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Abstract
For many machine learning problems, data is
abundant and it may be prohibitive to make mul-
tiple passes through the full training set. In this
context, we investigate strategies for dynamically
increasing the effective sample size, when using
iterative methods such as stochastic gradient de-
scent. Our interest is motivated by the rise of
variance-reduced methods, which achieve linear
convergence rates that scale favorably for smaller
sample sizes. Exploiting this feature, we show
– theoretically and empirically – how to obtain
significant speed-ups with a novel algorithm that
reaches statistical accuracy on an n-sample in 2n,
instead of n log n steps.

1. Introduction
In empirical risk minimization (ERM) (Vapnik, 1998) the
training set S is used to define a sample risk RS , which is
then minimized with regard to a pre-defined function class.
One effectively equates learning algorithms with optimiza-
tion algorithms. However, for all practical purposes an ap-
proximate solution of RS will be sufficient, as long as the
optimization error is small relative to the statistical accu-
racy at sample size n := |S|. This is important for mas-
sive data sets, where optimization to numerical precision is
infeasible. Instead of performing early stopping on black-
box optimization, one ought to understand the trade-offs
between statistical and computational accuracy, cf. (Chan-
drasekaran & Jordan, 2013). In this paper, we investigate a
much neglected facet of this topic, namely how to dynami-
cally control the effective sample size in optimization.

Many large-scale optimization algorithms are iterative:
they use sampled or aggregated data to perform a sequence
of update steps. This includes the popular family of gra-
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dient descent methods. Often, the computational complex-
ity increases with the size of the training sample, e.g. in
steepest-descent, where the cost of a gradient computation
scales with n. Does one really need a highly accurate gradi-
ent though, in particular in the early phase of optimization?
Why not use subsets Tt ⊆ S which are increased in size
with the iteration count t, matching-up statistical accuracy
with optimization accuracy in a dynamic manner? This is
the general program we pursue in this paper. In order to
make this idea concrete and to reach competitive results,
we focus on a recent variant of stochastic gradient descent
(SGD), which is known as SAGA (Defazio et al., 2014). As
we will show, this algorithm has a particularly interesting
property in how its convergence rate depends on n.

1.1. Empirical Risk Minimization

Formally, we assume that training examples x ∈ S ⊆ X
have been drawn i.i.d. from some underlying, but unknown
probability distribution P . We fix a function class F
parametrized by weight vectors w ∈ Rd and define the ex-
pected risk asR(w) := Efx(w), where f is an x-indexed
family of loss functions, often convex. We denote the min-
imum and the minimizer of R(w) over F by R∗ and w∗,
respectively. Given that P is unknown, ERM suggests to
rely on the empirical (or sample) risk with regard to S

RS(w) :=
1

n

∑
x∈S

fx(w), w∗S := arg min
w∈F

RS(w) . (1)

Note that one may absorb a regularizer in the definition of
the loss fx.

1.2. Generalization bounds

The relation between w∗ and w∗S has been widely studied
in the literature on learning theory. It is usually analysed
with the help of uniform convergence bounds that take the
generic form (Boucheron et al., 2005)

ES

[
sup
w∈F

|R(w)−RS(w)|
]
≤ H(n) , (2)
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where the expectation is over a random n-sample S. Here
H is a bound that depends on n, usually through a ratio
n/d, where d is the capacity of F (e.g. VC dimension).
This fast convergence rate has been shown to hold for a
class of strictly convex loss functions such as quadratic, and
logistic loss (Bartlett et al., 2006; 2005). In the realizable
case, we may be able to observe a favorable H(n) ∝ d/n,
whereas in the pessimistic case, we may only be able to es-
tablish weaker bounds such asH(n) ∝

√
d/n (e.g. for lin-

ear function classes); see also (Bousquet & Bottou, 2008).
We ignore additional log factors that can be eliminated us-
ing the ”chaining” technique (Bousquet, 2002; Bousquet &
Bottou, 2008).

1.3. Statistical efficiency

Assume now that we have some approximate optimization
algorithm, which given S produces solutions wS that are
on average ε(n) optimal, i.e. ES [RS(wS)−R∗S ] ≤ ε(n).
One can then provide the following quality guarantee in
expectation over sample sets S (Bousquet & Bottou, 2008)

ESR(wS)−R∗ ≤ H(n) + ε(n) , (3)

which is an additive decomposition of the expected solu-
tion suboptimality into an estimation (or statistical) error
H(n) and an optimization (or computational) error ε(n).
For a given computational budget, one typically finds that
ε(n) is increasing with n, whereasH(n) is always decreas-
ing. This hints at a trade-off, which may suggest to chose
a sample size m < n. Intuitively speaking, concentrating
the computational budget on fewer data may be better than
spreading computations too thinly.

1.4. Stochastic Gradient Optimization

For large scale problems, stochastic gradient descent is a
method of choice in order to optimize problems of the form
given in Eq. (1). Yet, while SGD update directions equal
the true (negative) gradient direction in expectation, high
variance typically leads to sub-linear convergence. This is
where variance-reducing methods for ERM such as SAG
(Roux et al., 2012), SVRG (Johnson & Zhang, 2013), and
SAGA (Defazio et al., 2014) come into play. We focus on
the latter here, where one can establish the following result
on the convergence rate (see appendix).

Lemma 1. Let all fx be convex with L-Lipschitz contin-
uous gradients and assume that RS is µ-strongly convex.
Then the suboptimality of the SAGA iterate wt after t steps
is over a randomly sampled S bounded by

EA
[
RS(wt)−R∗S

]
≤ ρtnCS , ρn = 1−min

(
1

n
,
µ

L

)
,

where the expectation is over the algorithmic randomness.

This highlights two different regimes: For small n, the con-
dition number κ := L

µ dictates how fast the optimization
algorithm converges. On the other hand, for large n, the
convergence rate of SAGA becomes ρn = 1− 1

n .

1.5. Contributions

Our main question is: can we obtain faster convergence
to a statistically accurate solution by running SAGA on an
initially smaller sample, whose size is then gradually in-
creased? Motivated by a simple, yet succinct analysis, we
present a novel algorithm, called DYNASAGA that imple-
ments this idea and achieves ε(n) ≤ H(n) after only 2n
iterations.

2. Related Work
Stochastic approximation is a powerful tool for minimizing
objective Eq. (1) for convex loss functions. The pioneering
work of (Robbins & Monro, 1951) is essentially a stream-
ing SGD method where each observation is used only once.
Another major milestones has been the idea of iterate av-
eraging (Polyak & Juditsky, 1992). A thorough theoretical
analysis of asymptotic convergence of SGD can be found
in (Kushner & Yin, 2003), whereas some non-asymptotic
results have been presented in (Moulines & Bach, 2011).

A line of recent work known as variance-reduced SGD, e.g.
(Roux et al., 2012; Shalev-Shwartz & Zhang, 2013; John-
son & Zhang, 2013; Defazio et al., 2014; 2015; Konečnỳ
& Richtárik, 2013; Zhang et al., 2013), has exploited the
finite sum structure of the empirical risk to establish lin-
ear convergence for strongly convex objectives and also a a
better convergence rate for purely convex objectives (Mah-
davi et al., 2013). There is also evidence of slightly
improved statistical efficiency (Babanezhad et al., 2015).
(Frostig et al., 2015) provides a non-asymptotic analysis of
a streaming SVRG algorithm (SSVRG), for which a con-
vergence rate approaching that of the ERM is established.

There have also been related data-adaptive sampling ap-
proaches, e.g. in the context of unsupervised learning (Lu-
cic et al., 2015) or for non-uniform sampling of data
points (Schmidt et al., 2013; He & Takác, 2015) with the
goal of sampling important data points more often. This
direction is largely orthogonal to our dynamic sizing of
the sample, which is purely based on random subsampling.
Our sampling strategy is instead based on revisiting sam-
ples which has also been explored in (Wang et al., 2016) to
empirically improve the convergence of certain variance-
reduced methods.
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Figure 1. Tradeoff between sample statistical accuracy term
H(m) and optimization suboptimality ε(m) using sample size
m < n. Note that ε(m) is drawn by taking the first order approx-
imation of the upper bound Ce−

n
m . Here, m∗ = O(n/ logn)

yields the best balance between these two terms.

3. Methodology
3.1. Setting and Assumptions

We work under the assumptions made in Lemma 1 and fo-
cus on the large data regime, where n ≥ κ and the geo-
metric rate of convergence of SAGA depends on n through
ρn = 1− 1/n. This is an interesting regime as the guaran-
teed progress per update is larger for smaller samples.

This form of ρn implies for the case of performing t = n
iterations, i.e. performing one pass1:

EA [RS(wn)−R∗S ] ≤
(

1− 1

n

)n
CS ≤

CS
e
. (4)

So we are guaranteed to improve the solution suboptimality
on average by a factor 1/e per pass. This in turn implies
that in order to get to a guaranteed accuracy O(n−α), we
need O(αn log n) update steps.

3.2. Sample Size Optimization

For illustrative purposes, let us use the above result to select
a sample size for SAGA, which yields the best guarantees.

Proposition 2. Assume H(m) = D/m and n is given.
DefineC to be an upper-bound onCS ,∀S (from Lemma 1),
then for m ≥ κ, V (m) := D

m + Ce−
n
m provides a bound

on the expected suboptimality of SAGA. It is minimized for
the choice

m∗ = max

{
κ,

n

log n+ log C
D

}
.

Proof. The first claim follows directly from the assump-
tions and Lemma 1. Moreover the tightest bound is ob-

1The SAGA analysis holds for i.i.d. sampling, so strictly
speaking this is not a pass, but corresponds to n update steps.

tained by differentiating V with regard to 1/m and solving
for m (see Lemma 9 in appendix).

The result implies that we will perform roughly log n +
log C

D epochs on the optimally sized sample. Also the value
of the bound is (for simplicity, assuming C = D)

V (m∗) =
log n

n
+

1

n
≤ V (n) =

1

n
+

1

e
, (5)

showing that the single pass approximation error on the full
sample is too large (constant), relative to the statistical ac-
curacy.

3.3. Dynamic Sample Growth

As we have seen, optimizing over a smaller sample can be
beneficial (if we believe the significance of the bounds).
But why chose a single sample size once and for all? A
smaller sample set seems advantageous early on, but as
an optimization algorithm approaches the empirical min-
imizer, it is hit by the statistical accuracy limit. This sug-
gests that we should dynamically increment the size of the
sample set. We illustrate this idea in Figure 2. In order to
analyze such a dynamic sampling scheme, we need to re-
late the suboptimality on a sub-sample T to a suboptimal-
ity bound on S. We establish a basic result in the following
theorem.
Theorem 3. Let w be an (ε, T )-optimal solution,
i.e.RT (w)−R∗T ≤ ε, where T ⊆ S, m := |T |, n := |S|.
Then the suboptimality of w for RS is bounded w.h.p. in
the choice of T as:

ES [RS(w)−R∗S ] ≤ ε+
n−m
n
H(m) . (6)

Proof. Consider the following equality

RS(w)−R∗S = RS(w)
(1)
∓ RT (w)

(2)
∓ R∗T

(3)
− R∗S

We bound the three involved differences (in expectation)
as follows: (2): RT (w) − R∗T ≤ ε by assumption. (3):
ES [RT (w∗T )−RS(w∗S)] ≤ 0 as T ⊆ S . For (1) we
apply the bound (see Lemma 10 in the appendix)

ES|T [RS(w)−RT (w)] ≤ n−m
n
|R(w)−RT (w)| .

Moreover

ET [R(w)−RT (w)] ≤ sup
w′
|R(w′)−RT (w′)| ≤ H(m)

by Eq. (2), which concludes the proof.

In plain English, this result suggests the following: If we
have optimized w to (ε, T ) accuracy on a sub-sample T
and we want to continue optimizing on a larger sample S ⊇
T , then we can bound the suboptimality onRS by the same
ε plus an additional ”switching cost” of (n−m)/n ·H(m).
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Figure 2. Illustration of an optimal progress path via sample size
adjustment. The vertical black lines show the progress made at
each step, thus illustrating the faster convergence for smaller sam-
ple size.

Table 1. Comparison of obtained bounds for different SAGA vari-
ants when performing T ≥ κ update steps.

METHOD OPTIMIZATION ERROR SAMPLES

SAGA (one pass) const. T
SAGA (optimal size) O(log T · H(T )) T/ log T
DYNASAGA O(H(T )) T/2

4. Algorithms & Analysis
4.1. Computational Limited Learning

The work of (Bottou, 2010) emphasized that for massive
data sets the limiting factor of any learning algorithm will
be its computational complexity T , rather than the number
of samples n. For SGD this computational limit typically
translates into the number of stochastic gradients evaluated
by the algorithm, i.e. T becomes the number of update
steps. One obvious strategy with abundant data is to sam-
ple a new data point in every iteration. There are asymp-
totic results establishing bounds for various SGD variants
in (Bousquet & Bottou, 2008). However, SAGA and re-
lated algorithms rely on memorizing past stochastic gradi-
ents, cf. (Hofmann et al., 2015), which makes it beneficial
to revisit data points, and which is at the root of results such
as Lemma 1. This leads to a qualitatively different behav-
ior and our findings indicate that indeed, the trade-offs for
large scale learning need to be re-visited, cf. Table 1.

4.2. SAGA with Dynamic Sample Sizes

We suggest to modify SAGA to work with a dynamic sam-
ple size schedule. Let us define a schedule as a monotonic
function M : Z+ → Z+, where t is the iteration number

Algorithm 2 DYNASAGA
1: Input:

training examples X = (x1,x2, . . . ,xn), xi ∼ P
total number of iterations T (e.g. T = 2n)
starting point w0 ∈ Rd (e.g w0 = 0)
learning rate η > 0 (e.g. η = 1

4L )
sample schedule M : [1 : T ]→ [1 : n]

2: w ← w0

3: for i = 1, . . . , n do
4: αi ← ∇fxi

(w0) {can also be done on the fly}
5: end for
6: for t = 1, . . . , T do
7: sample xi ∼ Uniform(x1, . . . ,xM(t))
8: g ← ∇fxi

(wt−1)

9: A←
∑M(t)
j=1 αj/M(t) {can be done incrementally}

10: wt ← wt−1 − η (g − αi +A)
11: αi ← g
12: end for

and M(t) the effective sample size used at t. We assume
that a sequence of data points X = (x1, . . . ,xn) drawn
from P is given such that M induces a nested sequence of
samples Tt := {xi : 1 ≤ i ≤M(t)}.

DYNASAGA generalizes SAGA (Defazio et al., 2014) in
that it samples data points non-uniformly at each iteration.
Specifically, for a given schedule M and iteration t, it sam-
ples uniformly from Tt, but ignores X − Tt. The pseu-
docode for DYNASAGA is shown in Algorithm 1.

4.3. Upper Bound Recurrence

Assume we are given a stochastic optimization method that
guarantees a geometrical decay at each iteration, i.e.

EA
[
RS(wt)−R∗S

]
≤ ρn

[
RS(wt−1)−R∗S

]
(7)

where |S| = n and expectation is over randomness of opti-
mization process. 2 For acceleration, we pursue the strategy
of using the basic inequalities obtained so far and to stitch
them together in the form of a recurrence. At any iteration t
we allow ourselves the choice to augment the current sam-
ple of size m by some increment 4m ≥ 0. We define an
upper bound function U as follows

U(t, n) = min

 ρnU(t− 1, n)

min
m<n

[
U(t,m) + n−m

n H(m)

]
,

(8)

such that U(0,m) = ξ, where the initial error ξ is defined
as:

ξ :=
4L

µ

[
R(w0)−R(w∗)

]
. (9)

2Note that this assumption is slightly stronger than Lemma 1
but it leads to a much simpler proof technique.
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We refer the reader to Lemma 8 in the Appendix for further
details on how to derive the expression for ξ.

The construction of Eq. (8) is motivated by the following
result:

Proposition 4. W.h.p. over the random n-sample X , the
iterate sequence wt generated by DYNASAGA fulfils

EX
[
RTn(wt)−R∗Tn

]
≤ U(t, n) .

Proof. By induction over t. The result for t = 0 follows
directly from Lemma 8. The first case in Eq. (8) for the in-
duction step (fixed sample size) follows from Eq. (7). The
second case holds by virtue of Theorem 3 for any m, hence
also for the minimum.

Although the U-recursion can be solved for small n us-
ing dynamic programming (assuming knowledge of all
constants), we analyse a much simpler heuristics and its
n → ∞ behavior. This leads to interesting insights, while
being very practical. In particular, our algorithm is an any-
time algorithm, which does not require knowledge of the
total number of iterations T ahead of time.

4.4. Sample Schedules

In this section, we present and analyse two adaptive
sample-size schemes for DYNASAGA.

LINEAR We start with sample size κ and perform 2κ
steps. From then on, we add a new sample every other
iteration. The effective sample size is thus

MLIN(t) = max
{

2κ,
⌈
t
2

⌉}
(10)

Note that this strategy defines an upper bound on U(2t, t)
and U(2t+ 1, t).

ALTERNATING We have also implemented a variant
where we perform updates in alternation: every other it-
eration we sample a new data point, which is added to the
set. However, we also force an update on this fresh sam-
ple. In alternation, we simply re-sample an existing data
point uniformly at random. We do not provide a theoret-
ical analysis for this scheme but show experimentally that
it slightly outperforms the LINEAR strategy (see results in
the appendix). We thus report results for the ALTERNAT-
ING strategy in the experimental section.

4.5. Analysis

We now provide an analysis that establishes the conver-
gence rate of the LINEAR strategy.

Lemma 5. For H(n) = Dn−α, 0 < α ≤ 1, the LINEAR
strategy obtains the following suboptimality

U(2n, n) ≤ H (n) +
ξ

2

(κ
n

)2
(11)

Proof. By induction over n. The base case follows from
Cm ≤ ξ. Using Eq. (8) and (11) for the inductive case, we
get

U (2(n+ 1), n+ 1)
(8)
≤ ρ2n+1

[
U (2n, n) +

1

n+ 1
H(n)

]
(11)
≤ ξ

2

(
κ

n+ 1

)2

+
n2 (n+ 2)

(n+ 1)
3 H(n)

Note that by definition of the logarithmic function,
log [n(n+ 2)] < 2 log(n+ 1), and moreover

n

n+ 1

H(n)

H(n+ 1)
=

n1−α

(n+ 1)1−α
≤ 1 ,

which completes the proof.

This means that for large enough n the LINEAR strategy is
able to approach the statistical accuracy with 2n iterations,
i.e. two ”passes” over the data. Note the very significant
improvement relative to the log n factor inherent to the op-
timal fixed sample size choice (see Table 1 for a compari-
son of these two bounds).

What does that imply for the T = n case that we have been
emphasizing? It is simple to state an answer as a corollary.

Corollary 6. Under the same assumptions as Lemma 5, it
holds for even n

U(n, n) ≤
(
3 · 2α−1

)
H (n) + 2ξ

(κ
n

)2
Proof. Note that with Eq. (8) (a) and Lemma 5 (b) we get

U(2n, 2n)
(a)
≤ U(2n, n) +

1

2
H(n)

(b)
≤ 3

2
H(n) + 2ξ

( κ
2n

)2
The fact thatH(n) = 2αH(2n) completes the proof.

The proof of the above corollary suggests to only use
n = T/2 samples, when performing T steps and to sim-
ply ignore the other half (that potentially could have been
sampled). One might wonder if a better strategy than the
LINEAR one could be defined, e.g. by iterating more than
twice on each newly added sample or by increasing the
sample size by more than one. The next lemma answers
this question and proves that the LINEAR strategy is opti-
mal for large-scale datasets as long asH(n) ∝ 1/n.

Lemma 7. Assume that H(n) ∝ D/n, then the LINEAR
strategy is optimal for all sample size n > κ.
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Figure 3. Results on synthetic dataset. (left) Since, the empirical
suboptimality is ∝ 1/n, we expect the slope measured on this
plot to be close to one. (right) Since κ = n0.75 slows down the
convergence rate, the slope of this plot is less than one.

Proof. Here, we briefly state a sketch of the proof . The de-
tails are presented in Appendix A.2. First, we reformulate
the problem of the optimal sample size schedule in terms
of number of iterations on each samples size. Given that
this problem is convex, we can use the KKT conditions to
prove the optimality of incrementing by one sample (see
Lemma 12) and iterating twice on each sample size (see
Lemma 13).

5. Experimental Results
We present experimental results on synthetic as well as
real-world data, which largely confirms the above analysis.

5.1. Baselines

We compare DYNASAGA (both the LINEAR and ALTER-
NATING strategy) to various optimization methods pre-
sented in Section 2. This includes SGD (with constant and
decreasing step-size), SAGA, streaming SVRG (SSVRG)
as well as the mixed SGD/SVRG approach presented
in (Babanezhad et al., 2015).

5.2. Experiment on synthetic data

We consider linear regression, where inputs a ∈ Rd are
drawn from a Gaussian distribution N (0,Σd×d) and out-
puts are corrupted by additive noise y = 〈x,w∗〉 + ε,
ε ∼ N

(
0, σ2

)
. We are given n i.i.d observations of this

model, S = {(ai, yi)}ni=1, from which we compute the
least squares riskRS(w) = 1

n

∑n
i=1 (〈ai,w〉 − yi)2.

By considering the matrix An to be a row-wise arrange-
ment of the input vectors ai, we can write the Hessian
matrix of Rn(w) as Σn = 1

nA
T
nAn. When n � d, the

matrix Σn converges to Σ and we can therefore assume
that Rn(w) is µ-strongly convex and L-Lipschitz where
the constants µ and L are the smallest and largest eigenval-
ues of Σ. We experiment with two different values for the

Table 2. Details of the real datasets used in our experiments. All
datasets were selected from the LIBSVM dataset collection.

DATASET SIZE NUMBER OF FEATURES

RCV1.BINARY 20242 47236
A9A 32561 123
W8A 49749 300
IJCNN1 49990 22
REAL-SIM 72309 20958
COVTYPE.BINARY 581012 54
SUSY 5000000 18

condition number κ.

Case κ =
√
n: We use a diagonal Σ with elements de-

creasing from 1 to 1√
n

, hence κ =
√
n. In this particu-

lar case the analysis derived in Lemma 5 predicts an upper
bound U(n, n) < O( 1

n ) which is confirmed by the results
shown in Figure 3.

Case κ = n
3
4 : When κ = n

3
4 , the term

(
κ
n

)2
is the dom-

inating term in the proposed upper-bound. In this case,
U(n, n) is thus upper-bounded by O

(
1√
n

)
, which is once

again verified experimentally in Figure 3.

5.3. Experiments on Real Datasets

We also ran experiments on several real-world datasets in
order to compare the performance of DYNASAGA to state-
of-the-art methods. The details of the datasets are shown
in Table 2. Throughout all the experiments we used the lo-
gistic loss with a regularizer λ = 1√

n
3. Figures 4, and 5

show the suboptimality on the empirical risk and expected
risk after a single pass over the datasets. The various pa-
rameters used for the baseline methods are described in Ta-
ble 3. A critical factor in the performance of most base-
lines, especially SGD, is the selection of the step-size. We
picked the best-performing step-size within the common
range guided by existing theoretical analyses, specifically
η = 1/L and η = C

C+µt for various values of C. Over-
all, we can see that DYNASAGA performs very well, both
as an optimization as well as a learning algorithm. SGD
is also very competitive and typically achieves faster con-
vergence than the other baselines, however, its behaviour
is not stable throughout all the datasets. The SGD vari-
ant with decreasing step-size is typically very fast in the
early stages but then slows down after a certain number of
steps. The results on the RCV dataset are somehow sur-
prising as SGD with constant step-size clearly outperforms
all methods but we show in the appendix that its behaviour

3We also present some additional results for various regulariz-
ers of the form λ = 1

np , p < 1 in the appendix
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Figure 4. Suboptimality on the empirical risk. The vertical axis shows the suboptimality of the empirical risk, i.e.
log2 E10

[
RT (wt)−R∗T

]
where the expectation is taken over 10 independent runs. The training set includes 90% of the data. The

vertical red dashed line is drawn after exactly one epoch over the data.

gets worse as we increase the condition number. As can be
seen very clearly, DYNASAGA yields excellent solutions
in terms of expected risk after one pass (see suboptimality
values that intersect with the vertical red dashed lines).

6. Conclusion
We have presented a new methodology to exploit the trade-
off between computational and statistical complexity, in or-
der to achieve fast convergence to a statistically efficient so-
lution. Specifically, we have focussed on a modification of
SAGA and suggested a simple dynamic sampling sched-
ule that adds one new data point every other update step.
Our analysis shows competitive convergence rates both in

term of suboptimality on the empirical risk as well as (more
importantly) the expected risk in a one pass or a two pass
setting. These results have been validated experimentally.

Our approach depends on the underlying optimization
method only through its convergence rate for minimizing
an empirical risk. We thus suspect that a similar sample
size adaption is applicable to a much wider range of algo-
rithms, including to non-convex optimization methods for
deep learning.
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Figure 5. Suboptimality on the expected risk. The vertical axis shows the suboptimality of the expected risk, i.e.
log2 E10

[
RS(wt)−RS(w∗T )

]
, where S is a test set which includes 10% of the data and w∗T is the optimum of the empirical risk on

T . The vertical red dashed line is drawn after exactly one epoch over the data.
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