
Discriminative Embeddings of Latent Variable Models for Structured Data

Appendix

A. More Related Work
A.1. Comparison with Neural Networks on Graphs

Neural network is also a powerful tool on graph structured data. Scarselli et al. (2009) proposed a neural network which
generates features by solving a heuristic nonlinear system iteratively, and is learned using Almeida-Pineda algorithm. To
guarantee the existence of the solution to the nonlinear system, there are extra requirements for the features generating
function. From this perspective, the model in (Li et al., 2015) can be considered as an extension of (Scarselli et al., 2009)
where the gated recurrent unit is used for feature generation. Rather than these heuristic models, our model is based on the
principled graphical model embedding framework, which results in flexible embedding functions for generating features.
Meanwhile, the model can be learned efficiently by traditional stochastic gradient descent.

There are several work transferring locality concept of convolutional neural networks (CNN) from Euclidean domain to
graph case, using hierarchical clustering, graph Laplacian (Bruna et al., 2013), or graph Fourier transform (Henaff et al.,
2015). These models are still restricted to problems with the same graph structure, which is not suitable for learning
with molecules. (Mou et al., 2016) proposed a convolution operation on trees, while the locality are defined based on
parent-child relations. (Duvenaud et al., 2015) used CNN to learn the circulant fingerprints for graphs from end to end. The
dictionary of fingerprints are maintained using softmax of subtree feature representations, in order to obtain a differentiable
model. If we unroll the steps in Algorithm 3, it can also be viewed as an end to end learning system. However, the structures
of the proposed model are deeply rooted in graphical model embedding, from mean field and loopy BP, respectively. Also,
since the parameters will be shared across different unrolling steps, we would have more compact model. As will be shown
in the experiment section, our model is easy to train, while yielding good generalization ability.

A.2. Comparison with Learning Message Estimator

By recognizing inference as computational expressions, inference machines (Ross et al., 2011) incorporate learning into the
messages passing inference for CRFs. More recently, Hershey et al. (2014); Zheng et al. (2015); Lin et al. (2015) designed
specific recurrent neural networks and convolutional neural networks for imitating the messages in CRFs. Although these
methods share the similarity, i.e., bypassing learning potential function, to the proposed framework, there are significant
differences comparing to the proposed framework.

The most important difference lies in the learning setting. In these existing messages learning work (Hershey et al., 2014;
Zheng et al., 2015; Lin et al., 2015; Chen et al., 2014), the learning task is still estimating the messages represented
graphical models with designed function forms, e.g., RNN or CNN, by maximizing loglikelihood. While in our work,
we represented each structured data as a distribution, and the learning task is regression or classification over these
distributions. Therefore, we treat the embedded models as samples, and learn the nonlinear mapping for embedding,
and regressor or classifier, f : P → Y , over these distributions jointly, with task-dependent user-specified loss functions.

Another difference is the way in constructing the messages forms, and thus, the neural networks architecture. In the existing
work, the neural networks forms are constructed strictly follows the message updates forms (8) or (12). Due to such
restriction, these works only focus on discrete variables with finite values, and is difficult to extend to continuous variables
because of the integration. However, by exploiting the embedding point of view, we are able to build the messages with
more flexible forms without losing the dependencies. Meanwhile, the difficulty in calculating integration for continuous
variables is no longer a problem with the reasoning (3) and (4).

B. Derivation of the Fixed-Point Condition for Loopy BP
The derivation of the fixed-point condition for loopy BP can be found in (Yedidia et al., 2001b). However, to keep the
paper self-contained, we provide the details here. The objective of loopy BP is

min
{qij}(i,j)∈E

−
∑
i

(|N (i)| − 1)

∫
H
qi(hi) log

qi(hi)

Φ(hi, xi)
dhi +

∑
i,j

∫
H2

qij(hi, hj) log
qij(hi, hj)

Ψ(hi, hj)Φ(hi, xi)Φ(hj , xj)
dhidhj

s.t.
∫
H
qij(hi, hj)dhj = qi(hi),

∫
H
qij(hi, hj)dhj = qi(hi),

∫
H
qi(hi)dhi = 1.

Discriminative Embeddings of Latent Variable Models for Structured Data

Denote λij(hj) is the multiplier to marginalization constraints
∫
H qij(hi, hj)dhi − qj(hj) = 0, the Lagrangian is formed

as

L({qij}, {qi}, {λij}, {λji}) = −
∑
i

(|N (i)| − 1)

∫
H
qi(hi) log

qi(hi)

Φ(hi, xi)
dhi

+
∑
i,j

∫
H2

qij(hi, hj) log
qij(hi, hj)

Ψ(hi, hj)Φ(hi, xi)Φ(hj , xj)
dhidhj

−
∑
i,j

∫
H
λij(hj)

(∫
H
qij(hi, hj)dhi − qj(hj)

)
dhj

−
∑
i,j

∫
H
λji(hi)

(∫
H
qij(hi, hj)dhj − qi(hi)

)
dhi

with normalization constraints
∫
H qi(hi)dhi = 1. Take functional gradients of L({qij}, {qi}, {λij}, {λji}) with respect to

qij(hi, hj) and qi(hi), and set them to zero, we have
qij(hi, hj) ∝ Ψ(hi, hj)Φ(hi, xi)Φ(hj , xj) exp(λij(hj) + λji(hi)),

qi(hi) ∝ Φ(hi, xi) exp

(∑
k∈N (i) λki(hi)

|N (i)| − 1

)
.

We set mij(hj) =
qj(hj)

Φ(hi,xi) exp(λij(hj)) , therefore,∏
k∈N (i)

mki(hi) ∝ exp

(∑
k∈N (i) λki(hi)

|N (i)| − 1

)
.

Plug it into qij(hi, hj) and qi(hi), we recover the loopy BP update for marginal belief and

exp(λji(hi)) =
qi(hi)

Φ(hi, xi)mji(hi)
∝

∏
k∈N(i)\j

mki(hi).

The update rule for message mij(hj) can be recovered using the marginal consistency constraints,

mij(hj) =
qj(hj)

Φ(hi, xi) exp(λij(hj))
=

∫
H qij(hi, hj)dhi

Φ(hi, xi) exp(λij(hj))

= Φ(hj , xj) exp(λij(hj))

∫
HΨ(hi, hj)Φ(hi, xi) exp(λji(hi))dhi

Φ(hi, xi) exp(λij(hj))

∝
∫
H

Ψ(hi, hj)Φ(hi, xi)
∏

k∈N(i)\j

mki(hi)dhi.

Moreover, we also obtain the other important relationship betweenmij(hj) and λji(hi) by marginal consistency constraint
and the definition of mij(hj),

mij(hj) ∝
∫

Ψ(hi, hj)Φ(hj , xj) exp(λji(hi))dhi.

C. Embedding Other Variational Inference
The proposed embedding is a general algorithm and can be tailored to other variational inference methods with message
passing paradigm. In this section, we discuss the embedding for several alternatives, which optimize the primal and dual
Bethe free energy, its convexified version and Kikuchi free energy, respectively. We will parametrize the messages with
the same function class, i.e., neural networks with ReLU. More generally, we can also treat the weights as parameters and
learn them together.

C.1. Double-Loop BP

Noticed the Bethe free energy can be decomposed into the summation of a convex function and a concave function,
Yuille (2002) utilizes CCCP to minimize the Bethe free energy, resulting the double-loop algorithm. Take the gradient of

Discriminative Embeddings of Latent Variable Models for Structured Data

Lagrangian of the objective function, and set to zero, the primal variable can be represented in dual form,
qij(hi, hj) ∝ Ψ(hi, hj)Φ(hi, xi)Φ(hj , xj) exp(λij(hj) + λji(hi)),

qi(hi) ∝ Φ(hi, xi) exp
(
|N (i)|γs(hi)−

∑
k∈N (i)

λki(hi)
)
,

The algorithm updates γ and λ alternatively,

2λnewij (hj) = |N (j)|γi(hi)−
∑

k∈N (j)\i

λkj(hj)− log

∫
H

Ψ(hi, hj)Φ(hi, xi)λji(hi)dhi,

γnewi (hi) = |N (i)|γi(hi)−
∑

k∈N (i)

λki(hi).

Consider the λij as messages, with the injective embedding assumptions for corresponding messages, follow the same
notation, we can express the messages in embedding view

ν̃ij = T̃1 ◦
(
xi, {ν̃ki}k∈N (i)\j , ν̃ji, µ̃i

)
, or ν̃ij = T̃1 ◦

(
xi, {ν̃ki}k∈N (i) , µ̃i

)
,

µ̃i = T̃2 ◦
(
xi, {ν̃ki}k∈N (i) , µ̃i

)
.

Therefore, we have the parametrization form as

ν̃ij = σ

W1xi +W2

∑
k∈N (i)\j

ν̃ki +W3ν̃ji +W4µ̃i

 , or ν̃ij = σ

W1xi +W2

∑
k∈N (i)

ν̃ki +W3µ̃i

 ,

µ̃i = σ

W5xi +W6

∑
k∈N (i)

ν̃ki +W7µ̃i

 .

where µ̃i ∈ Rd, ν̃ij ∈ Rd, and W = {Wi} are matrices with appropriate size.

C.2. Damped BP

Instead of the primal form of Bethe free energy, Minka (2001) investigates the duality of the optimization,

min
γ

max
λ

∑
i

(
|N (i)| − 1

)
log

∫
H

Φ(hi, xi) exp(γi(hi))dhi

−
∑

(i,j)∈E

log

∫
H2

Ψ(hi, hj)Φ(hi, xi)Φ(hj , xj) exp(λij(hj) + λji(hi))dhjdhi,

subject to
(
|N (i)| − 1

)
γi(hi) =

∑
k∈N (i) λki(hi). Define message as

mij(hj) ∝
∫
H

Ψ(hi, hj)Φ(hj , xj) exp(λji(hi))dhi,

the messages updates are

mij(hi) ∝
∫
H

Φi(hi, xi)Ψij(hi, hj) exp
(|N (i)| − 1

|N (i)|
γi(hi)

)∏
k∈N (i)m

1
|N(i)|
ki (hi)

mji(hi)
dhi,

γnewi (hi) ∝ |N (i)| − 1

|N (i)|
γi(hi) +

∑
k∈N (i)

1

|N (i)|
logmki(hi).

and the

q(xi) ∝ Φ(hi, xi) exp

(
|N (i)| − 1

|N (i)|
γi(hi)

) ∏
k∈N (i)

m
1

|N(i)|
ki

which results the embedding follows the same injective assumption and notations,

ν̃ij = T̃1 ◦
(
xi, {ν̃ki}k∈N (i) , ν̃ji, µ̃i

)
,

µ̃i = T̃2 ◦
(
xi, µ̃i, {ν̃ki}k∈N (i)

)
.

Discriminative Embeddings of Latent Variable Models for Structured Data

and the parametrization,

ν̃ij = σ

W1xi +W2

∑
k∈N (i)

ν̃ki +W3ν̃ji +W4µ̃i

 ,

µ̃i = σ

W5xi +W6µ̃i +W7

∑
k∈N (i)

ν̃ki

 .

It is interesting that after parametrization, the embeddings of double-loop BP and damped BP are essentially the same,
which reveal the connection between double-loop BP and damped BP.

C.3. Tree-reweighted BP

Different from loopy BP and its variants which optimizing the Bethe free energy, the tree-reweighted BP (Wainwright
et al., 2003) is optimizing a convexified Bethe energy,

min
{qij}(i,j∈E)

L =
∑
i

∫
H
q(hi) log q(hi)dhi +

∑
i,j

vij

∫
H2

qij(hi, hj) log
qij(hi, hj)

qi(hi)qj(hj)
dhidhj

−
∑
i

∫
H
q(hi) log Φ(hi, xi)dhi −

∑
i,j

∫
H2

qij(hi, hj) log Ψ(hi, hj)dhidhj

subject to pairwise marginal consistency constraints:
∫
H qij(hi, hj)dhj = qi(hi),

∫
H qij(hi, hj)dhj = qi(hi), and∫

H qi(hi)dhi = 1. The {vij}(i,j)∈E represents the probabilities that each edge appears in a spanning tree randomly chose
from all spanning tree from G = {V, E} under some measure. Follow the same strategy as loopy BP update derivations,
i.e., take derivatives of the corresponding Lagrangian with respect to qi and qij and set to zero, meanwhile, incorporate
with the marginal consistency, we can arrive the messages updates,

mij(hj) ∝
∫
H

Ψ
1

vji

ij (hi, hj)Φi(hi, xi)

∏
k∈H(i)\jm

vki

ki (hi)

m
1−vij
ji (hi)

dhi,

qi(hi) ∝ Φi(hi, xi)
∏

k∈N (i)

mvki

ki (hi),

qij(hi, hj) ∝ Ψ
1

vji

ij (hi, hj)Φi(hi, xi)Φj(hj , xj)

∏
k∈N (i)\jm

vki

ki (hi)

m
1−vij
ji (hi)

∏
k∈N (j)\im

vkj

kj (hj)

m
1−vji
ij (hj)

.

Similarly, the embedded messages and the marginals on nodes can be obtained as

ν̃ij = T̃1 ◦
(
xi, {ν̃ki}k∈N (i)\j , ν̃ji, {vki}k∈N i\j , vij

)
,

µ̃i = T̃2 ◦
(
xi, {ν̃ki, vki}k∈N (i)

)
.

Parametrize these message in the same way, we obtain,

ν̃ij = σ

W1xi +W2

∑
k∈N (i)\j

ṽkiνki +W3ṽijνji

 ,

µ̃i = σ

W4xi +W5

∑
k∈N (i)

ṽkiνki

 .

Notice the tree-weighted BP contains extra parameters {vij}(i,j)∈E which is in the spanning tree polytope as (Wainwright
et al., 2003).

C.4. Generalized Belief Propagation

The Kikuchi free energy is the generalization of the Bethe free energy by involving high-order interactions. More
specifically, given the MRFs, we denote R to be a set of regions, i.e., some basic clusters of nodes, their intersections,
the intersections of the intersections, and so on. We denote the sub(r) or sup(r), i.e., subregions or superregions of r, as
the set of regions completely contained in r or containing r, respectively. Let hr be the state of the nodes in region r, then,

Discriminative Embeddings of Latent Variable Models for Structured Data

the Kikuchi free energy is ∑
r∈R

cr

(∫
q(hr) log

q(hr)∏
i,j∈r Ψ(hi, hj)

∏
i∈r Φ(hi, xi)

)
,

where cr is over-counting number of region r, defined by cr := 1 −
∑
s∈sup(r) cs with cr = 1 if r is the largest region

in R. It is straightforward to verify that the Bethe free energy is a special case of the Kikuchi free energy by setting the
basic cluster as pair of nodes. The generalized loopy BP (Yedidia et al., 2001b) is trying to seek the stationary points of
the Kikuchi free energy under regional marginal consistency constraints and density validation constraints by following
messages updates,

mr,s(hs) ∝
∫

Ψ(hr, xr\s)m̄r\s(hr\s)dhr\s

m̄r,s(hs)
,

qr(hr) ∝
∏
i∈r

Φ(hi, xi)
∏

mr′,s′∈M(r)

mr′,s′(hs′), (19)

where
m̄r\s(hr\s) =

∏
{r′,s′}∈M(r)\M(s)

mr′,s′(hs′),

m̄r,s(hs) =
∏

{r′,s′}∈M(r,s)

mr′,s′(hs′),

Ψ(hr, xr\s) =
∏
i,j∈r

Ψ(hi, hj)
∏
i∈r\s

Φ(hi, xi).

The M(r) denotes the indices of messages mr′,s′ that s′ ∈ sub(r) ∪ {r}, and r′ \ s′ is outside r. M(r, s) is the set of
indices of messages mr′,s′ where r′ ∈ sub(r) \ s and s′ ∈ sub(s) ∪ {s}.

With the injective embedding assumption for each message ν̃r,s =
∫
φ(hs)mr,s(hs)dhs and µ̃r =

∫
φ(hr)qr(hr)dhr,

following the reasoning (3) and (4), we can express the embeddings as

ν̃r,s = T̃1 ◦
(
xr\s, {ν̃r′,s′}M(r)\M(s),M(r,s)

)
, (20)

µ̃r = T̃2 ◦
(
xr, {ν̃r′,s′}M(r)

)
. (21)

Following the same parameterization in loopy BP, we represent the embeddings by neural network with rectified linear
units,

ν̃r,s =σ
(∑
i∈r

W i
1x
i
r +W2

∑
M(r)\M(s)̃

νr′,s′ +W3

∑
M(r,s)̃

νr′,s′
)

(22)

µ̃i = σ
(∑
i∈r

W i
4xi +W5

∑
M(r)

ν̃r′,s′
)

(23)

where W = {{W i
1},W2,W3, {W i

4},W5} are matrices with appropriate sizes. The generalized BP embedding updates
will be almost the same as Algorithm 2 except the order of the iterations. We start from the messages into the smallest
region first (Yedidia et al., 2001b).

Remark: The choice of basis clusters and the form of messages determine the dependency in the embedding. Please refer
to Yedidia et al. (2005) for details about the principles to partition the graph structure, and several other generalized BP
variants with different messages forms. The algorithms proposed for minimizing the Bethe free energy (Minka, 2001;
Heskes, 2002; Yuille, 2002) can also be extended for Kikuchi free energy, resulting in different embedding forms.

D. Derivatives Computation in Algorithm 3
We can use the chain rule to obtain the derivatives with respect to UT = {W T ,uT }. According to Equation 17 and
Equation 18, the message passed to supervised label yn for n−th sample can be represented as mn

y =
∑
i∈V µ̃i

n, and the
corresponding derivative can be denoted as

∂l

∂mn
y

=
∂l

∂f

∂f

∂σ(mn
y)

∂σ(mn
y)

∂mn
y

The term ∂l
∂f depends on the supervised information and the loss function we used, and ∂l

∂σ(mn
y) = uT ∂l

∂f . The last term

Discriminative Embeddings of Latent Variable Models for Structured Data

∂σ(mn
y)

∂mn
y

depends on the nonlinear function σ we used here.

The derivatives with respect to u for the current encountered sample {χn, yn} SGD iteration are

∇ul(f(µ̃n;U), yn) =
∂l

∂f
σ(mn

y)T (24)

In order to update the embedding parameters W , we need to obtain the derivatives with respect to the embedding of each
hidden node, i.e., ∂l

∂ũi
n = ∂l

∂mn
y
,∀i ∈ V .

Embedded Mean Field

In mean field embedding, we unfold the fixed point equation by the iteration index t = 1, 2, . . . , T . At t−th iteration, the
partial derivative is denoted as ∂l

∂µ̃i
n(t) . The partial derivative with respect to the embedding obtained by last round fixed

point iteration is already defined above: ∂l
∂µ̃i

n(T) = ∂l
∂mn

y

Then the derivatives can be obtained recursively: ∂l
∂µ̃i

n(t) =
∑
j,i∈N (j)W

T
2

∂l
∂µ̃j

n(t+1)
∂σ

∂(W1xj+W2l
(t)
j +W3uj)

, t =

1, 2, . . . , T − 1. Similarly, the parameters W are also updated cumulatively as below.
∂l

∂(W1xi +W2l
(t)
i +W3ui)

=
∑

j,i∈N (j)

∂l

∂µ̃j
n(t+1)

∂σ

∂(W1xj +W2l
(t)
j +W3uj)

(25)

∇W1
l(f(µ̃n;U), yn) =

∑
i∈Vn

T−1∑
t=1

∂l

∂(W1xi +W2l
(t)
i +W3ui)

xTi (26)

∇W2
l(f(µ̃n;U), yn) =

∑
i∈Vn

T−1∑
t=1

∂l

∂(W1xi +W2l
(t)
i +W3ui)

l
(t)T
i (27)

∇W3
l(f(µ̃n;U), yn) =

∑
i∈Vn

T−1∑
t=1

∂l

∂(W1xi +W2l
(t)
i +W3ui)

uTi (28)

Embedding Loopy BP

Similar as above case, we can first obtain the derivatives with respect to embeddings of hidden variables ∂l
∂µ̃i

n = ∂l
∂mn

y
.

Since the last round of message passing only involves the edge-to-node operations, we can easily get the following
derivatives.

∇W3
l(f(µ̃n;U), yn) =

∑
i∈V

∂l

∂µ̃i
n

∂σ

∂(W3xi +W4

∑
k∈N (i) ν̃

n(T)
ki)

xTi (29)

∇W4
l(f(µ̃n;U), yn) =

∑
i∈V

∂l

∂µ̃i
n

∂σ

∂(W3xi +W4

∑
k∈N (i) ν̃

n(T)
ki)

(
∑

k∈N (i)

ν̃
n(T)
ki)T (30)

(31)

Now we consider the partial derivatives for the pairwise message embeddings for different t. Again, the top level one
is trivial, which is given by ∂l

∂ν̃ij
n(T) = WT

4
∂l
∂µ̃j

∂σ

∂(W3xj+W4
∑

k∈N(j) ν̃
(T)
kj)

. Using similar recursion trick, we can get the

following chain rule for getting partial derivatives with respect to each pairwise message in each stage of fixed point
iteration.

∂l

∂ν̃
n(t)
ij

=
∑

p∈N (j)\i

WT
2

∂l

∂ν̃
n(t+1)
jp

∂σ

∂(W1xj +W2

∑
k∈N (j)\p[ν̃

n(t)
kj])

(32)

Then, we can update the parameters W1,W2 using following gradients.

Discriminative Embeddings of Latent Variable Models for Structured Data

∇W1
l(f(µ̃n;U), yn) =

T−1∑
t=1

∑
(i,j)∈En

∂l

∂ν̃
n(t+1)
ij

∂σ

∂(W1xi +W2

∑
k∈N (i)\j [ν̃

n(t)
ki])

xTi (33)

∇W2
l(f(µ̃n;U), yn) =

T−1∑
t=1

∑
(i,j)∈En

∂l

∂ν̃
n(t+1)
ij

∂σ

∂(W1xi +W2

∑
k∈N (i)\j [ν̃

n(t)
ki])

(
∑

k∈N (i)\j

[ν̃
n(t)
ki])T (34)

(35)

E. More Experiment Details
E.1. Graph Datasets

We show the detailed statistics of these graph datasets in Table 3.

size avg |V | avg |E| #labels
MUTAG 188 17.93 19.79 7
NCI1 4110 29.87 32.3 37
NCI109 4127 29.68 32.13 38
ENZYMES 600 32.63 62.14 3
D&D 1178 284.32 715.66 82

Table 3. Statistics (Sugiyama & Borgwardt, 2015) of graph benchmark datasets. |V | is the # nodes while |E| is the # edges in a graph.
#labels equals to the number of different types of nodes.

E.2. Experiment Settings

For the small scaled string and graph datasets, we tune all the methods via cross validation. Specifically, for structured
kernel methods, we tune the degree in {1, 2, . . . , 10} (for mismatch kernel, we also tune the maximum mismatch length
in {1, 2, 3}) and train SVM classifier (Chang & Lin, 2001) on top, where the trade-off parameter C is also chosen in
{0.01, 0.1, 1, 10} by cross validation. For fisher kernel that using HMM as generative model, we also tune the number of
hidden states assigned to HMM in {2, . . . , 20}.

For our methods, we simply use one-hot vector (the vector representation of discrete node attribute) as the embedding
for observed nodes, and use a two-layer neural network for the embedding (prediction) of target value. The hidden layer
size b ∈ {16, 32, 64} of neural network, the embedding dimension d ∈ {16, 32, 64} of hidden variables and the number
of iterations t ∈ {1, 2, 3, 4} are tuned via cross validation. We keep the number of parameters small, and use early
stopping (Giles, 2001) to avoid overfitting in these small datasets.

