(1), . . . ,x(M)):

detF (x(1), . . . ,x(M)) =
∑
δ∈SM

sign(δ)
M∏
i=1

fθδ(i)(x
(i))

where SM stands for the permutation group on [M ], and
sign(δ) ∈ {±1} is the sign of the permutation δ. This in
particular shows that detF (x(1), . . . ,x(M)) is a non-zero lin-
ear combination of the product functions {(x(1), . . . ,x(M)) 7→

∏M
i=1 fθdi (x

(i))}d1...dM∈[M ]. Since these product functions are
linearly independent (see app. E.1), detF (x(1), . . . ,x(M)) can-
not be the zero function. That is to say, there exist x(1) . . .x(M) ∈
Rs such that detF (x(1), . . . ,x(M)) 6= 0.

E.5. Proof of claim 3

Let x(1) . . .x(M) ∈ Rs be distinct covering templates, and
fθ1 . . .fθM be representation functions for which F is invertible
(non-degeneracy implies that such functions exist). With linear
activation and product pooling the generalized CP decomposition
(eq. 6) reduces to its standard version, which is known to be able
to express any tensor when size is large enough (e.g. Z≥MN

suffices). The shallow ConvNet can thus realize any grid ten-
sor on covering templates, precisely meaning that it is universal.
As for the deep ConvNet, setting r0 = · · · = rL−1 = Z and
al,j,γα = 1 [α = γ], where l ∈ [L − 1] and 1 [·] is the indicator
function, reduces its decomposition (eq. 7) to that of the shallow
ConvNet (eq. 6). This implies that all grid tensors realizable by
the shallow ConvNet are also realizable by the deep ConvNet.

E.6. Proof of claim 4

The proof follows the same line as that of claim 3, except we can-
not rely on the ability of the standard CP decomposition to realize
any tensor of choice. Instead, we need to show that the general-
ized CP decomposition (eq. 6) with g(a, b) = max{a, b, 0} can
realize any tensor, so long asZ is large enough. We will show that
Z≥2·MN suffices. For that, it is enough to consider an arbitrary
indicator tensor, i.e.a tensor holding 1 in some entry and 0 in all
other entries, and show that it can be expressed with Z = 2.

LetA be an indicator tensor of orderN and dimensionM in each
mode, its active entry being (d1, . . . , dN ). Denote by 1 ∈ RM
the vector holding 1 in all entries, and for every i ∈ [N ], let ēdi ∈
RM be the vector holding 0 in entry di and 1 elsewhere. With the
following weight settings, a generalized CP decomposition (eq. 6)
with g(a, b) = max{a, b, 0} and Z = 2 producesA, as required:

• ay1 = 1, ay2 = −1

• a1,1 = · · · = a1,N = 1

• ∀i ∈ [N ] : a2,i = ēdi

E.7. Proof of claim 5

Let x(1) . . .x(M) ∈ Rs be any templates of choice, and consider
grid tensors produced by the generalized CP and HT decompo-
sitions (eq. 6 and 7 respectively) with g(a, b) = max{a, 0} +
max{b, 0} (this corresponds to sum pooling and ReLU activation,
but as stated in sec. 4, sum and average pooling are equivalent in
terms of expressiveness). We will show that such grid tensors,
when arranged as matrices, necessarily have low rank. This obvi-
ously implies that they cannot take on any value. Moreover, since
the set of low rank matrices has zero measure in the space of all
matrices (see app. E.1), the set of values that can be taken by the
grid tensors has zero measure in the space of tensors with order
N and dimension M in each mode.

In accordance with the above, we complete our proof by showing
that with g(a, b) = max{a, 0}+ max{b, 0}, the matricized gen-
eralized CP and HT decompositions (eq. 11 and 10 respectively)
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give rise to low-rank matrices. For the matricized generalized CP
decomposition (eq. 11), corresponding to the shallow ConvNet,
we have with g(a, b) = max{a, 0}+ max{b, 0}:[

A
(
hSy

)]
= v1> + 1u>

where 1 is the vector in RM
N/2

holding 1 in all entries, and
v,u ∈ RM

N/2

are defined as follows:

v :=

Z∑
z=1

ayz ·max
{

(Faz,1)�g · · · �g (Faz,N−1), 0
}

u :=

Z∑
z=1

ayz ·max
{

(Faz,2)�g · · · �g (Faz,N ), 0
}

Obviously the matrix
[
A
(
hSy
)]
∈ RM

N/2×MN/2

has rank 2 or
less.

Turning to the matricized generalized HT decomposition (eq. 10),
which corresponds to the deep ConvNet, we have with g(a, b) =
max{a, 0}+ max{b, 0}:[

A
(
hDy

)]
= V�O +O�U

where � is the standard Kronecker product (see definition in
app. E.2), O ∈ RM

N/4×MN/4

is a matrix holding 1 in all en-
tries, and the matrices V,U ∈ RM

N/4×MN/4

are given by:

V :=

rL−1∑
α=1

aL,1,yα max
{[
φL−1,1,α

]
, 0
}

U :=

rL−1∑
α=1

aL,1,yα max
{[
φL−1,2,α

]
, 0
}

The rank of O is obviously 1, and since the Kronecker prod-
uct multiplies ranks, i.e.rank(A�B) = rank(A)·rank(B) for
any matrices A and B, we have that the rank of

[
A
(
hDy
)]
∈

RM
N/2×MN/2

is at most 2·MN/4. In particular,
[
A
(
hDy
)]

can-
not have full rank.

E.8. Proof of claim 6

Compare the original shallow ConvNet (fig. 2) to the shallow
ConvNet with expanded receptive field that we consider in this
claim, illustrated in fig. 3. The original shallow ConvNet has 1×1
receptive field, with conv entry in location i ∈ [N ] and channel
z ∈ [Z] assigned through a cross-channel linear combination of
the representation entries in the same location, the combination
weights being az,i ∈ RM . In the shallow ConvNet with recep-
tive field expanded to w×h, linear combinations span multiple
locations. In particular, conv entry in location i and channel z is
now assigned through a linear combination of the representation
entries at all channels that lie inside a spatial window revolving
around i. We denote by {ρ(j; i)}j∈[w·h] the locations comprised
by this window. More specifically, ρ(j; i) is the j’th location in
the window, and the linear weights that correspond to it are held
in the j’th column of the weight matrix Az,i ∈ RM×w·h. We as-
sume for simplicity that conv windows stepping out of bounds en-
counter zero padding 7, and adhere to the convention under which

7 Modifying our proof to account for different padding
schemes (such as duplication or no padding at all) is trivial – we
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Figure 3. Shallow ConvNet with conv receptive field expanded
from 1 × 1 to w×h. The weight vectors ai,z ∈ RM have been
replaced by matrices Ai,z ∈ RM×w·h, and we denote by ρ(j; i)
the spatial location of element j in the w×h window revolving
around i. Best viewed in color.

indexing the row of a matrix with dρ(j;i) produces zero when lo-
cation j of window i steps out of bounds.

We are interested in the case of ReLU activation (σ(z) =
max{0, z}) and average pooling (P{cj} = mean{cj}). Under
this setting, for any selected templates x(1) . . .x(M) ∈ Rs, the
grid tensor of hS(w×h)y – network’s y’th score function, is given
by:

A(hS(w×h)y )d1,...,dN =

N∑
i=1

Bidρ(1;i),...,dρ(w·h;i)

where for every i ∈ [N ], Bi is a tensor of order w·h and dimen-
sion M in each mode, defined by:

Bic1,...,cw·h =

Z∑
z=1

ayz
N

max

{
w·h∑
j=1

(FAz,i)cj ,j , 0

}

Let O be a tensor of order N − w·h and dimension M in each
mode, holding 1 in all entries. We may write:

A(hS(w×h)y ) =

N∑
i=1

pi(Bi ⊗O) (12)

where for every i ∈ [N ], pi(·) is an appropriately chosen operator
that permutes the modes of an order-N tensor.

We now make use of some known facts related to tensor rank (see
app. E.1), in order to show that eq. 12 is not universal, i.e.that
there are many tensors which cannot be realized byA(h

S(w×h)
y ).

Being tensors of order w·h and dimension M in each mode, the
ranks of B1 . . .BN are bounded above by Mw·h−1. Since O is
an all-1 tensor, and since permuting modes does not alter rank, we
have: rank(pi(Bi⊗O))≤Mw·h−1 ∀i ∈ [N ]. Finally, from sub-
additivity of the rank we get: rank(A(h

S(w×h)
y ))≤N ·Mw·h−1.

Now, we know by assumption that w·h < N/2 + 1 − logM N ,
and this implies: rank(A(h

S(w×h)
y )) < M

N/2. Since there exist
tensors of orderN and dimensionM in each mode having rank at
least MN/2 (actually only a negligible set of tensors do not meet
this), eq. 12 is indeed not universal. That is to say, the shallow
ConvNet with conv receptive field expanded to w×h (fig. 3) can-
not realize all grid tensors on the templates x(1) . . .x(M).

choose to work with zero padding merely for notational conve-
nience.
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E.9. Proof of claim 7

Let x(1) . . .x(M) ∈ Rs be templates such that F is invertible
(existence follows from claim 2). The deep network generates
grid tensors on x(1) . . .x(M) through the standard HT decompo-
sition (eq. 7 with g(a, b) = a·b). The proof of theorem 1 in (Co-
hen et al., 2016b) shows that when arranged as matrices, such
tensors have rank at least min{r0,M}N/2 almost always, i.e.for
all weight (al,j,γ) settings but a set of (Lebesgue) measure zero.
On the other hand, the shallow network generates grid tensors on
x(1) . . .x(M) through the standard CP decomposition (eq. 6 with
g(a, b) = a·b), possibly with a different matrix F (representation
functions need not be the same). Such tensors, when arranged as
matrices, are shown in the proof of theorem 1 in (Cohen et al.,
2016b) to have rank at most Z. Therefore, for them to realize
the grid tensors generated by the deep network, we almost always
must have Z ≥ min{r0,M}N/2.

E.10. Proof of claim 8

The proof traverses along the following path. Letting
x(1) . . .x(M) ∈ Rs be any distinct templates, we show that when
arranged as matrices, grid tensors on x(1) . . .x(M) generated by
the shallow network have rank at most Z·M·N

2
. Then, defin-

ing fθ1 . . .fθM to be representation functions for the deep net-
work giving rise to an invertible F (non-degeneracy implies that
such functions exist), we show explicit linear weight (al,j,γ) set-
tings under which the grid tensors on x(1) . . .x(M) generated by
the deep network, when arranged as matrices, have rank at least
min{r0,M}N/2.

In light of the above, the proof boils down to showing that with
g(a, b) = max{a, b, 0}:

• The matricized generalized CP decomposition (eq. 11) pro-
duces matrices with rank at most Z·M·N

2
.

• For an invertible F , there exists a weight (al,j,γ) set-
ting under which the matricized generalized HT decom-
position (eq. 10) produces a matrix with rank at least
min{r0,M}N/2.

We begin with the first point, showing that for every
v1, . . . ,vN/2 ∈ RM and u1, . . . ,uN/2 ∈ RM :

rank
(
v1 �g · · · �g vN

2

)
�g
(
u1 �g · · · �g uN

2

)>
≤M ·N

2
(13)

This would imply that every summand in the matricized general-
ized CP decomposition (eq. 11) has rank at most M·N

2
, and the

desired result readily follows. To prove eq. 13, note that each of
the vectors v̄ := v1 �g · · · �g vN

2
and ū := u1 �g · · · �g uN

2

are of dimension MN/2, but have only up to M·N
2

unique values.
Let δv, δu : [MN/2]→ [MN/2] be permutations that arrange the
entries of v̄ and ū in descending order. Permuting the rows of the
matrix v̄ �g ū> via δv, and the columns via δu, obviously does
not change its rank. On the other hand, we get a MN/2×MN/2

matrix with a M·N
2
× M·N

2
block structure, each block being con-

stant (i.e.all entries of a block hold the same value). This implies
that the rank of v̄ �g ū> is at most M·N

2
, which is what we set

out to prove.

Moving on to the matricized generalized HT decomposition
(eq. 10), for an invertible F we define the following weight setting
(0 and 1 here denote the all-0 and all-1 vectors, respectively):

• a0,j,γ =

{
F−1ēγ , γ≤M
0 , γ > M

, where ēγ ∈ RM is de-

fined to be the vector holding 0 in entry γ and 1 in all other
entries.

• al,j,γ =

{
1 , γ = 1 , l ∈ [L− 1]
0 , γ > 1 , l ∈ [L− 1]

• aL,1,y = 1

Under this setting, the produced matrix
[
A
(
hDy
)]

holds
min{r0,M} everywhere besides min{r0,M}N/2 entries on its
diagonal, where it holds min{r0,M} − 1. The rank of this ma-
trix is at least min{r0,M}N/2.

E.11. Proof of claim 9

Let x(1) . . .x(M) ∈ Rs be covering templates, and fθ1 . . .fθM be
representation functions for the deep network under which F is
invertible (non-degeneracy implies that such functions exist). We
will show that there exists a linear weight (al,j,γ) setting for the
deep network with which it generates a grid tensor that is realiz-
able by a shallow network with a single hidden channel (Z = 1).
Moreover, we show that when the representation parameters (θd)
and linear weights (al,j,γ) are subject to small perturbations, the
deep network’s grid tensor can still be realized by a shallow net-
work with a single hidden channel. Since templates are covering
grid tensors fully define score functions. This, along with the fact
that open sets in Lebesgue measure spaces always have positive
measure (see app. E.1), imply that there is positive measure to the
set of weight configurations leading the deep network to gener-
ate score functions realizable by a shallow network with Z = 1.
Translating the latter statement from measure theoretical to prob-
abilistic terms readily proves the result we seek after.

In light of the above, the proof boils down to the following claim,
framed in terms of our generalized tensor decompositions. Fixing
g(a, b) = max{a, b, 0}, per arbitrary invertible F there exists
a weight (al,j,γ) setting for the generalized HT decomposition
(eq. 7), such that the produced tensor may be realized by the gen-
eralized CP decomposition (eq. 6) with Z = 1, and this holds
even if the weights al,j,γ and matrix F are subject to small per-
turbations 8.

We will now show that the following weight setting meets our
requirement (0 and 1 here denote the all-0 and all-1 vectors, re-
spectively):

• a0,j,γ =

{
F−11 , j odd
0 , j even

• al,j,γ =

{
1 , j odd , l ∈ [L− 1]
0 , j even , l ∈ [L− 1]

• aL,1,y = 1

8 Recall that by assumption representation functions are con-
tinuous w.r.t.their parameters (fθ(x) is continuous w.r.t.θ), and
so small perturbations on representation parameters (θd) translate
into small perturbations on the matrix F (eq. 4).
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Let EF be an additive noise matrix applied to F , and {εl,j,γ}l,j,γ
be additive noise vectors applied to {al,j,γ}l,j,γ . We use the no-
tation o(ε) to refer to vectors that tend to 0 as EF → 0 and
εl,j,γ → 0, with the dimension of a vector to be understood by
context. Plugging in the noisy variables into the generalized HT
decomposition (eq. 7), we get for every j ∈ [N/2] and α ∈ [r0]:

((F + EF )(a0,2j−1,α + ε0,2j−1,α))

⊗g((F + EF )(a0,2j,α + ε0,2j,α))

= ((F + EF )(F−11 + ε0,2j−1,α))

⊗g((F + EF )(0 + ε0,2j,α))

= (1 + o(ε))⊗g o(ε)

If the applied noise (EF , εl,j,γ) is small enough this is equal to
(1+o(ε))⊗1 (recall that⊗ stands for the standard tensor prod-
uct), and we in turn get for every j ∈ [N/4] and γ ∈ [r1]:

φ1,2j−1,γ ⊗g φ1,2j,γ

=
(∑r0

α=1 a
1,2j−1,γ
α (1 + o(ε))⊗ 1

)
⊗g
(∑r0

α=1 a
1,2j,γ
α (1 + o(ε))⊗ 1

)
=
(∑r0

α=1(1 + ε1,2j−1,γ
α )(1 + o(ε))⊗ 1

)
⊗g
(∑r0

α=1 ε
1,2j,γ
α (1 + o(ε))⊗ 1

)
= ((r01 + o(ε))⊗ 1)⊗g (o(ε)⊗ 1)

With the applied noise (EF , εl,j,γ) small enough this becomes
(r01 + o(ε) ⊗ 1 ⊗ 1 ⊗ 1. Continuing in this fashion over the
levels of the decomposition, we get that with small enough noise,
for every l ∈ [L− 1], j ∈ [N/2l+1] and γ ∈ [rl]:

φl,2j−1,γ ⊗g φl,2j,γ =
(∏l−1

l′=0
rl′ · 1 + o(ε)

)
⊗
(
⊗2l+1−1
i=1 1

)
where⊗2l+1−1

i=1 1 stands for the tensor product of the vector 1 with
itself 2l+1 − 1 times. We readily conclude from this that with
small enough noise, the tensor produced by the decomposition
may be written as follows:

A
(
hDy

)
=
(∏L−1

l=0
rl · 1 + o(ε)

)
⊗
(
⊗N−1
i=1 1

)
(14)

To finish our proof, it remains to show that a tensor as in eq. 14
may be realized by the generalized CP decomposition (eq. 6) with
Z = 1 (and g(a, b) = max{a, b, 0}). Indeed, we may assume
that the latter’s F , which we denote by F̃ to distinguish from
the matrix in the generalized HT decomposition (eq. 7), is in-
vertible (non-degeneracy ensures that this may be achieved with
proper choice of representation functions for the shallow Con-
vNet). Setting the weights of the generalized CP decomposition
(eq. 6) through:

• ay1 = 1

• a1,i =

{
F̃−1

(∏L−1
l=0 rl · 1 + o(ε)

)
, i = 1

0 , i > 1

leads to A
(
hSy
)

= A
(
hDy
)
, as required.

E.12. Proof of claim 10

The proof here follows readily from those of claims 7 and 8.
Namely, in the proof of claim 7 we state that for templates
x(1) . . .x(M) ∈ Rs chosen such that F is invertible (these ex-
ist according to claim 2), a grid tensor produced by the deep
ConvNet with linear activation and product pooling, when ar-
ranged as a matrix, has rank at least min{r0,M}N/2 for all
linear weight (al,j,γ) settings but a set of measure zero. That
is to say, a matrix produced by the matricized generalized HT
decomposition (eq. 10) with g(a, b) = a·b, has rank at least
min{r0,M}N/2 for all weight (al,j,γ) settings but a set of mea-
sure zero. On the other hand, we have shown in the proof of
claim 8 that a shallow ConvNet with ReLU activation and max
pooling generates grid tensors that when arranged as matrices,
have rank at most Z·M·N

2
. More specifically, we have shown

that the matricized generalized CP decomposition (eq. 11) with
g(a, b) = max{a, b, 0} produces matrices with rank at most
Z·M·N

2
. This implies that under almost all linear weight (al,j,γ)

settings for a deep ConvNet with linear activation and product
pooling, the generated grid tensor cannot be replicated by a shal-
low ConvNet with ReLU activation and max pooling if the latter
has less than Z = min{r0,M}N/2 · 2

M·N hidden channels.

E.13. Proof of claim 11

The proof here is almost identical to that of claim 9. The only dif-
ference is where we show that a tensor as in eq. 14 may be realized
by the generalized CP decomposition (eq. 6) with Z = 1. In the
proof of claim 9 the underlying operation of the decomposition
was g(a, b) = max{a, b, 0} (corresponding to ReLU activation
and max pooling), whereas here it is g(a, b) = a·b (correspond-
ing to linear activation and product pooling). To account for this
difference, we again assume that F̃ – the matrix F of the general-
ized CP decomposition, is invertible (non-degeneracy ensures that
this may be achieved with proper choice of representation func-
tions for the shallow ConvNet), and modify the decomposition’s
weight setting as follows:

• ay1 = 1

• a1,i =

{
F̃−1

(∏L−1
l=0 rl · 1 + o(ε)

)
, i = 1

F̃−11 , i > 1

This leads to A
(
hSy
)

= A
(
hDy
)
, as required.

E.14. Proof of claim 12

The shallow fully-connected network considered in this claim
is illustrated in fig. 4. Assume ReLU activation (σ(z) =

max{0, z}), and denote by hS(fc)y the network’s y’th score func-
tion. We would like to show that A(h

S(fc)
y ) – the grid tensor

of hS(fc)y w.r.t.the covering templates x(1) . . .x(M), may take on
any value when hidden and output weights ({Az}z∈[Z] and ay

respectively) are chosen appropriately.

For any d1. . .dN ∈ [M ], define the following matrix:

F (d1...dN ) :=

fθ1(x(d1)) · · · fθM (x(d1))
...

. . .
...

fθ1(x(dN )) · · · fθM (x(dN ))

 ∈ RN×M
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Figure 4. Shallow fully-connected network obtained by expand-
ing the conv receptive field in the shallow ConvNet to cover the
entire spatial extent. The hidden layer consists of a Z-channel
dense linear operator weighted by {Az ∈ RN×M}z∈[Z], and fol-
lowed by point-wise activation σ(·). The resultingZ-dimensional
vector is mapped to Y network outputs through a dense linear op-
erator weighted by {ay ∈ RZ}y∈[Y ]. Best viewed in color.

In words, F (d1...dN ) is the matrix obtained by taking rows
d1. . .dN from F (recurrence allowed), and stacking them one on
top of the other. It holds that:

A(hS(fc)y )d1...dN =

Z∑
z=1

ayz max
{

0,
〈
F (d1...dN ), Az

〉}
where 〈·, ·〉 stands for the inner-product operator,

i.e.
〈
F (d1...dN ), Az

〉
:=
∑N
i=1

∑M
d=1 F

(d1...dN )
i,d Azi,d.

By assumption F has a constant non-zero column. This implies
that there exist j ∈ [M ], c 6= 0 such that for any d1. . .dN ∈ [M ],
all entries in column j of F (d1...dN ) are equal to c. For every
d1. . .dN ∈ [M ] and z ∈ [Z], denote by F̃ (d1...dN ) and Ãz the
matrices obtained by removing the j’th column from F (d1...dN )

and Az respectively. Defining b ∈ RZ to be the vector whose
z’th entry is given by bz = c ·

∑N
i=1A

z
i,j , we may write:

A(hS(fc)y )d1...dN =

Z∑
z=1

ayz max
{

0,
〈
F̃ (d1...dN ), Ãz

〉
+ bz

}
noting that for every z ∈ [Z], Ãz and bz may take on any
values with proper choice of Az . Since by assumption F has
non-recurring rows, and since all rows hold the same value (c)
in their j’th entry, we have that F̃ (d1...dN ) 6= F̃ (d′1...d

′
N ) for

(d1. . .dN ) 6= (d′1. . .d
′
N ). An application of lemma 1 now shows

that when Z≥MN , any value for the grid tensor A(h
S(fc)
y ) may

be realized with proper assignment of {Ãz}z∈[Z], b and ay .
Since {Ãz}z∈[Z] and b may be set arbitrarily through {Az}z∈[Z],
we get that with proper choice of hidden and output weights
({Az}z∈[Z] and ay respectively), the grid tensor of our network
w.r.t.the covering templates may take on any value, precisely
meaning that universality holds.

Lemma 1. Let v1 . . .vk ∈ RD be distinct vectors (vi 6= vj
for i6=j), and c1. . .ck ∈ R be any scalars. Then, there exist
w1 . . .wk ∈ RD , b ∈ Rk and a ∈ Rk such that ∀i ∈ [k]:

k∑
j=1

aj max{0,w>j vi + bj} = ci (15)

Proof. As shown in the proof of claim 1, for distinct v1 . . .vk ∈
RD there exists a vector u ∈ RD such that u>vi 6= u>vj for all
1≤i < j≤k. We assume without loss of generality that u>v1 <
. . . < u>vk, and set w1. . .wk, b and a as follows:

• w1 = · · · = wk = u

• b1 = −u>v1 + 1

• bj = −u>vj−1 for j = 2. . .k

• a1 = c1

• aj =
cj−cj−1

u>vj−u>vj−1
−
∑j−1
t=1 at for j = 2. . .k

To complete the proof, we show below that this assignment meets
the condition in eq. 15 for i = 1. . .k.

The fact that:

w>j v1 + bj =

{
u>v1 − u>v1 + 1 = 1 , j = 1
u>v1 − u>vj−1 ≤ 0 , 2≤j≤k

implies that the condition in eq. 15 indeed holds for i = 1:

k∑
j=1

aj max{0,w>j v1 + bj} = a1·1 +

k∑
j=1

aj ·0 = a1 = c1

For i > 1 we have:

w>j vi + bj =

 u>vi − u>v1 + 1 > 0 , j = 1
u>vi − u>vj−1 > 0 , 2≤j≤i
u>vi − u>vj−1 ≤ 0 , i < j≤k

which implies: ∑k
j=1 aj max{0,w>j vi + bj} =

a1(u>vi − u>v1 + 1) +
∑i
j=2 aj(u

>vi − u>vj−1)

Comparing this to the same expression with i replaced by i − 1
we obtain: ∑k

j=1 aj max{0,w>j vi + bj} =∑k
j=1 aj max{0,w>j vi−1 + bj}+

(u>vi − u>vi−1)
∑i
j=1 aj

Now, if we follow an inductive argument and assume
that the condition in eq. 15 holds for i − 1, i.e.that∑k
j=1 aj max{0,w>j vi−1 + bj} = ci−1, we get:∑k

j=1 aj max{0,w>j vi + bj} =

ci−1 + (u>vi − u>vi−1)
∑i
j=1 aj

Plugging in the definition ai =
ci−ci−1

u>vi−u>vi−1
−
∑i−1
j=1 aj gives:∑k

j=1 aj max{0,w>j vi + bj} =

ci−1 + (u>vi − u>vi−1)
ci−ci−1

u>vi−u>vi−1
= ci

Thus the condition in eq. 15 holds for i as well. We have therefore
shown by induction that our assignment of w1. . .wk, b and a
meets the lemma’s requirement.
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E.15. Proof of claim 13

The proof here is almost identical to that of claim 7. The only dif-
ference is that in the latter, we used the fact that the generalized
HT decomposition (eq. 7), when equipped with g(a, b) = a·b,
almost always produces tensors whose matrix arrangements have
rank at least min{r0,M}N/2, whereas here, we require an analo-
gous result for the shared generalized HT decomposition (eq. 9).
Such result is provided by the proof of theorem 1 in (Cohen et al.,
2016b).

E.16. Proof of claim 14

In the proof of claim 8 we have shown, for arbitrary distinct tem-
plates x(1) . . .x(M) ∈ Rs, an explicit weight setting for the deep
ConvNet with ReLU activation and max pooling, leading the lat-
ter to produce a grid tensor that cannot be realized by a shallow
ConvNet with ReLU activation and max pooling, if that has less
than min{r0,M}N/2 · 2

M·N hidden channels. Since the given
weight setting was location invariant, i.e.the assignment of al,j,γ

did not depend on j, it applies as is to a deep ConvNet with weight
sharing, and the desired result readily follows.

E.17. Proof of claim 15

The proof is similar in spirit to that of claim 9, which dealt with in-
completeness of depth efficiency under ReLU activation and max
pooling in the unshared setting. Our focus here is on the shared
setting, or more specifically, on the case where the deep Con-
vNet is limited by weight sharing while the shallow ConvNet is
not. Accordingly, we would like to show the following. Fixing
g(a, b) = max{a, b, 0}, per arbitrary invertible F there exists
a weight (al,γ) setting for the shared generalized HT decompo-
sition (eq. 9), such that the produced tensor may be realized by
the generalized CP decomposition (eq. 6) with Z = 1, and this
holds even if the weights al,γ and matrix F are subject to small
perturbations.

Before heading on to prove that a weight setting as above exists,
we introduce a new definition that will greatly simplify our proof.
We refer to a tensorA of order P and dimensionM in each mode
as basic, if there exists a vector u ∈ RM with non-decreasing
entries (u1≤ . . .≤uM ), such that A = u ⊗g · · · ⊗g u (i.e.A is
equal to the generalized tensor product of u with itself P times,
with underlying operation g(a, b) = max{a, b, 0}). A basic ten-
sor can obviously be realized by the generalized CP decomposi-
tion (eq. 6) with Z = 1 (given that non-degeneracy is used to
ensure the latter’s representation matrix is non-singular), and so it
suffices to find a weight (al,γ) setting for the shared generalized
HT decomposition (eq. 9) that gives rise to a basic tensor, and in
addition, ensures that small perturbations on the weights al,γ and
matrix F still yield basic tensors. Two trivial facts that relate to
basic tensors and will be used in our proof are: (i) the generalized
tensor product of a basic tensor with itself is basic, and (ii) a linear
combination of basic tensors with non-negative weights is basic.

Turning to the main part of the proof, we now show that the fol-
lowing weight setting meets our requirement:

• a0,γ = F−1v

• al,γ = 1, l ∈ [L− 1]

• aL,y = 1

v here stands for the vector [1, 2, . . . ,M ]> ∈ RM , and 1 is an
all-1 vector with dimension to be understood by context. Let EF
be an additive noise matrix applied to F , and {εl,γ}l,γ be additive
noise vectors applied to {al,γ}l,γ . We would like to prove that
under the weight setting above, when applied noise (EF , εl,γ) is
small enough, the grid tensor produced by the shared generalized
HT decomposition (eq. 9) is basic.

For convenience, we adopt the notation o(ε) as referring to vec-
tors that tend to 0 as EF → 0 and εl,γ → 0, with the dimension
of a vector to be understood by context. Plugging in the noisy
variables into the shared generalized HT decomposition (eq. 9),
we get for every α ∈ [r0]:

((F + EF )(a0,α + ε0,α))⊗g ((F + EF )(a0,α + ε0,α))

= ((F + EF )(F−1v + ε0,α))⊗g ((F + EF )(F−1v + ε0,α))

= ṽα ⊗g ṽα

where ṽα = v + o(ε). If the applied noise (EF , εl,γ) is small
enough the entries of ṽα are non-decreasing and ṽα ⊗g ṽα is a
basic tensor (matrix). Moving to the next level of the decomposi-
tion, we have for every γ ∈ [r1]:

φ1,γ =

r0∑
α=1

(a1,γα + ε1,γα ) · ṽα ⊗g ṽα

When applied noise (EF , εl,γ) is small enough the weights of this
linear combination are non-negative, and together with the ten-
sors (matrices) ṽα ⊗g ṽα being basic, this leads φ1,γ to be basic
as well. Continuing in this fashion over the levels of the decompo-
sition, we get that with small enough noise, for every l ∈ [L− 1]
and γ ∈ [rl], φl,γ is a basic tensor. A final step in this direction
shows that under small noise, the produced grid tensorA

(
hDy
)

is
basic as well. This is what we set out to prove.

F. On the Incidence of Depth Efficiency
In claim 7 we saw that depth efficiency is complete with linear ac-
tivation and product pooling. That is to say, with linear activation
and product pooling, besides a negligible set, all weight settings
for the deep ConvNet (fig. 1 with size-2 pooling windows and
L = log2N hidden layers) lead to score functions that cannot
be realized by the shallow ConvNet (fig. 2) unless the latter has
super-polynomial size. We have also seen (claims 8 and 9) that
replacing the activation and pooling operators by ReLU and max
respectively, makes depth efficiency incomplete. There are still
weight settings leading the deep ConvNet to generate score func-
tions that require the shallow ConvNet to have super-polynomial
size, but these do not occupy the entire space. In other words,
there is now positive measure to the set of deep ConvNet weight
configurations leading to score functions efficiently realizable by
the shallow ConvNet. A natural question would then be just how
frequent depth efficiency is under ReLU activation and max pool-
ing. More formally, we may consider a uniform distribution over
a compact domain in the deep ConvNet’s weight space, and ask
the following. Assuming weights for the deep ConvNet are drawn
from this distribution, what is the probability that generated score
functions exhibit depth efficiency, i.e.require super-polynomial
size from the shallow ConvNet? In this appendix we address this
question, arguing that the probability tends to 1 as the number of
channels in the hidden layers of the deep ConvNet grows. We
do not prove this formally, but nonetheless provide a framework
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Figure 5. Simulation results demonstrating that under ReLU ac-
tivation and max pooling, the incidence of depth efficiency in-
creases as the number of channels in the hidden layers of the
deep ConvNet (r0. . .rL−1) grows. The plots show histograms
of the ranks produced by the matricized generalized HT decom-
position (eq. 10) with g(a, b) = max{a, b, 0}. The number of
levels in the decomposition was set to L = 3 (implying input size
of N = 2L = 8). The size of the representation matrix F was
set through M = 3, and the matrix itself was fixed to the iden-
tity. Weights (al,j,γ) were drawn at random independently and
uniformly from the interval [−1, 1]. Three channel-width config-
urations were tried: (i) r0 = r1 = r2 = 2 (ii) r0 = r1 = r2 = 4
(ii) r0 = r1 = r2 = 8. For each configuration 1000 random tests
were run, creating the histograms presented in the figure (each test
produced a single matrix [A(hDy )], accounting for a single entry
in a histogram). As can be seen, the distribution of the produced
rank (rank[A(hDy )]) tends towards the maximum (MN/2 = 81)
as the numbers of hidden channels grow.

we believe may serve as a basis for establishing formal results
concerning the incidence of depth efficiency. The framework,
which relies on the material delivered in app. E.2, is not limited to
ReLU activation and max pooling – it may be used under different
choices of activation and pooling operators as well.

The central tool used in the paper for proving depth efficiency
is the rank of grid tensors when these are arranged as matrices.
We establish upper bounds on the rank of matricized grid ten-
sors produced by the shallow ConvNet through the matricized
generalized CP decomposition (eq. 11). These upper bounds are
typically linear in the size of the input (N ) and the number of
hidden channels in the network (Z). The challenge is then to
derive a super-polynomial (in N ) lower bound on the rank of
matricized grid tensors produced by the deep ConvNet through
the matricized generalized HT decomposition (eq. 10). In the
case of linear activation and product pooling (g(a, b) = a·b), the
generalized Kronecker product �g reduces to the standard Kro-
necker product �, and the rank-multiplicative property of the lat-
ter (rank(A�B) = rank(A)·rank(B)) can be used to show

(see (Cohen et al., 2016b)) that besides in negligible (zero mea-
sure) cases, rank grows rapidly through the levels of the matri-
cized generalized HT decomposition (eq. 10), to the point where
the final produced matrix has exponential rank. This situation
does not persist when the activation and pooling operators are re-
placed by ReLU and max (respectively). Indeed, in the proof of
claim 9 we explicitly presented a non-negligible (positive mea-
sure) case where the matricized generalized HT decomposition
(eq. 10) produces a matrix of rank 1. To study the incidence of
depth efficiency under ReLU activation and max pooling, we as-
sume the weights (al,j,γ) of the matricized generalized HT de-
composition (eq. 10) are drawn independently and uniformly from
a bounded interval (e.g. [−1, 1]), and question the probability
of the produced matrix [A

(
hDy
)
] having rank super-polynomial

in N .

To study rank[A
(
hDy
)
], we sequentially traverse through the lev-

els l = 1. . .L of the matricized generalized HT decomposition
(eq. 10), at each level going over all locations j ∈ [N/2l]. When
at location j of level l, for each α ∈ [rl−1], we draw the weights
al−1,2j−1,α and al−1,2j,α (independently of the previously drawn
weights), and observe the random variable Rl,j,α, defined as
the rank of the matrix [φl−1,2j−1,α] �g [φl−1,2j,α]. Given the
weights drawn while traversing through the previous levels of
the decomposition, the random variables {Rl,j,α ∈ N}α∈[rl−1]

are independent and identically distributed. The random variable
Rl,j := maxα∈[rl−1]{R

l,j,α} thus tends to concentrate on higher
and higher values as rl−1 (number of channels in hidden layer
l − 1 of the deep ConvNet) grows. When the next level (l + 1)
of the decomposition will be traversed, the weights {al,j,γ}γ∈[rl]
will be drawn, and the matrices {[φl,j,γ ]}γ∈[rl] will be generated.
According to claim 16 below, with probability 1, all of these ma-
trices will have rank equal to at least Rl,j . We conclude that,
assuming the generalized Kronecker product�g has the potential
of increasing the rank of its operands, ranks will generally ascend
across the levels of the matricized generalized HT decomposition
(eq. 10), with steeper ascends being more and more probable as
the number of channels in the hidden layers of the deep ConvNet
(r0. . .rL−1) grows.

The main piece that is missing in order to complete the sketch
we have outlined above into a formal proof, is the behavior of
rank under the generalized Kronecker product �g . This obvi-
ously depends on the choice of underlying operator g. In the
case of linear activation and product pooling g(a, b) = a·b,
the generalized Kronecker product �g reduces to the standard
Kronecker product �, and ranks always increase multiplica-
tively, i.e. rank(A�B) = rank(A)·rank(B) for any ma-
trices A and B. The fact that there is a simple law gov-
erning the behavior of ranks makes this case relatively sim-
ple to analyze, and we indeed have a full characterization
(claim 7). In the case of linear activation and max pool-
ing the underlying operator is given by g(a, b) = max{a, b},
and it is not difficult to see that �g does not decrease rank,
i.e.rank(A�gB)≥min{rank(A), rank(B)} for any matrices
A and B 9. For ReLU activation and max pooling, corresponding
to the choice g(a, b) = max{a, b, 0}, there is no simple rule de-
picting the behavior of ranks under�g , and in fact, for matricesA
and B holding negative values, the rank of rank(A�gB) neces-
sarily drops to zero. Nonetheless, it seems reasonable to assume
that at least in some cases, a non-linear operation such as�g does

9 To see this, simply note that under the choice g(a, b) =
max{a, b} there is either a sub-matrix of A�gB that is equal
to A, or one that is equal to B.
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increase rank, and as we have seen, benefiting from these cases
is more probable when the hidden layers of the deep ConvNet
include many channels. To this end, we provide in fig. 5 simu-
lation results for the case of ReLU activation and max pooling
(g(a, b) = max{a, b, 0}), demonstrating that indeed ranks pro-
duced by the matricized generalized HT decomposition (eq. 10)
tend to be higher as r0. . .rL−1 grow. We leave a complete formal
analysis of this phenomenon to future work.

Claim 16. Let A1. . .Am be given matrices of the same size, hav-
ing ranks r1. . .rm respectively. For every weight vector α ∈ Rm
define the matrixA(α) :=

∑m
i=1 αiAi, and suppose we random-

ize α by some continuous distribution. Then, with probability 1,
we obtain a matrix A(α) having rank at least maxi∈[m] ri.

Proof. Our proof relies on concepts and results from Lebesgue
measure theory (see app. E.1 for a brief discussion). The result to
prove is equivalent to stating that there is measure zero to the set
of weight vectors α for which rank(A(α)) < maxi∈[m] ri.

Assume without loss of generality that maxi∈[m] ri is equal to
r1, and that the top-left r1×r1 block of A1 is non-singular. For
every α define p(α) := det(A(α)1:r1,1:r1), i.e.p(α) is the de-
terminant of the r1×r1 top-left block of the matrix A(α). p(α)
is obviously a polynomial in the entries of α, and by assump-
tion p(e1) 6= 0, where e1 ∈ Rm is the vector holding 1 in its
first entry and 0 elsewhere. Since a non-zero polynomial vanishes
only on a set of zero measure (see (Caron and Traynor, 2005)
for example), the set of weight vectors α for which p(α) = 0
has measure zero. This implies that the top-left r1×r1 block
of A(α) is non-singular almost everywhere, and in particular
rank(A(α))≥r1 = maxi∈[m] ri almost everywhere.


